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Abstract: In this paper, we proposed a new thresholding method for impulse radio ultra-wideband
(IR-UWB) radar-based detection applications by taking both the false alarm and miss-detection rates
into consideration. The thresholding algorithm is the key point of the detection application, and there
have been numerous studies on these developments. Most of these studies were related to the
occurrence of false alarms, such as the constant false alarm rate algorithm (CFAR). However, very few
studies have considered miss-detection, which is another crucial issue in detection applications.
To mitigate this issue, our proposed algorithm considered miss-detection as well as the false
alarms occurring during thresholding. In the proposed algorithm, a threshold is determined by
combining a noise signal-based threshold, in which the focus point is the false alarm, with a target
signal-based threshold, in which the focus point is a miss-detection, at a designed ratio. Therefore,
a threshold can be determined based on the focus point by adjusting the designed ratio. In addition,
the proposed algorithm can estimate the false alarm and miss-detection rates for the determined
threshold, and thus, the threshold can be objectively set. Moreover, the proposed algorithm is better
in terms of understanding the target signal for a given environment. A target signal can be affected
by the clutter, installation height, and the angle of the radar, which are factors that noise-oriented
algorithms do not consider. As the proposed algorithm analyzed the target signal, these factors were
all considered. We analyzed the false alarm and miss-detection rates for the thresholds, which were
determined by different combination ratios at various distances, and we experimentally verified the
validity of the proposed algorithm.
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1. Introduction

Due to the increased interest in the Internet of Things (IoT), there has been a growing demand
for smart sensors. Smart sensors can be combined with IoT devices, which enables these devices to
operate automatically and to provide useful information to the users. In particular, smart sensors are
required to implement automation in many areas, such as smart buildings and for security purposes.
For example, IoT devices, such as lights and air conditioners, can be combined with smart sensors with
presence detection capabilities, allowing them to be turned on or off automatically. Smart sensors with
people counting abilities can be used to provide congestion information regarding public places to the
users, thereby decreasing congestion and preventing accidents. Smart sensors can also be mounted on
vehicles to analyze the surrounding conditions and prevent collisions, and to detect criminal activity,
such as intrusions or thefts within security zones.
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Thus far, cameras [1–3] and infrared sensors [4–6] have been mainly used as smart sensors in the
IoT market. However, such sensors have certain limitations. Cameras are considered to invade the
privacy of others, which has recently become an increasingly important issue, particularly in indoor
use. In Europe, the recent implementation of the General Data Protection Regulation (GDPR) [7] has
emphasized the importance of privacy. The dependency on light is another limitation of a camera.
An infrared sensor is highly sensitive to temperature, and therefore, a new type of smart sensor is
needed to overcome these limitations. Radar has recently gained popularity in the IoT market as a
smart sensor that can operate without the above limitations.

Radar is a radio frequency (RF)-based sensor that emits electro-magnetic waves and determines
the surrounding conditions based on the reflected signals. Radar has commonly been used outdoors,
primarily for military purposes, such as in the detection and tracking of planes in the air or ships in
the sea. Recently, research on radar is of interest for private use rather than military use, particularly
for applications in indoor utilities. For example, radar-based studies on presence detection [8],
people counting [9], and positioning [10] are attracting increased attention. Studies have shown
the potential of radar in a variety of research fields.

Detection is the most basic and essential technology applied in radar research as most utilities,
such as people counting and positioning, operate when the presence of the target is determined.
The detection is normally analyzed based on two aspects, false alarm and miss-detection [11]. A false
alarm is the indication of the presence of a target when such a target does not exist. In other words,
a false alarm indicates a situation in which noise is mistaken to be the target. Thus, the focal point of a
false alarm is the noise signal. By contrast, miss-detection is the indication of the absence of a target
when the target is present. In other words, a miss-detection indicates the situation in which the target
is mistakenly considered to be noise. Thus, the focal point of miss-detection is the target signal.

Most studies on detection have focused on false alarms. The most popular detection algorithm
is the constant false alarm rate (CFAR) algorithm [12–14], which has been studied ever since the
introduction of conventional radar. This algorithm analyzes the statistical characteristics of the noise
signal and determines the threshold based on the noise level.

Very few studies have focused on miss-detection. In many cases, miss-detection should be a
far more important design factor in determining the threshold for target detection than false alarms.
Typically, a false alarm creates an annoying situation requiring a person to confirm whether the
triggered situation is genuine. By contrast, a miss-detection may lead to a serious situation, such as
collisions between objects or a miss-detection of criminal activity. If we consider the target (mainly
humans) and noise signals when determining a threshold, the analysis and prediction results of the
cost from a miss-detection or false alarm will be made visible.

The lack consideration of the miss-detection in conventional radar research can be seen in the
following aspects. As the conventional radar-based presence detection is mainly used outdoors,
there is little clutter other than the target. This results in a relatively high signal-to-noise ratio (SNR).
In other words, the strength of the target signal is relatively clear. So, even when considering the noise
signal alone, there is a relatively low risk of miss-detection. In addition, it is difficult to reproduce the
situation when the target exists in environments such as the sky and the sea. This makes it difficult to
collect the target signal that is used in analyzing the miss-detection. Thus, miss-detection has not been
previously considered.

