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Abstract: In synthetic aperture radar (SAR) images, ships are often arbitrary-oriented and densely
arranged in complex backgrounds, posing enormous challenges for ship detection. However, most
existing methods detect ships with horizontal bounding boxes, which leads to the redundancy of
detected regions. Furthermore, the high Intersection-over-Union (IoU) between two horizontal
bounding boxes of densely arranged ships can cause missing detection. In this paper, a multi-stage
rotational region based network (MSR2N) is proposed to solve the above problems. In MSR2N,
the rotated bounding boxes, which can reduce background noise and prevent missing detection
caused by high IoUs, are utilized to represent ship regions. MSR2N consists of three modules: feature
pyramid network (FPN), rotational region proposal network (RRPN), and multi-stage rotational
detection network (MSRDN). First of all, the FPN is applied to combine high-resolution features with
semantically strong features. Second, in RRPN, a rotation-angle-dependent strategy is employed to
generate multi-angle anchors which can represent arbitrary-oriented ship regions more felicitously
than horizontal anchors. Finally, the MSRDN with three sub-networks is proposed to regress
proposals of ship regions stage by stage. Meanwhile, the incrementally increasing IoU thresholds
are selected for resampling positive and negative proposals in sequential stages of MSRDN, which
eliminates close false positive proposals successively. With the above characteristics, MSR2N is more
suitable and robust for ship detection in SAR images. The experimental results on SAR ship detection
dataset (SSDD) show that the MSR2N has achieved state-of-the-art performance.

Keywords: synthetic aperture radar (SAR) ship detection; multi-stage rotational region based network
(MSR2N); rotated anchor generation; multi-stage rotational detection network (MSRDN)

1. Introduction

Ship detection is one of the most significant missions of marine surveillance. With the
characteristics of working all-weather, all-time [1], and imaging relatively wide areas at constant
resolution [2], synthetic aperture radars (SAR) such as Terra-X, COSMOS-SkyMed, RADARSAT-2,
Sentinel-1, and GF-3 are widely applied in ship detection [3–7].

Traditional ship detection methods are mainly based on the following three aspects: (1) statistics
characteristics [8–11]; (2) wavelet transform [12,13]; and (3) polarization information [14,15]. Among
these methods, constant false alarm rate (CFAR) and variants thereof [8–10] are most widely utilized.
CFAR detectors adaptively calculate the detection thresholds by estimating the statistics of background
clutter and maintain a constant probability of false alarm. However, the determination of detection
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thresholds depends on the distribution of sea clutter, which is not robust enough for the detection of
multi-scale ships in multi-scenes. On the other hand, CFAR based methods require land masking and
post-processing to reduce false alarms, which is insufficiently automated.

Recently, with the rapid development of deep convolutional networks [16–20], great progress
has been made in deep convolutional neural networks (CNN)-based object detection [21–33].
Generally, the current CNN-based detectors can be divided into one-stage [25,26,29,31] and two-stage
detectors [22–24,28,32,33]. One-stage detectors include you only look once (YOLO) [25] and its
derivative versions [34,35], single shot detector (SSD) [26] and RetinaNet [29], et al. YOLO reframes
object detection as a regression problem. The input images are divided into S× S grid cells and then
YOLO predicts bounding boxes and class probabilities for each grid cell straightly. SSD generates
a set of default boxes over different sizes per feature map location to match the shape of objects
better. RetinaNet proposed the focal loss to overcome the extreme foreground-background class
imbalance. On the other hand, faster region-based CNN (Faster R-CNN) [23] and region-based
fully convolutional networks (R-FCN) [28] are representative two-stage detectors. Faster R-CNN
generates anchors of different scales and aspect ratios through the region proposal network (RPN).
In addition, then the feature map and proposals rescaled from anchors are fed into the Fast R-CNN
sub-network to predict the location and class probabilities of bounding boxes. Different from the
per-region sub-network of Faster R-CNN, R-FCN is a fully convolutional network with the shared
computation on the entire image. It proposed position-sensitive score maps to address the problem
between translation-invariance in image classification and object detection [28]. Feature pyramid
network (FPN) [24] combines low-level and high-level features for more comprehensive feature
expression, which has outstanding performance on multi-scale object detection. In summary, one-stage
detectors show superiority in detection speed benefits from the single network of detection pipeline.
However, for accuracy, the two-stage detectors are better than that of one-stage, especially for small
dense object detection.

