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Abstract: For all homoeothermic living organisms, heart rate (HR) is a core variable to control
the metabolic energy production in the body, which is crucial to realize essential bodily functions.
Consequently, HR monitoring is becoming increasingly important in research of farm animals, not
only for production efficiency, but also for animal welfare. Real-time HR monitoring for humans has
become feasible though there are still shortcomings for continuously accurate measuring. This paper
is an effort to estimate whether it is realistic to get a continuous HR sensor for livestock that can be
used for long term monitoring. The review provides the reported techniques to monitor HR of living
organisms by emphasizing their principles, advantages, and drawbacks. Various properties and
capabilities of these techniques are compared to check the potential to transfer the mostly adequate
sensor technology of humans to livestock in term of application. Based upon this review, we conclude
that the photoplethysmographic (PPG) technique seems feasible for implementation in livestock.
Therefore, we present the contributions to overcome challenges to evolve to better solutions. Our
study indicates that it is realistic today to develop a PPG sensor able to be integrated into an ear tag
for mid-sized and larger farm animals for continuously and accurately monitoring their HRs.

Keywords: photoplethysmography (PPG); electrocardiography (ECG); photoplethysmographic
imaging (PPGI); precision livestock farming (PLF); heart rate monitoring; livestock

1. Introduction

The world needs livestock products to feed all people, and the total meat production was
over 342.4 million tons in 2018 [1]. The Food and Agriculture Organization of the United Nations
(FAO) estimates that the worldwide meat consumption may increase to 73% by 2050 [2], thus the
food production, animal industry in particular, must become more sustainable. Currently, precision
livestock farming (PLF) is regarded as the heart of the biological engineering endeavor towards
sustainability in food production, using image and sound analysis, sensors, information technology,
and decision-making to monitor, model, and manage animal production, reproduction, health, welfare,
and environmental impact. Europe is considered the birthplace of PLF research, and it still continues
strongly with over three decades of research and innovation through at least 4 EU-funded (EU-PLF,
BioBusiness, AllSmartPigs, BrightAnimal) and many other national projects [3]. Current agricultural
research agendas in the EU [4] and US [5] have evidenced that the importance of PLF is growing
worldwide. Faced with the large worldwide demand for animal products, the question becomes:
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how many of these animals have a life worth living? This high number of animals is an opportunity
to create sensors and hardware that can be very cheap per unit so they change the efficiency of the
livestock sector and the animal welfare as described in many papers on PLE.

All humans and homoeothermic animals generate metabolic energy to live and to reproduce.
For over 95% of their life, most of these living organisms generate their energy in the aerobic mode,
by breathing air to lungs and by heart beats transporting the oxygen rich blood to the cells to produce
metabolic energy. For homoeothermic living organisms, the heart rate (HR) is a crucial variable to
control the metabolic energy production in the body by controlling the components in the metabolic
energy balance. This includes the basal metabolism which refers to the minimum energy needed to
keep all organs functioning in an extremely quiet state and thus to stay alive, the thermal component
to control body temperature, the physical component, as well as the mental component, which is a key
component in transferring feed energy efficiently into production and to prevent depression of the
immune system due to stress. The less efficiently the metabolic energy is used in the body, the more feed
energy will be wasted in manure, emissions, stress systems, etc. Therefore, HR is becoming increasingly
important in research of farm animals, and so far it remains a challenge to monitor HR accurately and
continuously by a reliable, affordable sensor on the animal or with a remote sensing technique. Current
HR monitors for animals, such as implantable transmitters and externally-mounted equipment, are
mainly used in research settings with the intentions of analyzing physiological responses, diseases,
psychological and environmental stress, or individual characteristics, for instance the temperament
and its coping strategies. They are however inconvenient and inappropriate for long-term continuous
monitoring. In recent years, HR monitoring for humans has become feasible though there are still
drawbacks in continuous and accurate measurement. In this paper, we present a comparative review of
current techniques to measure HR on living organisms, with focus on their advantages and drawbacks,
and discuss the potential to transfer some of the techniques that have been successfully applied in
humans to livestock.