This is different from short-range radar, such as impulse radio ultra-wideband (IR-UWB) radar,
used in indoors. As the clutter indoors results in a severity of multi-path and low SNR, the strength
difference between the target signal and the noise is not as clear as outdoors. In other words, the noise
signal is likely to be stronger than the target signal. If a threshold is set by considering only the
false alarm, which is determined by the noise signal, there could be a relatively high probability of
miss-detection. In addition, it is relatively easy to collect the target signals using short-range indoor
radar. It is relatively easy to reproduce the situation when the target exists in an indoor environment;
thus, consideration of miss-detection is both necessary and possible for short-range indoor radar.
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IR-UWB radar, which uses narrow impulse signals in the time domain and occupies a wide-band
frequency in the frequency domain, has been studied in various fields since it was first licensed
by the Federal Communications Commission (FCC) for private use in 2002 [15]. As IR-UWB radar
occupies a wide-band signal, it generally has to comply with stringent radio regulations. Therefore,
IR-UWB radar is mainly used for indoor applications within a distance of 10 m. Owing to its
wide bandwidth, this radar has a good penetration rate and high-ranging resolution. It is being
studied in various of fields including presence detection [8,16], people counting [9,17], heart rate
and respiration rate measurement [18–20], radar imaging [21,22], positioning [10,23–25], and gesture
recognition [26,27].

In Reference [28], an algorithm for extracting valid signals from the received signals of an IR-UWB
radar system was considered. However, this algorithm did not distinguish between the absence
and presence of a target, but rather distinguished meaningful signals when the target was present.
Therefore, in this study, we proposed a new thresholding algorithm for distinguishing between the
absence and the presence of a target. In Reference [29], it proposed a miss-detection probability
based thresholding algorithm which opens up a new possibility for designing a threshold. We extend
Reference [29] to propose a new thresholding method. The proposed algorithm compensates for issues
that occur when the CFAR algorithm is used on indoor short-range radar owing to dense clutters. More
specifically, the proposed algorithm considers both false alarm and miss-detection rates in determining
a threshold by analyzing both the noise and target signals.

This paper is organized as follows. First, the benefits of the work are discussed. Then, we describe
the proposed algorithm in detail. Finally, the experiment results are described to verify the validity of
the proposed algorithm.

2. Discussion on the Benefits of the Work

The performance of detection can be analyzed in two ways. One is a false alarm, which is when
the sensor shows a detection when no one is in the detection area. The other is a miss-detection,
which occurs when the sensor shows no detection when someone is in the detection area. Most of
the studies on detection have been based on the CFAR, which focuses on a false alarm. The CFAR is
a noise-oriented thresholding algorithm, which determines a threshold based on the noise signal
level. Various types of CFAR algorithms have been proposed, including cell averaging CFAR
(CA-CFAR) [30], order static CFAR (OS-CFAR) [31], greatest of CFAR (GO-CFAR) [32], and smallest of
CFAR (SO-CFAR) [33].

In a CFAR-based detection algorithm, the threshold is determined by setting a constant false
alarm rate. However, the CFAR-based threshold is not set objectively but is set subjectively through
numerous experiments. It is difficult to estimate the miss-detection rate for a CFAR-based threshold;
thus, the performance in detecting the target must be checked through the experiments. If a high
threshold is set, the false alarm rate is decreased while the miss-detection rate is increased. On the
other hand, if a low threshold is set, the false alarm rate is increased while the miss-detection rate is
decreased. This kind of checking process can be mitigated by considering the target signals as well
as the noise signals in determining a threshold, as both the false alarm and miss-detection rates can
be estimated for the set threshold. Consideration of both the false alarm and miss-detection rates
in determining a threshold allow for threshold adjustments based on the requirements. If the false
alarm issue needs to be handled more carefully, the threshold can be adjusted to reduce the false alarm
rate. Otherwise, if the miss-detection issue needs to be handled more carefully, the threshold can be
adjusted to reduce the miss-detection rate.

The proposed algorithm is also more advantageous to understand the received target signal
according to the given environment rather than by simply applying the CFAR algorithm. The proposed
algorithm also analyzes the target signal for the given environment that is not considered by the CFAR
algorithm. The target signal can be affected by the clutter, the installation height, and the angle of the
radar. In the case of clutter, if there is a low amount of clutter, the received signal mainly contains the



Sensors 2020, 20, 2314 4 of 24

direct path, which is reflected from the target. On the other hand, if the clutter is dense, the received
signal contains not only the direct path reflected from the target but also the multi-path caused by the
clutter. For the installation height, the higher the installation height, the farther the distance from the
target, and thus the strength of the target signal would be weak, and vice versa. Similarly, if the main
lobe of the radar is placed toward the detection area, the strength of the target signal would be strong,
and if the side lobe of the radar is placed toward the detection area, the strength of the target signal
would be weak. The CFAR algorithm cannot clearly understood this information, as the noise signal
shows a similar tendency even in different environment conditions. However, these conditions can be
relatively clearly understood by the proposed algorithm as the target signal is taken into consideration.

The proposed algorithm allows for a detectable boundary measurement. The strength of the
target signal decreases when the target moves away from the main lobe, which results in a decrease
of the detection ability. Therefore, the angle measurement becomes an issue when measuring the
detection boundary, especially for the indoor detection case due to the low SNR caused by the clutter.
Theoretically, the angle of the antenna is defined as the angle at which the power is attenuated
by 3 dB [34], as compared to the main lobe. However, the theoretical angle cannot be used in
measuring the detectable boundary. The angle in measuring the detectable boundary is related to
the miss-detection rate, because it can be defined as the angle at which the target can be detected at
a low miss-detection rate. The CFAR algorithm is based on the noise signal; it cannot address the
miss-detection issue, and thus, it cannot be used to measure the detectable boundary for a set threshold.
Unlike the CFAR algorithm, the proposed algorithm can handle miss-detection issues, as it takes into
account the target signal, which allows the proposed algorithm to measure the detectable boundary
for a set threshold.

Although there are many advantages if the miss-detection issue can be considered, thus far,
this topic has not been widely studied because it is not necessary for conventional outdoor long range
radar. However, for indoor short-range radar, such as IR-UWB radar, miss-detection issues need to be
considered.