For SAR ship detection, Deep CNNs have been widely applied in recent years. As a typical
one-stage detection method, YOLOv2 was utilized to detect ships in SAR imagery [36]. Wang et al. [37]
utilized RetinaNet for automatic ship detection of multi-resolution GF-3 imagery. Zhang et al. [38]
proposed a lightweight feature optimizing network with lightweight feature extraction and attention
mechanism for better feature representation. On the other hand, many two-stage detectors were
proposed for higher detection accuracy. Ref. [39] proposed an improved Faster R-CNN for SAR
ship detection. A multilayer fusion light-head detector [40] was proposed to improve the detection
speed. Jiao et al. [41] proposed a densely connected neural network, which utilizes a modified
FPN, for multi-scale and multi-scene ship detection. Ref. [42–45] added attention mechanisms into
CNNs as attention mechanisms adaptively recalibrate feature responses to increase representation
power [19,46].

Though many CNN-based methods have been proposed for SAR ship detection, they still
encounter bottlenecks on the following issues: (1) Quite different from natural images, in SAR
images, strip-like ships are often presented under bird’s eye perspectives with various rotation
angles and densely arranged in an inshore complex background, as shown in Figure 1a. A ship
with an inclined angle leads to a relatively large redundancy region, which would introduce
background noise. Moreover, two horizontal bounding boxes of densely arranged ships have a
high Intersection-over-Union (IoU) leading to missing detection after the non-maximum suppression
(NMS) operation [47,48]. Under these circumstances, the limited capacity of detection with horizontal
bounding boxes would be exposed. (2) In R-CNN based object detection methods, an IoU threshold is
utilized to distinguish positive and negative samples in the Fast R-CNN sub-network. A relatively low
IoU threshold will result in a high recall but a low precision due to the generation of noisy bounding
boxes. On the contrary, a relatively high IoU threshold leads to inadequate positive samples. In this
case, the overfitting model will cause missing detection. Figure 2 shows the detection results under
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IoU thresholds of 0.5 and 0.7, respectively. Some noisy background regions are detected as ship regions
in Figure 2a, and the missing detection appears in Figure 2b.

(a) (b)

Figure 1. Densely arranged ships in an inshore complex background. (a) marking ship regions with
horizontal bounding boxes; (b) marking ship regions with rotated bounding boxes.

(a) (b)

Figure 2. Detection results under different IoU thresholds; (a) detection results under a IoU threshold
of 0.5; (b) detection results under a IoU threshold of 0.7.

Due to the inherent drawback of horizontal bounding boxes, rotated bounding boxes were
gradually developed in optical remote sensing [47–50]. Ref. [47] proposed a rotation dense feature
pyramid network (R-DFPN) in which the dense FPN and multiscale region of interest (ROI) align
are used to detect ships in different scenes. In [48], a multi-category rotation detector was proposed
for small, cluttered and rotated objects. Li et al. [49] proposed a rotatable region-based residual
network (R3-Net) for multi-oriented vehicle detection. The ROI Transformer [50] that is lightweight
was proposed to decrease the computational complexity.

To address the problems in SAR ship detection, a multi-stage rotational region based network
(MSR2N) is proposed for arbitrary-oriented ship detection. As shown in Figure 1b, rotated bounding
boxes can locate ships more accurately with less redundant noise background, and would not overlap
with each other even in a dense arrangement. Therefore, the rotated bounding box representation is
utilized in this paper. In the feature extraction module, we apply the FPN to fuse the high-resolution
features and semantically strong features from the backbone network, which enhances feature
representation. To generate rotated anchors and proposals, a rotational RPN (RRPN) is utilized.
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In addition, a multi-stage rotational detection network (MSRDN) is applied in MSR2N. The MSRDN,
which contains an initial rotational detection network (IRDN) and two refined rotational detection
networks (RRDN), is trained stage by stage. Three increasing IoU thresholds are selected to sample the
positive and negative proposals in three stages, respectively. The increasing IoU thresholds guarantee
sufficient positive samples to avoid overfitting, and reduce close false positive proposals in the
meantime. Compared to other methods, the proposed MSR2N achieves state-of-the-art performance on
SAR ship detection, especially for densely arranged ships in inshore complex backgrounds. The main
contributions of proposed MSR2N are enumerated as follows:

1. Alluding to the characteristics of SAR images, the MSR2N framework is proposed in this paper,
which is more beneficial for arbitrary-oriented ship detection than horizontal bounding box
based methods.