The objective of this paper is to check which techniques are feasible for the continuous HR
monitoring on livestock based upon the described technologies presented in literature. Additionally,
we estimate the challenges and propose a solution to get such sensors.

2. Physiological Effects

All HR monitoring methods, presented in this review, are aimed for real-time detection of HR. We
focus on HR defined as the number of cardiac beats at a given moment, which is usually expressed
in beats per minute (bpm). According to the principles of different techniques, acquisition of HR
signals relies on specific physiological effects. Figure 1 provides an overview of different categories of
physiological effects, and how they are linked to the HR, as well as the measuring techniques. Typically,
such effects are comprised of bioelectrical effects, mechanical effects, and thermal effects [6].
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Figure 1. Overview of physiological effects and respective techniques for heart rate (HR) measurement.
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Bioelectrical effects: Electrical excitation of the heart causes dynamic electromagnetic fields on the
body surface that can be measured by electrocardiography (ECG), such as wet and dry electrodes, and
capacitively coupled ECG (CCECG).

Mechanical effects: Blood travelling through the vascular system causes organ motion and
deformation, as well as blood volume variation. These phenomena are mechanical operations and can
be subcategorized into three groups as follows.

(1) Body surface displacement: At every heartbeat, the pulse wave travelling through the body
produces subtle changes in displacements and vibrations of the body surface. Several sensor techniques
rely on these effects, such as ballistocardiography (BCG)/seismocardiography (SCG), Doppler radar
and lasers (optical vibrocardiography), as well as video-based motion.

(2) Superficial perfusion: The ejection of blood from the heart into the vascular tree causes blood
volume changes in the microvascular bed of the tissue. Since blood absorbs light more than the
surrounding tissues [7], these microscopic changes in the optical properties of the body surface can be
measured by photoplethysmography (PPG) and photoplethysmographic imaging (PPGI) methods.

(3) Intrathoracic dynamics: The impedance distribution within the human body varies with
physiological activity. During the cardiac cycle, the motion of the cardiac wall and aorta, as well as the
opening and closing of heart valves, causes variations of impedance distribution. Cardiac pulsation
also modulates tissue impedance by blood perfusion [8]. The local changes in impedance caused by
the cardiac cycle inside the thorax do not project actively onto the body surface [6]. However, the
electrical/magnetic impedance measurements can be used to detect the variations.

Thermal effects: The flow of blood through the vicinity of major superficial vessels leads to
changes in skin temperature that can be detected using thermal imaging techniques.

3. Available Techniques to Monitor HR

This section introduces the various state-of-the-art techniques for HR monitoring of living
organisms with their advantages and limitations.

3.1. Electrocardiography (ECG)

The conventional ECG method is considered to be one of the oldest optimal clinical diagnostic
tools with its first recordings dating back as early as 1903 [9]. It provides useful information about the
cardiovascular system, characterized by its high accuracy and easy interpretation for HR measuring.
The method employs Ag/AgCl electrodes with wet conductive gels fixed to specific locations of the
chest, arms, or hands and legs in order to detect and record the difference of the electric potential
between the points. This electrical excitation generated by cardiac muscular fibers causes a voltage
signal that allows accurate measurement of HR. Although the conventional ECG provides good
signal quality, it is inconvenient and inappropriate for long-term monitoring (>1 week), since the wet
electrodes need to be directly contacted with skin. It also presents movement limitations, and prolonged
application of wet electrodes may cause skin irritation, allergic reactions, and signal degradation due
to dehydration [10].