For an indoor environment, a large number of paths other than the direct path are reflected from
stationary clutter. This increases the noise level compared with an outdoor environment, which means
the strength difference between the target signal and noise signal becomes smaller. Especially for the
case of far-region, the probability that the strength of the noise signal is stronger than the target signal
is increased, as the strength of the target signal is attenuated with distance. If a threshold is set by only
considering the noise signal, the probability of the miss-detection could be high in the far-region.

In addition, because of the severe multi-paths in an indoor environment, the received signal
consists of many clusters when a target is present. This makes the received signal not as clear as
the signal in the outdoors, which mainly consists of the direct path. This results in the difficulty of
selecting the noise-only signals, which are used in determining a threshold in the CFAR algorithm.
In other words, non-noise signals could be included in determining a threshold, which could result in
a high threshold. Thus, the probability of miss-detection could increase, because the probability that
the target signal is smaller than the threshold increase.

To overcome the defects of the conventional CFAR algorithm in the indoor environment for
IR-UWB radar, a moving target CFAR detection algorithm along slow-time profile was proposed
in Reference [35]. Slow time is related to the pulse repetition frequency (PRF). The basic idea
in Reference [35] was to compare the relative deviation along the slow time with the threshold
corresponding to the same fast-time. The fast-time axis is related to the distance. For a moving target,
a different fast time is considered at a different slow time, which indicates that the deviation in the
slow time is large. Therefore, with the algorithm proposed in Reference [35], the moving target can
be detected with a relatively robust performance compared to the conventional CFAR algorithm.
However, there remains a lack of consideration regarding miss-detection.
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3. The Proposed Algorithm

3.1. Basic Concept of the Proposed Algorithm

The purpose of the proposed algorithm is to set a threshold by considering both the false alarm
and the miss-detection rates rather than only the false alarm rate. The key point of the proposed
algorithm is considering not only the noise signal but also the target signal to determine a threshold.
To do so, the following steps are required.

1. Data collection—collect the noise and target signals.
2. Probability distribution (PDF) fitting—analyze the statistical distribution of the strength of the

collected noise and the target signals.
3. Thresholding through parameter setting—determine noise signal-based threshold by setting

the CFAR and target signal-based thresholds through setting the constant miss-detection rate
(CMDR). Then final threshold is obtained by combining the determined two thresholds in a
designed ratio.

In step 3, setting a target CFAR means setting the target probability of false alarms. The lower the
false alarm rate is, the lower the probability of the occurrence of false alarms, and vice versa. Setting a
target CMDR means setting the target probability of miss-detection. The lower the miss-detection rate
is, the lower the probability of the occurrence of a miss-detection, and vice versa. However, owing
to a trade-off relation between the false alarms and miss-detections, a gain of one and a loss of the
other occurs.

Figure 1 shows the block diagram of the proposed algorithm. In the block diagram, the dotted
box is the CFAR algorithm. Compared with the CFAR algorithm, the proposed algorithm has one more
process that is used to make a threshold based on the target signal, while considering the miss-detection
rate. The final threshold is then determined by combining the two thresholds in a designed ratio.

Figure 1. Block diagram of the proposed thresholding algorithm.

To verify the validity of the proposed algorithm, we applied the proposed algorithm to an
IR-UWB radar. IR-UWB radar operates by transmitting a short-term pulse signal in the time domain
and receiving echoes reflected from the environment. The received echoes are then converted into
numerous digital samples through an analog-to-digital converter (ADC) with a high sampling rate.
The signal, which is converted into a digital signal, can be expressed as follows:

x[m, n] =
Npath

∑
k=1

amks [m, n− τmk] + N[m, n], (1)

where x[m, n] is the digitized received signal, s[m, n] is the transmitted pulse signal, and N[m, n] is the
noise. In addition, amk and τmk are the scale factor and delay of the received echo, respectively, and m
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and n are the slow-time and fast-time indexes. The received signal contains not only the target signal
required in the detection but also the unnecessary clutter signal. To extract the target signal, which is
the desired signal from the received signal, a clutter removal step is applied. In this study, we used
the running average algorithm [36] to remove the clutter signal. The structure of the running average
algorithm is shown in Figure 2. We express the clutter removed signal at the m-th slow-time as y[m].

B[m] = βB[m− 1] + (1− β)x[m],

y[m] = x[m]− B[m],
(2)

where, B[m] is the m-th clutter signal that consists of the previous estimated clutter signal, B[m− 1],
and the m-th received signal x[m]. β is the weighting factor, which is adjustable from zero to one.
The lower it is, the greater the weight where the newly received signal is updated to the clutter.

Figure 2. Structure of the running average algorithm.

Figure 3 shows y[m] when a person is 2 m from the radar. In Figure 3, the red boxes represent
the received clusters. From Figure 3, we can observe that the received signal reflected from a person
contains several clusters. This is because of the multi-path caused by the clutter. In other words,
the received signal contains not only the direct path reflected from the person, but also the other path
reflected from the clutter.

Figure 3. Clutter removed signal when a person is 2 m from the radar.
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3.2. Detailed Description of the Proposed Algorithm

1. Data Collection

To analyze the false alarm and miss-detection rates based thresholds, a data collection of the
noise and target signals was required. The noise signals were used to analyze the false alarm
rate-based threshold, and the target signals were used to analyze the miss-detection rate-based
threshold. The noise signals were collected when there was no one within the detection range of
the radar, and the target signals were collected when someone was inside the detection range
of the radar. To better understand the characteristics of the target signals, data pertaining to
different distances and postures, were collected. The postures can be the direction of the body
toward the radar sensor, such as the front of the body, the back of the body, or the sides of the
body. The strength of the signal reflected from a person varies with the distance and the posture
of the person. The collected noise signal at distance dn can be expressed as follows:

Cdn = [c1,n, c2,n, · · · , cM,n]
T , (3)

where n is the index under a fast-time, which is related to the distance dn. M is the number
of signals collected along the slow-time index. The collected noise signal C can be expressed
as follows:

C =
{

Cd1 , Cd2 , · · · , CdN
}

, (4)

where N is the number of samples along the fast-time index.