2. In RRPN, a rotation-angle-dependent strategy is utilized to generate anchors with multiple scales,
ratio aspects, and rotation angles, which can represent arbitrary-oriented ships more adequately.

3. The MSRDN is proposed, where three increasing IoU thresholds are chosen to resample and
refine proposals successively. With the proposals refined more accurately, the number of refined
proposals also increases.

4. The multi-stage loss function is employed to accumulate losses of RRPN and three stages of
MSRDN to train the entire network.

5. Compared to other methods, the proposed MSR2N has achieved state-of-the-art performance on
SAR ship detection dataset (SSDD).

This paper is organized as follows. Section 2 describes the proposed MSR2N in detail. In Section 3,
the ablation and comparative experiments are carried out on SSDD, which verifies the effectiveness of
proposed MSR2N. Section 4 draws the conclusions for this paper.

2. Proposed Approach

The overall framework of the proposed MSR2N is illustrated in Figure 3. The whole framework
can be divided into three modules: FPN, RRPN, and MSRDN. The FPN fuses feature maps from
different layers of the backbone to generate the feature pyramid. In the RRPN module, a rotated
anchor generation strategy is utilized to produce anchors with various rotation angles. The RRPN
head outputs the softmax probabilities of being a ship and the regression offsets that encode the
coordinates of coarse proposals. Millions of proposals are generated, but most of them are redundant
noisy proposals and the amount of computation is huge. Hence, we select Npre proposals with the
highest probabilities per feature pyramid level and perform the skew NMS operation [51] on the
selected proposals to obtain Npost final proposals which are fed into the next MSRDN. The MSRDN
containing the IRDN and two RRDNs is trained stage by stage with three increasing IoU thresholds.
During training, the MSR2N is optimized under the supervision of softmax probabilities and rotated
boxes regression offsets from RRPN and each stage of MSRDN. For the inference time, the final refined
proposals from the last stage of MSRDN are selected by a probability threshold and sampled by the
skew NMS operation. Finally, the predicted bounding boxes are obtained.

2.1. Feature Pyramid Network

In this paper, we select ResNet50 [17] as the backbone network, as shown in Figure 3. To extract
sufficient ship features in SAR images, especially for small ships, the FPN [24] is utilized to combine
the high-resolution, semantically weak features with low-resolution, and semantically strong features.
As illustrated in Figure 4, the FPN contains a bottom-up pathway, a top-down pathway, lateral
connections, and output convolutions. The outputs of ResNet50s last residual blocks, denoted as
{C2, C3, C4, C5}, are chosen as the bottom-up hierarchy. The strides of {C2, C3, C4, C5} are {4, 8, 16, 32}
pixels with respect to the input image. The top-down pathway upsamples the semantically stronger
features by a factor of 2 and fuses them with the spatially finer features from the bottom-up pathway by
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element-wise addition. The lateral connections are 1 × 1 convolution layers with 256-channels, which
reduces channel dimensions. In addition, 3 × 3 convolution layers with 256-channels are utilized as
the output layers to reduce the aliasing effect of upsampling. The final feature maps of FPN denoted
as {P2, P3, P4, P5}, are fed into the following stages.
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Figure 3. Overall framework of MSR2N.
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Figure 4. Architecture of FPN.

2.2. Parameterization of Rotated Bounding Box

In the conventional SAR ship detection networks, the ship region is a horizontal rectangle, which
is represented by four parameters (xmin, ymin, xmax, ymax). (xmin, ymin) and (xmax, ymax) denote the
coordinates of the top left and bottom right corners of a bounding box, respectively. For a rotated
bounding box, five parameters (x, y, w, h, θ) are conducted. The coordinate (x, y) represents the center of
the rotated bounding box. To avert the disorder of coordinate expression, we set w and h as the longer
side and shorter side of the rotated bounding box. θ denotes the angle from the positive direction of
the x-axis counterclockwise to the longer side of the rotated bounding box. As half angular space is
enough for the description of the rotation angle, the range of θ is set to [−90◦, 90◦). Figure 5 shows the
geometric representation of two rotated bounding boxes with different rotation angles.
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Figure 5. Geometric representation of two rotated bounding boxes. The rotation angle θ of the bounding
box on the left is 60◦, and the rotation angle θ of the bounding box on the right is −45◦.