In order to overcome the drawbacks, dry electrodes [11,12] and capacitively coupled ECG
(CCECG) [13,14] are two alternatives which potentially provide comfortable measurement without an
explicit electrolyte. However, the dry electrodes still need to be in direct contact with skin, thereby
it may cause skin irritation and allergies after prolonged use. CCECG is a non-contact method,
which is able to detect biopotentials with an explicit gap (e.g., a thin layer of insulator) between
electrodes and skin, even through hair and clothing. Polar Sport Tester uses belt monitors, which are
primarily marketed for sports and relevant research in sports medicine, and fabricated by a commercial
manufacturer (Polar Electro Oy, Kempele, Finland) to record inter-beat intervals (IBIs). Some recent
examples integrated the CCECG sensor into a chair [15,16], bed [17], belt [13], or clothing [14] to obtain
ECG signals. Compared to the wet and dry electrodes, the surface of CCECG electrodes is electrically
insulated and thus remains stable even in longer-term usage.
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Several authors have demonstrated the performance of the dry/non-contact electrodes, which are
comparable to clinical wet electrodes as shown in Table 1, including the implementation of sensors,
frequency of movement of subjects when measuring, power consumption, and quantitative results.
However, a tight vest and chest band is often needed to secure the non-contact electrodes in place
in the form of textile electrodes [18]. Although the CCECG measurement can detect ECG signals
accurately, it has several shortcomings. Due to the high impedance, the signal quality is not comparable
to conventional wet electrodes. Moreover, it is susceptibly affected by motion artifacts (MAs). Any
changes in the displacement of the electrode-to-skin distance can change the coupling capacitance,
hence affecting the ECG signal acquired, and friction between the electrodes and insulation may also
cause artifacts.

Table 1. Summary of electrocardiography (ECG)-based techniques for HR monitoring.

Citation Technique Implementation Movement Power . Quantitative Result
Consumption
Wu and Zhang [19] CCECG Integrated into a Sleep NA Root mean square error (RMSE):

bedsheet 0.66 + 0.57 bpm

Integrated into a chest 33 mA (including

Gargiulo et al. [20] Dry electrodes Exercise Correlation: larger than 0.96

strap transmission)
. ; Integrated into a .
Nemati et al. [10] CCECG stretehable cloth Motionless less than 25 mA NA
Chen etal. [21] Flexible dry Integrated into a wrist NA 84.83 mW NA
electrodes band
Integrated into a Mean bias:
Rawstorn et al. [22] CCECG harnesgs (chest strap) Exercise NA —0.30 + 4.53 bpm (sinus rhythm)
P 1.10 + 9.75 (atrial fibrillation)
Dai et al. [23] Flexible dry Integrated into a Sitting 29.74 mW Accuracy: 98.55%
electrodes garment
Dionisi et al. [24] CCECG Integrate('l intoa Walking 17 mW (flexible Mean bias: 0.38 bpm
T-shirt solar panel)
Integrated into chest . .
Zheng et al. [18] CCECG strap Exercise 2.1 mA Mean bias: 0.60 + 1.48 bpm
. . - . . Error rate: within 2%
Li and Kim [25] Dry electrodes  Integrated into a patch Exercise NA

Correlation: 0.97

NA: not available. Movement: movement status of the subjects when HR measuring.

3.2. Photoplethysmography (PPG)

Another widely used conventional technique for HR measurement is photoplethysmography
(PPG), which was first introduced by Hertzman in 1938 [26]. Its principle has been reviewed
previously [27]. PPG is a simple, non-invasive optical measurement technique that detects blood
volume changes in the microvascular bed of tissue [28]. It is based on the principle that blood absorbs
more light than surrounding tissues [7]. The measurement is done by illuminating human tissue (skin)
with a light source, which is usually a red, near infrared (NIR) [9], or green light, and a photodetector
to opto-electronically detect variations in the intensity of transmitted or reflected light. The changes
in light intensity are associated with small variations in blood perfusion of the tissue and provide
information on HR.

In general, PPG can be operated in a transmission or a reflection mode [29]. In transmission
mode, the light transmitted through the medium is detected by a photodetector opposite to the light
source, in which a relatively good signal can be obtained. But it is restricted to certain thin areas
(earlobe and fingertip) of the body, where the signal can be quickly detected. A typical application is
the conventional pulse oximetry sensor, while for such a system the fingertip sensor may interfere with
daily activities. Commercial ear-clip PPG sensors can cause pain over long-term use. In the reflection
mode, the photodetector detects the light that is back-scattered or reflected from tissue, which reduces
the problems associated with sensor placement. It can be used on a variety of measurement sites, which
offer higher perfusion values, including finger [30,31], wrist, earlobe [32], external ear cartilage [33],
superior auricle [34], inferior auricle [35], forehead [36], and brachia [37].
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Such devices are commonly incorporated with ear-worn devices [33,34,38], finger probes [39],
flexible films or patches [40,41], and glass-type wireless PPG [42]. Tables 2 and 3 provide detailed
comparisons of some significant contributions for HR monitoring on a portion of the above-mentioned
measurement sites (finger and ear), including light wavelength, movement of the subjects when
measuring, power consumption, and quantitative results (accuracy), which are compared to gold
standard methods (conventional PPG or ECG). These results indicate that PPG signals recorded from
fingers and ears are acceptable for HR monitoring, but most of them focused on slowly running,
which considers low MAs. Only a few techniques were proposed for HR monitoring in fitness, which
generate strong (high amplitude) MAs.