The collected signal that is reflected from a person at distance dn can be expressed as follows:

Hdn = [h1,n, h2,n, · · · , hM,n]
T . (5)

The collected signal that is reflected from a person can be expressed as follows:

H =
{

Hd1 , Hd2 , · · · , HdN
}

. (6)

2. PDF Fitting

We analyzed the statistical distribution of the collected data. In Reference [28], the authors
mentioned that the received signals of IR-UWB radar fit a log-normal distribution. To verify
this, we compared the empirical data and log-normal fitting results. Figures 4 and 5 show a
comparison of the statistical data with the fitting results. From Figures 4 and 5, we observe that
both the noise signal and the signal reflected from a person fit a log-normal distribution. Thus,
we apply such a distribution to statistically analyze the received signals.
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Figure 4. Comparison of the statistical data on the empirical strength with the fitting result for the
noise signal.
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Figure 5. Comparison of the statistical data on the empirical strength with the fitting result for the
signal reflected from a person.

The mean and standard deviation of the logarithmic value of a noise signal at distance dn, that is,
µdn

C and σdn
C , can be represented as follows:[

µdn
C , σdn

C

]
= F (Cdn ),

µdn
C = mean(log(Cdn)),

σdn
C =

√
var(log(Cdn)).

(7)

The mean and standard deviation of the logarithmic value of the signal reflected from a person at
distance dn, that is, µdn

H and σdn
H , can be represented as follows:[

µdn
H , σdn

H

]
= F (Hdn ),

µdn
H = mean(log(Hdn)),

σdn
H =

√
var(log(Hdn)).

(8)

3. Thresholding through Parameter Setting

As described before, we obtained the statistical distribution of the noise signals and the signal
reflected from a person for the given environment. Based on this information, a threshold was
determined by setting a target CFAR, PFa and target CMDR, PMd. Once PFa and PMd were set,
we obtained two types of threshold, a PFa-based threshold, which was focused on the noise
signal, and a PMd-based threshold, which was focused on the signal reflected from a person.
Unlike the CFAR algorithm, the algorithm proposed in this study considers both conditions in
thresholding because if only one condition is considered, the threshold is only optimized for that
condition and the other is sacrificed. The threshold TFa, which is based on PFa, can be expressed
through the following equation:

PFa =1−
∫ TFa

0

1√
2πxσC

e
−
(lnx −µC)

2

2(σC)2 dx

=
1
2
− 1

2
erf

(
lnTFa(PFa)−µC√

2σC

)
,

(9)

TFa =F (PFa, µC, σC)

=e
√

2σCerf−1(1−2PFa)+µC ,
(10)
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where er f and er f−1 are the error function and inverse error function, respectively.

The threshold TMd, which is based on PMd, can be expressed in following equation:

PMd =
∫ TMd

0

1√
2πxσH

e
−
(lnx −µH)2

2(σH )2 dx

=
1
2
+

1
2

erf

(
lnTMd(PMd)−µH√

2σH

)
,

(11)

TMd =F (PMd, µH , σH)

=e
√

2σHerf−1(2PMd−1)+µH .
(12)

The final threshold TF, which is based on TFa and TMd, can be expressed as follows:

TF =F (α, TFa, TMd)

=α TFa+(1− α) TMd

=α e
√

2σCerf−1(1−2PFa)+µC

+(1− α) e
√

2σHerf−1(2PMd−1)+µH ,

(13)

where α is the weight factor used to determine the final threshold, which is adjustable from zero
to one. For α equal to zero, TF is the same as TMd, which means that the threshold is determined
based only on the miss-detection rate. For α equal to one, TF is the same as TFa, which means the
threshold is determined based only on the false alarm rate, and thus it is same with the CFAR
algorithm. The smaller α is, the greater the weight of the miss-detection rate, and vice versa.
If the false alarm is an issue that should be handled more carefully, α can be set to a large value;
otherwise, α can be set to a small value. Therefore, with the proposed algorithm, it is possible to
set a threshold according the focusing point.

Figure 6 shows an example of the proposed algorithm. In Figure 6, the black line refers to TMd,
the blue line refers to TFa, and the red dotted line refers to TF. As shown in the figure, TMd is greater
than the TFa from zero to Da, and TMd is smaller than the TFa from Da to Db. Herein, we call the
distance from zero to Da as the near-region, and the distance from Da to Db as the far-region. The SNR
is high in the near-region, and the signal reflected from a person is stronger than the noise signal,
which results in TFa being lower than TMd.

Figure 6. Example of the proposed thresholding algorithm.
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This means that a threshold can be designed to TFa, as TFa has satisfied the target miss-detection
rate. We can see that there is a margin between TFa and TMd at the near-region, which means that a
new threshold can be designed to further reduce false alarm and miss-detection rates when compared
to target values. However, this cannot be done with TFa alone, because we do not know how much
the threshold can be adjusted without increasing the miss-detection rate compared with the target
value. If we can know the margin between the strength of the signal reflected from a person and the
strength of the noise signal, this work becomes possible, since the threshold can be adjusted between
TFa and TMd.

For the far-region, the signal is weaker than that of the near-region, and thus the threshold is
smaller in the far-region. In addition, owing to the low SNR in the far-region, the probability that the
noise signal is stronger than the signal reflected from the person is relatively high compared to the
near-region. To maintain the target false alarm and miss-detection rates, TFa could be higher than TMd
in the far-region. Thus, it becomes not possible to satisfy both the target false alarm and the target
miss-detection rates as with the near-region. If TFa is used as the final threshold, the false alarm rate
can meet the target value, but the miss-detection rate would be higher than the target value. If TMd is
used as the final threshold, the miss-detection rate can meet the target value, but the false alarm rate
would be higher than the target value. However, it is possible to adjust the threshold accordingly for
the purpose.