2.3. Rotated Anchors and Proposals

In [24], multi-scale anchors with multiple aspect ratios are generated on the SAR images with
respect to the feature pyramid. However, the generation of horizontal anchors is not sufficient enough
for arbitrary-oriented bounding boxes. On the other hand, the characteristic of ships with large aspect
ratios should be taken into consideration. Corresponding to the representation of rotated bounding
boxes, we utilize a rotation-angle-dependent strategy to generate rotated anchors. As illustrated in
Figure 6, a set of cell anchors are generated at the points of a SAR image with the strides of FPN,
respectively. As shown in Figure 7, three aspects are taken into consideration in the cell anchor
generation. First, referring to [24], the scales of anchors are set to {162, 322, 642, 1282} pixels on the
feature pyramid levels of {P2, P3, P4, P5}, respectively. Second, the large aspect ratios {2, 5, 8} replace
the usual aspect ratios {0.5, 1, 2} in [23,24] with a view to the characteristic of strip-like ships. Finally,
we set multiple rotation angles for anchors of various scales and aspect ratios, which can represent
proposals more effectively. Six rotation angles {−75◦,−45◦,−15◦, 15◦, 45◦, 75◦} are set in consideration
of the trade-off between half angular coverage and computational efficiency. Hence, each point per
level of feature pyramid generates 18 (1 × 3 × 6) anchors. As shown in Figure 3, the classification
layer outputs 36 (2 × 18) softmax probabilities of being a ship and background, and the regression
layer outputs 90 (5 × 18) regression offsets that encode the coordinates (x, y, w, h, θ) for 18 proposals
per position.

2.4. Multi-Stage Rotational Detection Network

2.4.1. Initial Rotational Detection Network

As shown in Figure 3, the feature pyramid {P2, P3, P4, P5} and the coarse proposals produced from
RRPN are both fed into the next stage called IRDN. Different from the conventional object detection
network, IRDN aims to detect rotated proposals in this paper. NRROI proposals are randomly sampled
as an RROI mini-batch in which an IoU threshold is chosen to distinguish the positive and negative
samples. Here, we utilize the skew IoU computation [51] to compute IoU between rotated bounding
boxes. If the IoU between a proposal and any ground-truth box is higher than the threshold, the
proposal is assigned to a positive sample and vice versa. The ratio of positive and negative proposals is
1:3. In the RROI mini-batch, if the number of positive proposals is less than 25% of NRROI , the negative
proposals should be padded.
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Figure 6. Anchor generation in an SAR image.
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Figure 7. Cell anchor generation.

As illustrated in Figure 8, the rotational ROI (RROI) align layer is applied for arbitrary-oriented
proposals. It converts the feature map of RROIs into fixed spatial feature maps. An RROI is divided
into 7 × 7 sub-regions by the RROI align layer, and the max pooling is operated in each sub-region.
Then, the feature map of an RROI with a fixed spatial extent of 7× 7 can be obtained. The feature maps
of RROIs are input to two successive fully connected (FC) layers with a dimension of 1024. Two 1 × 1
convolutional layers for classification and regression are attached to the FC layers. The classification
layer outputs softmax probabilities of being a ship and background, and the regression layer outputs
the regression offsets that encode the coordinates (x, y, w, h, θ) of refined proposals.

2.4.2. Multi-Stage Detector

As mentioned in Section 1, a single IoU threshold in IRDN can’t separate positive and negative
samples properly, which can cause false and missing detection. Inspired by [52], a multi-stage rotational
detection strategy is proposed. As illustrated in Figure 3, the MSRDN contains an IRDN and two
RRDNs which share the same structure with IRDN. The MSRDN is a multi-stage regression framework,
which successively resamples proposals by increasing IoU thresholds. In the first stage of MSRDN,
the distribution of coarse proposals is set by a low IoU threshold, which guarantees enough positive
samples. The feature pyramid and sampled coarse proposals are fed into the IRDN to produce the
refined proposals. In the second stage, the refined proposals from the first stage are resampled by a
medium IoU threshold. These sampled refined proposals and the feature pyramid are fed into the



Sensors 2020, 20, 2340 8 of 17

RRDN which outputs new refined proposals. In the third stage, the repetitive procedures occur with a
high IoU threshold. The process of MSRDN can be expressed as:

MSRDN( f , d1) = IRDN( f , d1) ◦ RRDN1( f , d2) ◦ RRDN2( f , d3) (1)

where f denotes the feature maps from FPN, d1 is the initial sampled distribution of proposals in IRDN,
d2 and d3 are respectively the resampled distribution of proposals in two RRDNs, and ◦ represents
the cascade operation. The sub-networks are optimized by the resampled distributions {d1, d2, d3},
respectively. With a sequence of increasing IoU thresholds, the number of close false positive proposals
are sequentially decreased, and the rotated bounding boxes regression is more accurate.
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Figure 8. Structure of IRDN.