Table 2. Summary of finger-type photoplethysmography (PPG) sensors for HR monitoring.

iy g Light . cees
Citation Mode Wavelength Movement Power Consumption Quantitative Results
Total current consumption:
Red and 0.491 mA;
Rhee et al. [43] Reflection Shaking finger ~ RF Transmitter: 0.098 mA; RMSE: 1.23 bpm
Infrared L
CPU-LED circuit:
0.393 mA
Maria . w: —0.7 bpm
Lopez-Silva et al. Transmission Ne(;rsanrlzil)red Exercise NA 0: 2.92 bpm
[44] LOA: [-6.41, 5.01] bpm
; . Red and . Transmit mode: 31 mA;
Park et al. [31] Reflection Infrared Motionless Receiving mode: 26 mA NA
Red (660 nm) u: —=0.57 bpm
Yousefi et al. [39] Transmission and Infrared Exercise NA 0: 3.30 bpm
(895 nm) LOA: [-7.0,5.9] bpm
NA: not available. Movement: movement status of the subjects when HR measuring.
Table 3. Summary of ear-worn and patch PPG sensors for HR monitoring.
Citation Sensor Mode Light Movement Quantitative Results
Wavelength
RMSE: 1.3 bpm
. . w: —=0.25 bpm
Wang and Zheng [35] Reflection Infrared Motionless o: 0.5 bpm
LOA: [-1.23,0.73] bpm
Error rates:
Infrared 0.6% (rest);
Shin et al. [45] Transmission (940 nm) Exercise 1.7% (walk);
0.7% (jog);
5.7% (run)
Ear-worn Stand: p: 0.62%; o: 4.51%; LOA:
[-8.23, 9.46]%
. Infrared (940 R Walk: p: —0.49%; o: 8.65%; LOA:
Poh et al. [32] Reflection nm) Exercise [=17.39, 16.42]%
Run: p: —0.32%; o: 10.63%; LOA:
[-21.15, 20.52]%
Stand: u: —0.07 bpm; 0: 2.56 bpm;
Poh et al. [46] Reflection Infrared Exercise Cycle: u: —=0.67 bpm; 0: 2.34 bpm;
Walk: p: 0.51 bpm; o: 5.31 bpm;
) ) ) 1 —0.2%
Leboeuf et al. [47] Reflection Infrared Exercise
o: 4.4%
Green (525 nm) . 0.85 bpm
Alzahrani et al. [40] Patch Reflection Red (650 nm) Exercise p 289 Op
0: 9.20 bpm

IR (870 nm)

NA: not available. Movement: movement status of the subjects when HR measuring.

In recent years, wearable fitness trackers and body sensor devices based on PPG have become
increasingly popular. More companies are producing these sensors. A review is provided evaluating the
accuracy, precision, and overall performance of wearable devices currently available [48]. The results
indicate that these devices are relatively accurate and might be beneficial. In addition, wrist-wearable
devices like Xiaomi (Xiaomi Corporation, Beijing, China) and Fitbit (Fitbit, Inc., San Francisco, California,
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USA) have recently received considerable interests [49] due to their low prices, as in case of the Xiaomi
Mi Band priced at $14 [50].

Compared to fingers and earlobes, due to large flexibility of the wrist and loose interface between
the sensor and the skin, the quality of the wrist-type PPG sensor signal is susceptible to MAs during
intensive physical exercise. Therefore, it is challenging as well as of great interest to remove MAs
and to accurately estimate HR for wrist-type wearable devices. Many contributions have shown
improvement in the accuracy of HR measurement using wrist-type PPG.