If the focus should be placed on the false alarm, the threshold can be adjusted to reduce the false
alarm rate by setting the weight factor to a large value, then the miss-detection rate for the set threshold
can be estimated. If focus should be placed on the miss-detection, the threshold can be adjusted to
reduce the miss-detection rate by setting the weight factor to a small value, then the false alarm rate
for the set threshold can be estimated. This means a threshold can be determined by comparing the
estimated false alarm and miss-detection rates. Therefore, a context-sensitive threshold can be set.

The detailed logic flow of the proposed algorithm is summarized in Algorithm 1.

Algorithm 1 Proposed Algorithm

1: procedure (y[m])

2: Data Collection . data collection from y[m];

3: C← collected noise signal;

4: H← collected signal which is reflected from human;

5:

6: N ← digital samples along fast time

7: set target false alarm rate (PFa)

8: set target miss-detection rate (PMd)

9: set weight factor (α)

10: for n← 1 to N do
11: PDF Fitting
12: [µdn

C , σdn
C ]← F (Cdn )

13: [µdn
H , σdn

H ]← F (Hdn )

14:

15: Thresholding Via Parameter Setting
16: Tdn

Fa = F (PFa,µdn
C ,σdn

C )

17: Tdn
Md = F (PMd,µdn

H ,σdn
H )

18: Tdn
F = α× Tdn

Fa +(1− α)× Tdn
Md

19: return Td1
F , Td2

F , . . . , TdN
F
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4. Experiment Results

4.1. Experiment Configuration and Validation

To show the validity of the proposed algorithm, we conducted experiments in different
environments with different clutter level and different number of people, using an IR-UWB radar with
a Xethru X4 chip developed by NOVELDA in Norway. The center frequency and −10 dB bandwidth
were 8.748 and 1.5 GHz, respectively [37]. During the experiments, the frame rate was approximately
20 frames per second (fps).

4.1.1. Experiment in a Light Clutter Environment

Figure 7 shows the experiment environment with light clutter. A normal meeting room
environment was used with a metal pillar at a position of 4 m away. To analyze both the false
alarm and the miss-detection rate-based thresholds, we gathered two types of data for a certain time
period in that environment, one for noise and the other for a person at different distances with various
poses. The gathered data were then used to analyze the statistical distribution.

Figures 8 and 9 show the fitting results of the data collected in the experiment environment
according to the distance. Figure 8 shows the fitting results for the noise signals collected from 1 m in
0.5 m increments. We observed that the statistical distribution of the noise signal was similar even
at different distances. The fitting results at 4 m and 5 m were biased to the right as compared to the
other results, which means that the signal strengths at 4 m and 5 m were stronger than those of the
other distances. The reflected signal was strong as there was a metal pillar located at that position.
Figure 9 shows the fitting results for the signals reflected from a person at different distances. The data
was collected from 1 m to 8 m in 0.5 m increments with different postures. In Figure 9, the fitting
results are shifted to the left as the distance increased, which means the strength of the signal reflected
from a person decreased as the distance increased. It can be seen that with the noise signal there
was a limitation on understanding the received target signal, as the trend of the target signal cannot
be predicted.

Figure 7. Light clutter environment.
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Figure 8. The fitting results for the noise signals at different distances.
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Figure 9. The fitting results for the signals reflected from the person at different distances.

Figures 10 and 11 show the fitting results for the noise signal and the signal reflected from a person
at different distances. Figure 10 shows the fitting results at 1 m. In Figure 10, the red line indicates the
fitting result of the noise signal, and the blue dotted line shows the fitting result of the signal reflected
from a person. We can observe that there is a large gap between the two fitting results. This indicates
that the strength of the signal reflected from a person was much stronger than the strength of the noise
signal at 1 m, which means the SNR was high at this certain distance. In this case, the probability that
TMd is larger than TFa is high. So even if the threshold was determined by only considering the false
alarm rate, both the target false alarm and the miss detection rates could be satisfied. However, if the
strength difference between the two kinds of threshold can be known, then it is possible to design a
new threshold, which is greater than TFa and smaller than TMd, to further reduce the false alarm and
miss detection rates compared to the target values.

0 1 2 3 4 5

Strength 10
-3

0

500

1000

1500

2000

D
e
n
s
it
y

Fitting Data for the Noise Signal @ 1m

Fitting Data for the Target Signal @ 1m

Figure 10. The fitting results for the noise signal and the signal reflected from the person at 1 m.
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Figure 11 shows the fitting results at 7 m. As shown in Figure 11, there are overlapping parts
between the two fitting results, which means that the probability that the signal reflected from a person
is weaker than the noise signal is relatively high. We can state that the SNR is low at this certain
distance. The larger the overlapping part, the lower the SNR. In this case, in order to satisfy the target
false alarm and miss-detection rates, TFa could be set to a large value and TMd could be set to a small
value. However, because of the low SNR, it is more likely that TFa is greater than TMd, making it
difficult to satisfy both the target false alarm and miss detection rates simultaneously. If a threshold
is set to satisfy the target false alarm rate, the sacrifice of the miss-detection rate is inevitable. As a
threshold is set to reduce the false alarm rate, the threshold can be set to relatively high, which could
result in the increase of the miss-detection rate compared to the target value. If a threshold is set to
satisfy the target miss-detection rate, the sacrifice of the false alarm rate is inevitable. As a threshold is
set to reduce the miss-detection rate, the threshold could be set to relatively low, which could result in
the increase of the false alarm rate compared to the target value. Therefore, a compromise between the
false alarm rate and the miss-detection rate is needed based on the requirements. This can be achieved
with the proposed algorithm by comparing the estimated false alarm and miss-detection rates.
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Figure 11. The fitting results for the noise signal and the signal reflected from the person at 7 m.