2.5. Multi-Stage Loss Computation

During the training of RRPN, a sampling strategy for rotated anchors is used. A mini-batch of
NRRPN anchors is selected for the loss computation, where the ratio of positive and negative samples is
1:1. In the mini-batch, if positive samples are not enough, the negative samples should be padded. The
positive samples are defined by following rules: (i) the IoU between the anchor and any ground-truth
is larger than 0.7; and (ii) an angular difference between the anchor and the ground-truth is smaller
than 15◦. The negative samples should satisfy the following rules: (i) the IoU between the anchor and
any ground-truth is lower than 0.3; or (ii) the IoU between the anchor and a ground-truth is larger
than 0.7, while the angular difference is larger than 15◦. We minimize an objective function of RRPN
with the multi-task loss [22] defined as:

LRRPN(pi, p∗i , ti, t∗I ) =
1

Ncls
∑

i
Lcls(pi, p∗i ) + λ

1
Nreg

∑
i

p∗i Lreg(ti, t∗i ). (2)

Here, i denotes the index of samples in a mini-batch, p∗i is the label of sample i, where p∗i equals 1
if the sample is a positive one and p∗i equals 0 if the sample is a negative one. pi is the predicted softmax
probablility of sample i being a ship. t∗i represents the offsets between sample i and the assigned
ground-truth, and ti represents the predicted bounding box regression offsets. In Equation (2), only if
sample i is a positive one with p∗i = 1 is the regression loss Lreg calculated. The classification loss Lcls
is log loss which is defined as:

Lcls(pi, p∗i ) = −logpi p∗i . (3)

The regression loss is defined by the robust loss function smooth L1 as:

Lreg(ti, t∗i ) = smoothL1(ti − t∗i ), (4)
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smoothL1(x) =

{
0.5x2, |x| < 1

|x| − 0.5, otherwise
. (5)

The classification loss Lcls and regression loss Lreg are respectively normalized by Ncls and Nreg,
where Ncls and Nreg are both set to the mini-batch size. The regression loss Lreg is weighted by a
balancing parameter λ, which is set to 1 in the experiments.

For rotated bounding box regression, the five parameterized coordinate regression offsets are
defined as:

tx = (x− xa)/wa, ty = (y− ya)/ha,

tw = log(w/wa), th = log(h/ha),

tθ = θ − θa + kπ, (6)

t∗x = (x∗ − xa)/wa, ty = (y∗ − ya)/ha,

t∗w = log(w∗/wa), t∗h = log(h∗/ha),

t∗θ = θ∗ − θa + kπ,

where x, y, w, h and θ denote the center coordinates, width, height, and rotation angle of a rotated
bounding box. x, xa, x∗ are respectively for the predicted box, anchor box, and ground-truth box,
likewise for y, w, h, θ. The parameter k ∈ Z keeps θ in the range of [−180◦, 180◦).

As described in Section 2.4, during the training of MSRDN, the proposals are resampled into
a mini-batch and refined by a sequence of rotational detection sub-networks. Meanwhile, each
sub-network outputs the softmax probabilities of a proposal being a ship and rotated bounding
box regression offsets for loss computation. The multi-task multi-stage loss function of MSRDN is
defined as:

LMSRDN = LIRDN + LRRDN1 + LRRDN2 (7)

where LIRDN , LRRDN1 , and LRRDN2 represent the losses of IRDN, first RRDN and second RRDN,
respectively. The losses of three stages have the same definition as the multi-task loss function
of RRPN.

3. Experiments and Results

3.1. Dataset

We evaluate the proposed framework on the public SAR ship detection dataset—SSDD [39].
The SSDD contains SAR ship images of various scenes from three sensors. The details of SSDD are
shown in Table 1. There are 1160 SAR images including 2456 ships in total, with an average of 2.12
ships per image. Ships in SSDD are annotated with coordinates of the four vertices of rotated bounding
boxes. The SSDD is divided into a training set and a test set by a ratio of 4:1.