Thanks to the IEEE Signal Processing Cup 2015 [51], the database which was recorded from
12 healthy subjects walking or running on a treadmill with varying speed ranging from 6-8 km/h to
12-15 km/h is publicly available. Each dataset consists of two-channel PPG signals, three-channel
acceleration signals, and a single-channel ECG signal recorded by using reflective pulse oximeters with
green LEDs (wavelengths of 515 nm or 609 nm), a three-axis accelerometer, and wet ECG sensors on
the chest as the ground-truth of HR, respectively. Both the pulse oximeters and the accelerometer are
embedded in a wristband. It should be noted that utilizing the same dataset and performance metrics
which are defined facilitates the comparison between the results achieved with different state-of-the-art
approaches. Several HR estimation methods have been designed and tested, and detailed summaries
containing signal processing methods and quantitative results of significant studies are presented in
Tables 4 and 5.

To evaluate the performance of the proposed methods, multiple measurement indexes were
adopted in these studies to analyze the relationship between estimates (BPM,(i)) and ground truth
(BPMe(i)) values [52]. One was the average absolute error (Error 1), defined as:

w
1 . .
Error1 = < 2 l|BPM55t(z) — BPMipue (i) (1)
1=

where W is the total number of time windows. Similarly, the average absolute error percentage (Error 2)
was calculated, defined as:

Error2 = 1 f“ ‘BPM“t(i) - BPMtrue(i)|
w i=1 BPMtrue(l)

@)

The Bland-Altman plot [53], based on graphical techniques and simple calculations, directly
reflects the agreement between ground truth values and estimates. In this analysis, the limits of
agreement (LOA) is used, which is expressed as LOA = [/J —-1.960, u + 1.960], where u, o denote the
average difference and the standard deviation respectively.

Table 4. Summary of wrist-type PPG techniques for HR monitoring, part 1.

Method and Signal Processing Error 1 Error 2 Bland-i—\lt.man Pearso.n
Citation Techniques (Mean + SD) (Mean + SD) (%) Analysis Correlation
(bpm) (bpm) Coefficient
Spectrum subtraction
SPECTRAP . LOA:
Sun and Zhang [54] based on asymmetric least 1.50 +1.95 112 +1.47 [=5.59, 6.01] 0.995
squares
Sparse signal e —124
TROIKA reconstruction: single 234+ 0.82 1.80 0:3.07 0.992
Zhang et al. [52] measurement vector LOA: [~7.26, 4.79]
(SMV) i
Joint sparse spectrum
JOsS_ reconstruction: multiple 5, 5 101 +2.29 LOA: [-5.94,5.41] 0993
Zhang [55] measurement vector
(MMV)
MICROST Wavelet and time-domain 0:3.73

Zhu et al. [56] methods 258270 1.85 LOA: [-7.31, 7.31] 0.988
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Method and Signal Processing Error 1 Error 2 Bland-Alt.man Pearso.n
Citation Techniques (Mean + SD) (Mean + SD) (%) Analysis Correlation
q (bpm) - ¢ (bpm) Coefficient
SpaMA Time-varying spectral
Salehizadeh et al. [57] filtering algorithm 08906 065+04 NA 098
IMAT Sparse reconstruction:
Mashhadi et al. [58] iterative method with 1.25 NA NA NA
e adaptive thresholding
NA: not available.
Table 5. Summary of wrist-type PPG techniques for HR monitoring, part 2.
Sienal Processin Error 1 Error 2 Bland-Altman Pearson
Method and Citation gTechni wes 8 (Mean + SD) (Mean + SD) (%) Analysis Correlation
1 (bpm) = ° (bpm) Coefficient
Fast ensemble empirical
FEEMD mode decomposition 0:3.62
Zhang et al. [59] (FEEMD) and spectrum 1.83+1.21 14 LOA: [-7.56, 6.61] 0-989
subtraction
Multi-channel spectral u: 0.2248
Xiol:ldc‘;tSIa\/IID[ 60] matrix decomposition 111 0.80 0:1.9940 0.9968
& o (MC-SMD) model LOA: [-3.68, 4.13]
EEMD Ensemble empirical mode o
Khan et al. [61] decomposition (EEMD) 102179 0.79 LOA: [-4.10, 3.98] 0.996
Principle component
analysis (PCA) and
. adaptive filter
_ Mix-5VM Sparse signal 1.01 0.72 LOA: [-3.46, 3.83] 0.9972
Xiong et al. [62] .
reconstruction
Support vector machine
(SVM) spectral analysis
WFPV Wiener filter and phase
Temko [63] vocoder 1.02 081 NA 0.997
MURAD Multiple reference RLS LOA: [-3.5665,
Chowdhury et al. [64] adaptive noise cancellation 0.9726 +1.831 0.76 %15 3.6112] 0.9972