Figure 12 shows the fitting results where the signal reflected from a person was collected from
the different angles at 7 m. In Figure 12, we observed that, as the target moved away from the main
lobe, the strength distribution of the signal reflected from a person was shifted to the left. This means
that, the farther the distance was from the main lobe, the weaker the target signal. In other words,
the SNR decreased with an increase of the angle. This results in an increase of the miss-detection rate,
which means the detection ability decreased with an increase of the angle. Thus, the detectable angle
can be measured based on the estimated miss-detection rate.

If a person moved to an angle where the estimated miss-detection rate was lower than the desired
miss-detection rate, we could define that angle as the detectable angle.
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Figure 12. The fitting results for the signals reflected from a person at different angles of 7 m.
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Figure 13. The fitting results from 1 m to 8 m in a light clutter environment. (a) The fitting result at
1 m. (b) The fitting result at 2 m. (c) The fitting result at 3 m. (d) The fitting result at 4 m. (e) The fitting
result at 5 m. (f) The fitting result at 6 m. (g) The fitting result at 7 m. (h) The fitting result at 8 m.

Figure 13 shows the fitting results for the noise signal and the signal reflected from a person in a
light clutter environment at the same collection distance from 1 m in 1 m increments. In Figure 13a–d,
we observe that, there are no overlapping parts between two fitting results, which means that the
signal reflected from a person was much stronger than the noise signal in the range of 1 m to 4 m
(a near-region). However, as shown in Figure 13e–h, the overlapping parts increased with the distance,
as the signal reflected from a person decreased with the distance. This means the probability that the
signal reflected from a person was weaker than the noise signal, which was relatively high, in the
range of 5 m to 8 m (a far-region). If these conditions can be considered in determining a threshold,
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the analysis and prediction results of the cost from a miss-detection or false alarm will be made visible.
Also, a threshold can be set according to the focusing point by considering the estimated false alarm
and miss-detection rates.

4.1.2. Experiment in a Heavy Clutter Environment

Figure 14 shows the experiment environment with heavy clutter. This is an office environment
with three big desks, several chairs, and computers. We collected both the noise and target signals
from 1 m to 8 m in 1 m increments and analyzed the statistical distribution.

Figure 14. Heavy clutter environment.

Figure 15 shows the fitting results for the noise signal and the signal reflected from a person in a
heavy clutter environment at the same collection distance from 1 m in 1 m increments. In Figure 15,
we observe that the gap between two fitting results was small compared to the light clutter
environment, as heavy clutter results in a low SNR. This means the probability that the signal reflected
from a person was weaker than the noise signal was relatively high compared to the light clutter
environment. In particular, in the case of 6 m to 8 m, there were many overlapping parts. In this
environment, if a threshold is designed only based on the noise signal, where a threshold is designed to
reduce the false alarm rate, the probability of miss-detection could be relatively high due to the low SNR.
However, if both the noise signal and the signal reflected from a person are considered, a threshold can
be designed by considering the estimated miss-detection and false alarm rates. Therefore, a threshold
can be designed effectively according to the purpose.
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Figure 15. The fitting results from 1 m to 8 m in a heavy clutter environment. (a) The fitting result at
1 m. (b) The fitting result at 2 m. (c) The fitting result at 3 m. (d) The fitting result at 4 m. (e) The fitting
result at 5 m. (f) The fitting result at 6 m. (g) The fitting result at 7 m. (h) The fitting result at 8 m.

4.1.3. Experiments in Multiple People Environments

Figure 16 shows the fitting results when there are different numbers of people in the detection
range. Figure 16a–c are the fitting results for the signal reflected from a person at the same collection
distance at 2 m, 4 m, and 6 m.

In Figure 16a, the red line refers to one person at 2 m, the blue line refers to one of two people
at 2 m (people were located at 2 m and 4 m), and the black line refers to one of three people at 2 m
(people were located at 2 m, 4 m, and 6 m). From Figure 16a, we observe that the statistical distribution
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of the received signal at 2 m was similar to the one person case even with multiple numbers of people,
which means the signal strength of the person was similar. There were no objects that could affect the
target signal other than the clutter. The same clutter environment resulted in this. Thus, the target
can be detected at this certain distance even with multiple people, as a threshold was designed by
considering the signal strength of single person environment, which was similar for the multiple
people case.

In Figure 16b, the red line refers to one person at 4 m, the blue line refers to one of two people
at 4 m (people were located at 2 m and 4 m), and the black line refers to one of three people at 4 m
(people were located at 2 m, 4 m, and 6 m). In Figure 16c, the red line refers to one person at 6 m,
the blue line refers to one of two people at 6 m (people were located at 2 m and 6 m), the green line
refers to one of two people at 6 m (people were located at 4 m and 6 m), and the black line refers to one
of three people at 6 m (people were located at 2 m, 4 m, and 6 m).

From Figures 16b,c , we observe that the statistical distribution of the target signal shifted to the
right when there were multiple people in the detection range, which means the signal strength was
increased compared to the single person environment. As the received signal could be affected by
the multi-paths that were reflected from the people in front, this indicates that the received target
signal would be stronger than the threshold, which was designed based on the signal strength of a
single person. Thus, the targets can be detected at certain distances. The above results show that the
proposed method would work well in multiple people environments.
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Figure 16. The fitting results in multiple people environments. (a) The fitting result at 2 m. (b)
The fitting result at 4 m. (c) The fitting result at 6 m.
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4.2. Performance Analysis

We analyzed the performance of the proposed algorithm through an error rate analysis. The error
can be analyzed in two aspects: based on a false alarm rate and based on a miss-detection rate. A false
alarm occurs when the noise signal is stronger than the threshold, which can be expressed as follows:

PFa(TF) =P(C > TF)

=1−
∫ TF

0

1√
2πxσC

e
−
(lnx −µC)

2

2(σC)2 dx

=
1
2
− 1

2
erf

(
lnTF −µC√

2σC

)
.