Table 1. Detailed description of SSDD.

Sensors RadarSat-2, TerraSAR-X, Sentinel-1
Polarization HH, VV, HV, VH

Sence inshore, offshore
Resolution 1 m–15 m

Number of images 1160
Number of ships 2456
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3.2. Setup and Implementation Details

The experiments are implemented in the deep learning framework Pytorch [53] on four NVIDIA
TITIAN Xp GPUs with 12 GB memory. Our network is initialized by the pre-trained ResNet50 model
for ImageNet classification. The whole network is trained for 12 k iterations in total, and a batch of 48
images is fed into the network in an iteration. The initial learning rate is 0.01 for the first 8k iterations;
then, learning rates of 0.001 and 0.0001 are set for the next 2.5 k iterations and the remaining 1.5 k
iterations, respectively. The stochastic gradient descent (SGD) [54] optimizer with a weight decay of
0.0001 and a momentum of 0.9 is selected for the model.

Referring to faster R-CNN, we resize images such that the shorter side is 350 pixels under the
premise that ensures the longer side less than 800 pixels. For data augmentation, we flip the images
horizontally with a probability of 0.5.

As mentioned in Section 2, Npre denotes the number of pre-selected proposals per feature pyramid
level, and Npost represents the number of post-selected proposals. Here, we set Npre to 2000 and 1000
for training and inference, respectively. In addition, Npost is set to 1000 for both training and inference.
NRRPN and NRROI , which are the sizes of RRPN and RROI mini-batches, are set to 256 and 512,
respectively. In inference time, an NMS threshold is used to select final predicted bounding boxes,
and a predicted bounding box can be retained if its score is higher than the score threshold. The NMS
threshold and score threshold are respectively set to 0.3 and 0.1 in all experiments.

3.3. Evaluation Metrics

To quantitatively evaluate the performance of proposed MSR2N, the precision, recall, mean
Average Precision (mAP), and F-measure (F1) are utilized as evaluation metrics.

Precision is the rate that correctly detected ships in all detected results, and recall means the rate
that correctly detected ships in all ground-truths. The definitions of precision and recall are as follows:

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

where TP, FP, and FN denote the number of correctly detected ships, false alarms, and undetected
ships, respectively. In addition, a bounding box is admitted as a correctly detected ship in the
case that the IoU between the bounding box and a ground-truth is higher than the threshold of
0.5. The precision–recall (PR) curve shows the precision–recall pairs at different confidence score
thresholds.

The mAP is a comprehensive metric that calculates the average value of precision under the recall
in a range of [0, 1]. The definition of mAP is as follows:

mAP =
∫ 1

0
P(R)dR (10)

where R denotes a recall value and P represents the precision corresponding to a recall.
F1 evaluates the comprehensive performance of a detector by taking the precision and recall into

consideration. F1 is defined as:

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
. (11)

3.4. Ablation Study

In this part, some ablation experiments are carried out to investigate the effectiveness of the main
modules of the proposed MSR2N.
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3.4.1. Effect of MSRDN

To illustrate the detection performance of MSRDN, the experimental results are listed in Table 2.
We can find that the single-stage detectors have poor detection performance. The detector with a
low IoU threshold of 0.5 achieves a high recall but a low precision due to the introduction of noisy
regions. With the increase of the IoU threshold, the precision increases, but the recall decreases.
When the IoU threshold reaches 0.7, the recall decrease to 84.50% because of the overfitting caused by
inadequate positive proposals. When using the two-stage detectors with an IRDN and an RRDN, they
can achieve better detection performance than the single-stage ones. The detection performance of
three-stage detector with the increasing IoU thresholds of {0.5, 0.6, 0.7} is significantly improved, which
achieves the recall of 92.05%, precision of 86.52%, mAP of 90.11%, and F1 of 89.20%. These experiments
demonstrate the effectiveness of multiple stages of MSRDN. Comparing to the three-stage detectors
with uniform thresholds, the detector with the increasing IoU thresholds still has superior performance,
which proves the effectiveness of increasing IoU thresholds of MSRDN. With the multi-stage regression,
the number of close false positive proposals is decreased and the location of proposals is more accurate
in the meantime. Therefore, the MSRDN with the increasing IoU thresholds of {0.5, 0.6, 0.7} is chosen
in this paper.