NA: not available.

3.3. Photoplethysmographic Imaging (PPGI)

Verkruysse et al. (2008) first introduced photoplethysmographic imaging (PPGI) using ambient
light [65]. PPGIl is the translation of PPG into a spatially resolved, non-contact method [66]. It is based
on the conventional PPG theory, i.e., the skin changes its optical properties with perfusion. Compared
to PPG, the PPGI replaces the photodiode, which should be in contact with the subject’s skin in a
single location, with cameras that can be found everywhere nowadays, such as digital camera [67],
webcams [68], and cellphone cameras [69] with dedicated light sources (e.g., green, red, and/or IR
wavelengths) or normal ambient light. Such camera systems monitor a larger field of view of the
subjects” exposed skin (usually facial area) from a distance, to record small changes in light intensity
values from skin and to capture HR over time.

Compared to conventional PPG technique, as a contactless technique, PPGI avoids the requirement
of the device to be in contact with the skin and the deformation of the arterial wall. Beyond that, PPGI
also has several strengths: (1) cameras (particularly webcams) are ubiquitous and often inexpensive;
(2) it offers detailed spatial information simultaneously from multiple sites of arbitrary size and
location [70]; and (3) measurements from multiple subjects can be performed [71]. One sensor can
monitor more individuals, which is economically interesting. The application of PPGI has evolved
since 2010, and many contributions have been proposed to improve the performance of PPGI signal.
The existing review [46] provides theoretical background and an overview of the field. A summary
has been outlined in Tables 6-8, containing sensor, experimental conditions (the illumination, the
distance between subject and camera, and the frequency of movement of subject when measuring),
signal processing techniques, and accuracy.
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Table 6. Summary of photoplethysmographic imaging (PPGI) techniques for HR monitoring, part 1.
Citation Sensor Illumination Distance (m) Movement Signal Pr(.)cessmg RMSE (bpm) Bland-.A ltman Pearson C.o 1:re1at10n
Technique Analysis (bpm) Coefficient
Sitting sill:
Independent w: =0.05; 0: 2.29
. . Slight motion . Sitting still: 2.29 LOA: [-4.55, 4.44] Sitting still: 0.98
Pohetal. [72] Webcam Ambient light 05 (sitting) component analysis Slight motion: 4.63 Slight motion: Slight motion: 0.95
(ICA)
w: 0.64; o: 4.59
LOA: [-8.35, 4.63]
Poh et al. [68] Webcam Ambient light 0.5 Motionless ICA 1.24 NA 1
Planar motion
Monochrome . . w: 0.33
Sun et al. [73] CMOS camera IR (870 nm) 0.4 Motionless 'compensatlon anc? NA LOA: [-1.29, 1.96] >0.9
blind source separation
de Haan and Jeanne . . . Chrominance-based
[74] CCD camera Ambient light NA Cycling methods 04 NA 1
Holton et al. [75] Webcam Ambient light 06 Motionless ICA 692 Sta“dargpeg"“ 651 0.89
NA: not available. Movement: movement status of the subjects when HR measuring.
Table 7. Summary of PPGI techniques for HR monitoring, part 2.
Citation Sensor Illumination Distance (m) Movement Signal Pr(.)cessmg RMSE (bpm) Bland-.A ltman Pearson C.O tjrelatlon
Technique Analysis (bpm) Coefficient
Continuous wavelet w: 0.02
Bousefsaf et al. [76] Webcam Ambient light 1 Head movements . 2.33+0.73 LOA: 0.853 + 0.056
filtering
[-4.96,4.99]
Monkaresi et al. . . . Machine learning u: —0.28
7] Webcam Ambient light NA Cycling approach 4.33 o 433 0.97
Combining skin-color
Veeraraghavan et al. change signals from p: 0.48
g[78] ) Camera Ambient light 0.5 Facial movements different facial regions NA LOA: NA
using a weighted [-5.73, 6.70]
average
Yu et al. [79] Camera Ambient light 0.6 Cycling ICA 1.97 NA 0.99
Amelard et al. [80] Monochrome NIR 15 Supine position  pectral-spatial fusion NA W —10 0.9952
camera model 0: 0.70