(14)

A miss-detection occurs when the human signal is weaker than the threshold. This can be
expressed as follows:

PMd(TF) =P(H < TF)

=
∫ TF

0

1√
2πxσH

e
−
(lnx −µH)2

2(σH )2 dx

=
1
2
+

1
2

erf

(
lnTF −µH√

2σH

)
.

(15)

Based on the experimental data, we analyzed the false alarm and miss-detection rates for two
types of cluttered environments according to five different values of α, namely, 0, 0.3, 0.5, 0.7, and 1.
In the case of α equal to 0, the final threshold TF was set based only on TMd, that is, TF was determined
by only considering the miss-detection rate. On the other hand, if α was set to 1, the final threshold
TF was set based only on TFa, that is, TF is determined by only considering the false alarm rate. In
this case, TF was the same with the CFAR algorithm. In the experiments, the target false alarm rate
and the target miss-detection rate were set to 10−4 and 10−3, respectively. Figure 17 and Tables 1–5
show the estimated false alarm and miss-detection rates for a light clutter environment according to
α. We observe that, in the near-region, both the false alarm and miss-detection rates can be further
reduced compared to the target values; however, in the far-region they were different due to the
low SNR.

Thus, the false alarm was sacrificed in the far-region, when α was equal to 0, that is, the threshold
was set to be optimized for the miss-detection. On the other hand, the miss-detection was sacrificed in
the far-region when α was equal to 1, that is, the threshold was set to be optimized for the false alarm.
Setting α to a value other than 0 and 1 resulted in a lower false alarm rate and miss detection rate in
the far-region than when α was 0 and 1, respectively. This is because both the false alarm and miss
detection rates were taken into account when determining a threshold, allowing trade-offs between
false alarms and miss detection.

Figure 18 and Tables 6–10 show the estimated false alarm and miss-detection rates for a heavy
clutter environment according to α. This shows that the effect on the false alarm and miss-detection
rates caused by the designed threshold according to α was same as the light clutter environment.
However, the high SNR region became shorter compared to the light clutter environment, because the
heavy clutter decreased the SNR. We observe that, from 1 m to 3 m, both the false alarm and
miss-detection rates can be further reduced compared to the target values. However, from 4 m
to 8 m, the false alarm was sacrificed when α was equal to 0, and the miss-detection was sacrificed
when α was equal to 1, because a threshold was set to be optimized for one condition. We also observe
that, from 4 m to 8 m, when α was set to a value other than 0 and 1, the false alarm and miss-detection
rates were lower than when α was 0 and 1, respectively. This indicates that trade-offs between false
alarms and missed-detections are available, which means the proposed algorithm works in a heavy
clutter environment.
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The above results indicate that it was possible to set a flexible threshold to suit their purpose by
adjusting α. In addition, both the false alarm and miss-detection rates for the determined threshold
can be estimated.

Table 1. Performance analysis in a light clutter environment when PFa = 10−4, PMd = 10−3, α = 0.

Distance 1 m 2 m 3 m 4 m

False Alarm Rate 0 1.1× 10−14 2.3× 10−9 5.3× 10−7

Miss-Detection Rate 1.0× 10−3 1.0× 10−3 1.0× 10−3 1.0× 10−3

Distance 5 m 6 m 7 m 8 m

False Alarm Rate 0.0758 0.0583 0.0417 0.4179

Miss-Detection Rate 1.0× 10−3 1.0× 10−3 1.0× 10−3 1.0× 10−3

Table 2. Performance analysis in a light clutter environment when PFa = 10−4, PMd = 10−3, α = 0.3.

Distance 1 m 2 m 3 m 4 m

False Alarm Rate 0 7.8× 10−12 5.4× 10−8 2.6× 10−6

Miss-Detection Rate 6.3× 10−5 3.6× 10−4 4.4× 10−4 5.7× 10−4

Distance 5 m 6 m 7 m 8 m

False Alarm Rate 0.0108 0.01003 0.0079 0.062

Miss-Detection Rate 0.0065 0.0032 0.0035 0.0073

Table 3. Performance analysis in a light clutter environment when PFa = 10−4, PMd = 10−3, α = 0.5.

Distance 1 m 2 m 3 m 4 m

False Alarm Rate 0 7.6× 10−10 4.6× 10−7 7.3× 10−6

Miss-Detection Rate 3.5× 10−6 1.5× 10−4 2.3× 10−4 3.7× 10−4

Distance 5 m 6 m 7 m 8 m

False Alarm Rate 0.0028 0.0029 0.0024 0.0118

Miss-Detection Rate 0.0157 0.006 0.0069 0.0184

Table 4. Performance analysis in a light clutter environment when PFa = 10−4, PMd = 10−3, α = 0.7.

Distance 1 m 2 m 3 m 4 m

False Alarm Rate 0 8.4× 10−8 4.0× 10−6 2.1× 10−5

Miss-Detection Rate 3.5× 10−8 5.2× 10−5 1.1× 10−4 2.4× 10−4

Distance 5 m 6 m 7 m 8 m

False Alarm Rate 7.3× 10−4 7.8× 10−4 6.8× 10−4 0.0019

Miss-Detection Rate 0.0313 0.0103 0.0125 0.0377
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Table 5. Performance analysis in a light clutter environment when PFa = 10−4, PMd = 10−3, α = 1
(CFAR algorithm).