Table 2. Experimental results of MSRDN.

Stage IoU Thresholds Recall (%) Precision (%) mAP (%) F1 (%)

IRDN
{0.5} 89.53 86.03 83.66 87.75
{0.6} 88.37 86.86 84.38 87.61
{0.7} 84.50 92.78 83.09 88.44

IRDN+RRDN1
{0.5, 0.6} 90.70 85.56 87.57 88.05
{0.5, 0.7} 89.53 86.68 84.88 88.08
{0.6, 0.7} 89.53 88.68 86.78 89.10

IRDN+RRDN1+RRDN2

{0.5, 0.5, 0.5} 90.89 66.71 86.90 76.95
{0.6, 0.6, 0.6} 90.70 85.25 88.55 87.89
{0.7, 0.7, 0.7} 89.53 87.67 87.89 88.59
{0.5, 0.6, 0.7} 92.05 86.52 90.11 89.20

3.4.2. Effect of Multi-Stage Loss Computation

The experimental results of multi-stage loss computation are presented in Table 3. It can be
observed that the detection performance with three-stage loss computation is preferable, and the
experiment only using loss from the last stage obtains the inferior detection performance. With the
multi-stage loss used, the precision increases significantly, which means that the false alarms are
effectively suppressed. We can conclude that the multi-stage loss computation has a strong constraint
on the training of the whole network.

Table 3. Experimental results of multi-stage loss computation.

Loss Computation Recall (%) Precision (%) mAP (%) F1 (%)

RRDN2 83.91 14.26 78.97 24.37
RRDN1+RRDN2 88.57 45.84 84.43 60.41

IRDN+RRDN1+RRDN2 92.05 86.52 90.11 89.20

3.4.3. Effect of Rotation Angles

Some experiments about rotation angles are carried out, and their results are shown in Table 4.
It can be seen in Table 4 that the method which only generates horizontal and vertical anchors achieves
inferior detection performance. As the interval of rotation angles decreases, the detection performance
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improves. The method with the rotation angles of {−75◦,−45◦,−15◦, 15◦, 45◦, 75◦} obtains superior
detection performance, which proves the effectiveness of anchors with different rotation angles.

Table 4. Experimental results of rotation angles.

Rotation Angles Recall (%) Precision (%) mAP (%) F1 (%)

{−90◦, 0◦} 88.92 53.33 85.50 66.67
{−90◦,−45◦, 0◦, 45◦} 89.53 86.03 88.90 87.75

{−75◦,−45◦,−15◦, 15◦, 45◦, 75◦} 92.05 86.52 90.11 89.20

3.4.4. Effect of FPN

A couple of ablation experiments are performed to demonstrate the effect of FPN in the proposed
MSR2N, wherein the experiment of MSR2N uses the feature pyramid {P2, P3, P4, P5} as the outputs of
feature extraction module, and the experiment of MSR2N without FPN only uses C5 of ResNet50 to
feed into the next stages. Table 5 shows the experimental results of the FPN. Comparing to MSR2N
without FPN, our MSR2N reaches higher evaluation metrics. The significant improvement of detection
performance benefits from the sufficient feature expression of FPN.

Table 5. Experimental results of FPN.

FPN Recall (%) Precision (%) mAP (%) F1 (%)

MSR2N without FPN 87.60 85.28 85.12 86.42
MSR2N 92.05 86.52 90.11 89.20

3.5. Comparison with Other Object Detection Methods

To verify the performance of our proposed MSR2N, we compare the MSR2N with the multi-stage
horizontal region based network (MSHRN), rotational Faster R-CNN [23] (Faster RR-CNN), rotational
FPN [24] (R-FPN), and rotational RetinaNet [29] (R-RetinaNet). MSHRN is the horizontal variant
of our proposed MSR2N, where the RPN sub-network is used and the ROI pooling layer replaces
the RROI align layer for predicting horizontal bounding boxes. Faster RR-CNN and R-FPN are
two-stage detectors, which are respectively rotational variants of Faster R-CNN and FPN. The one-stage
detector R-RetinaNet is the rotational variant of RetinaNet. In [29], the feature pyramid with levels
{P3, P4, P5, P6, P7} is used as the output of the feature extraction module. For consistency, we use the
feature pyramid {P2, P3, P4, P5} in the experiment of R-RetinaNet, which is the same as the experiments
of R-FPN and MSR2N. Here, ResNet50 is chosen as the backbone network of all methods.