Distance 1 m 2 m 3 m 4 m

False Alarm Rate 1.0× 10−4 1.0× 10−4 1.0× 10−4 1.0× 10−4

Miss-Detection Rate 4.4× 10−16 6.1× 10−6 2.9× 10−5 1.1× 10−4

Distance 5 m 6 m 7 m 8 m

False Alarm Rate 1.0× 10−4 1.0× 10−4 1.0× 10−4 1.0× 10−4

Miss-Detection Rate 0.0689 0.0203 0.0259 0.0842

Table 6. Performance analysis in a heavy clutter environment when PFa = 10−4, PMd = 10−3, α = 0.

Distance 1 m 2 m 3 m 4 m

False Alarm Rate 0 0 1.7× 10−9 0.0143

Miss-Detection Rate 1.0× 10−3 1.0× 10−3 1.0× 10−3 1.0× 10−3

Distance 5 m 6 m 7 m 8 m

False Alarm Rate 0.0164 0.6388 0.8581 0.5677

Miss-Detection Rate 1.0× 10−3 1.0× 10−3 1.0× 10−3 1.0× 10−3

Table 7. Performance analysis in a heavy clutter environment when PFa = 10−4, PMd = 10−3, α = 0.3.

Distance 1 m 2 m 3 m 4 m

False Alarm Rate 0 1.1× 10−15 1.1× 10−6 0.0034

Miss-Detection Rate 7× 10−5 1.4× 10−4 5.1× 10−4 0.003

Distance 5 m 6 m 7 m 8 m

False Alarm Rate 0.0038 0.1091 0.1759 0.0903

Miss-Detection Rate 0.0032 0.0142 0.0354 0.019

Table 8. Performance analysis in a heavy clutter environment when PFa = 10−4, PMd = 10−3, α = 0.5.

Distance 1 m 2 m 3 m 4 m

False Alarm Rate 0 9.9× 10−13 4.1× 10−6 0.0012

Miss-Detection Rate 4.5× 10−6 2.4× 10−5 3.1× 10−4 0.0055

Distance 5 m 6 m 7 m 8 m

False Alarm Rate 0.0014 0.0192 0.0281 0.0161

Miss-Detection Rate 0.0061 0.0431 0.1189 0.0623
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Table 9. Performance analysis in a heavy clutter environment when PFa = 10−4, PMd = 10−3, α = 0.7.

Distance 1 m 2 m 3 m 4 m

False Alarm Rate 1.7× 10−16 1.3× 10−9 1.5× 10−5 4.5× 10−4

Miss-Detection Rate 6.1× 10−8 2.1× 10−6 1.8× 10−4 0.0093

Distance 5 m 6 m 7 m 8 m

False Alarm Rate 4.9× 10−4 0.0026 0.0033 0.0023

Miss-Detection Rate 0.0107 0.0958 0.25395 0.1422

Table 10. Performance analysis in a heavy clutter environment when PFa = 10−4, PMd = 10−3, α = 1
(constant false alarm rate algorithm (CFAR) algorithm).

Distance 1 m 2 m 3 m 4 m

False Alarm Rate 1.0× 10−4 1.0× 10−4 1.0× 10−4 1.0× 10−4

Miss-Detection Rate 8.9× 10−15 6.5× 10−9 7.2× 10−5 0.0184

Distance 5 m 6 m 7 m 8 m

False Alarm Rate 1.0× 10−4 1.0× 10−4 1.0× 10−4 1.0× 10−4

Miss-Detection Rate 0.022 0.2171 0.4916 0.3176
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Figure 17. The false alarm rate and miss-detection rate in a light clutter environment according to α.
(a) False alarm rate according to α. (b) Miss-detection rate according to α.
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Figure 18. False alarm rate and miss-detection rate in a heavy clutter environment according to α.
(a) False alarm rate according to α. (b) Miss-detection rate according to α.
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4.3. Discussion

The validity of the proposed algorithm was verified through the experiments conducted in
different environments with different clutter levels and different numbers of people, using an IR-UWB
radar. The results demonstrated the effectiveness of the proposed algorithm with respect to the distance
of the target, the amount of clutter, and the number of people. In terms of distance, we divided the
data into a high SNR region and low SNR region, as the SNR decreased with distance. For the high
SNR region, both the false alarm and miss-detection rates can be further reduced compared to the
target values. For the low SNR region, a threshold can be determined to allow trade-offs between
the false alarm and miss-detection rates. In terms of the amount of clutter, we observed that the SNR
decreased as the amount of clutter increased. Thus, in a heavy clutter environment, consideration
only on the noise signals in determining a threshold could lead to a relatively high probability of
miss-detection due to the low SNR. As the proposed algorithm considered both noise and target signals,
it allowed a threshold to be determined according to the intended purpose. In terms of the number of
people, we can observe that when there were multiple people, the received signal was affected by the
multi-paths that were reflected between people. It results in the strength of the target signal became
stronger compared to the single target case, allowing detection in multiple human environments.
Therefore, the proposed algorithm can effectively work in multiple people environments. We have
also experimentally shown that the proposed algorithm can numerically estimate both the false alarm
and miss-detection rates.

5. Conclusions

In this paper, we proposed a new algorithm for determining a threshold for IR-UWB radar-based
detection applications by taking both the false alarm and miss-detection rates into consideration.
As the proposed algorithm considered the target signal as well as the noise signal, it was relatively
advantageous in determining a threshold compared to the CFAR algorithm. The proposed algorithm
allowed a threshold to be determined according to the focusing point by adjusting the weight factor.
Both the miss-detection and the false alarm rates can be estimated for a determined threshold, which
makes it possible to analyze the costs from the false alarm and miss-detection rates. In order to verify
the validity of the proposed algorithm, we conducted experiments with respect to the distance of
the target, the amount of the clutter, and the number of people. The results demonstrated that the
proposed algorithm was effective in the tested environments. As one of the applications, the proposed
algorithm can be used for measuring the detectable boundary.
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