Table 6 summarizes the experimental results of different methods on SSDD, and Figure 9 shows
the PR curves of different methods. From Table 6, we can find that MSR2N achieves state-of-the-art
performance: 92.05% for recall, 86.52% for precision, 90.11% for mAP, and 89.20% for F1. Comparing
to the other four methods, MSR2N obtains 2.27%, 7.89%, 6.45%, and 9.54% gains in mAP, respectively.
In Figure 9, the PR curve of MSR2N is higher than those of Faster RR-CNN, R-FPN, and R-RetinaNet.
The PR curve of MSHRN only can reach a recall of 90.36%, but MSR2N can achieve a recall of 92.05%.
This phenomenon indicates that horizontal region based detection leads to more undetected ships
than rotational region based detection. To further verify the capability of handling hard cases, we
construct a subset by selecting SAR images, which contain densely arranged ships in inshore complex
scenes, from the original test set. Table 7 shows the experimental results of different methods on hard
cases. From Table 7, it can be observed that all the values of the evaluation metrics are relatively
low, which indicates that these hard cases are difficult to detect correctly. For example, the mAP of
R-RetinaNet only reaches 42.91%. Nevertheless, our proposed MSR2N achieves superior performance.
Comparing to the other four methods, MSR2N obtains 12.43%, 8.52%, 13.08%, and 28.30% gains in
mAP, respectively.
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Figure 10 illustrates the detection results of four images from the test set of SSDD using different
methods. From the detection results of three inshore SAR images, it can be observed that there
exist undetected ships in Figure 10e–g. This is on account of the high IoU between two overlapped
horizontal bounding boxes in MSHRN. On the other hand, the background noise in the horizontal
bounding boxes can interfere with the detection. In addition, the detection results of Faster RR-CNN,
R-FPN, and R-RetinaNet still have problems with missing detection and false detection. On the
contrary, MSR2N shows superior detection performance in Figure 10u–w. All ships are successfully
detected, and the position of ships is located more accurately than other methods. For the methods of
MSHRN, Faster RR-CNN, and R-RetinaNet, there exist several false alarms and undetected ships in the
results of fourth SAR images. Generally speaking, all methods are competent to detect ships far from
shore. Based on the above discussion, we can conclude that MSR2N has state-of-the-art performance
on SAR ship detection, especially for densely arranged ships in complex backgrounds.

Figure 9. PR curves of different methods on SSDD.

Table 6. Experimental results of different methods on SSDD.

Method Recall (%) Precision (%) mAP (%) F1 (%)

MSHRN 90.36 82.84 87.84 86.44
Faster RR-CNN 86.43 85.28 82.22 85.85

R-FPN 88.37 86.86 84.38 87.61
R-RetinaNet 87.01 81.64 82.80 84.24

MSR2N 92.05 86.52 90.11 89.20

Table 7. Experimental results of different methods on hard cases.

Method Recall (%) Precision (%) mAP (%) F1 (%)

MSHRN 61.54 60.61 58.78 61.07
Faster RR-CNN 56.76 70.00 62.69 51.04

R-FPN 63.51 75.81 58.13 69.12
R-RetinaNet 54.05 55.56 42.91 54.79

MSR2N 76.12 77.37 71.21 76.74
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Figure 10. Detection results of different methods. (a–d) ground-truths; (e–h) detection results of
MSHRN; (i–l) detection results of Faster RR-CNN; (m–p) detection results of R-FPN; (q–t) detection
results of R-RetinaNet; (u–x) detection results of MSR2N.
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4. Conclusions

This paper proposes an arbitrary-oriented ship detection network called MSR2N which aims at
detecting ships in various complex scenes. In our MSR2N, the rotating bounding boxes are utilized to
represent ship regions, which can reduce redundant noisy regions and overlaps between bounding
boxes. The SSDD is employed to verify the effectiveness of the proposed MSR2N. The ablation
experiments illustrate that high precision and high recall can be achieved simultaneously due to the
sequential resampling of proposals and training in MSRDN sub-networks. The experiments about loss
computation show the significance of multi-stage loss computation. The experiments of rotation angles
and FPN are also carried out, which proves the effectiveness of rotation angles and FPN. Compared to
other methods, MSR2N obtains superior detection performance, especially when ships are densely
arranged in inshore complex scenes.
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