NA: not available. Movement: movement status of the subjects when HR measuring.
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Table 8. Summary of PPGI techniques for HR monitoring, part 3.

9 of 27

Citation

Sensor

Illumination

Signal Processing

Bland-Altman

Pearson Correlation

Distance (m) Movement Technique RMSE (bpm) Analysis Coefficient
(bpm)
Joint blind source
separation and w: 1.15
Cheng et al. [81] Webcam Ambient light 0.5 Motionless ensemble empirical NA o: 8.46 0.53
mode decomposition LOA: [-15.43,17.73]
(JBSS-EEMD)
Qi etal. [82] Webcam Ambient light NA Motionless Joint blind source 5.0017 NA 07423
separation
. . . Segmentation based on u: 0.16
Bousefsaf et al. [83] Webcam Ambient light 1 Motionless lightness criteria 4.81 LOA: [-10.95, 11.26] 0.78
. . singular value .
Tayibnapis et al. Webcam Ambient light 0.3-1.1 Motionless Decomposition and 3.34 w 215 0.73
[84] . 0: 2.58
Burg algorithm
Ling et al. [85] Camera Ambient light 06 Cydling Canonical component Experiment 1: 3.70 NA Experiment 1: 0.97

analysis Experiment 2: 2.33

Experiment 2: 0.99

NA: not available. Movement: movement status of the subjects when HR measuring.
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However, the acquired signal of PPGI is highly susceptible to motion-induced signal corruption,
and the MAs removal or attenuation is one of the challenges in signal extraction and processing.
The illumination variations, i.e., low light levels and dynamic variations, and skin pigmentation could
contaminate the pulse signal. The drawbacks limit the physiological monitoring capability of the
technique in practice so far. A variety of signal processing methods have been proposed to remove
noise and detect HR from the PPGI signals. Robust image and signal processing methods have the
potential to address the MAs and make it possible to have a good performance for HR monitoring.

3.4. Video-Based Motion

The principle of extracting HR from facial video is measuring subtle head motion caused by
blood flow from the heart to the head that is not visible by naked eyes, which is based on BCG theory.
The blood circulation from the heart to the head via the carotid arteries causes the head to move in a
periodic motion. Wu (2012) developed a method called as Eulerian Video Magnification to amplify
these subtle changes [86].

Balakrishnan et al. (2013) extracted the HR from the facial video by tracking velocities of feature
points on the face region [87]. The average HRs were closely identical to the true ones for all subjects.
The mean error of average HRs was 1.5% compared to a wearable ECG monitor. Compared to PPGI,
the BCG based video technique has several advantages. Since the method detects the motion of
feature points on regions of interest (ROI), it is invariant to illumination and reliable even when
the face is occluded. However, the approach is highly vulnerable to motion variations of subjects.
Thus, researchers proposed that combining the features of the BCG based approach and PPG based
approach could overcome the limitations of the methods related to motion variance and illumination
variance [88].

3.5. Thermal Imaging

The human skin surface with a temperature of about 300 K emits electromagnetic radiation in
the far infrared part of the spectrum, which is not visible to the naked human eye. The human skin
temperature in the vicinity of major superficial vessels is directly modulated by the pulse blood flow.
The pulse signal containing the HR can be recovered from the subtle changes in skin temperature
recorded with a highly sensitive thermal camera at a distance and processed through appropriate
signal analysis. The approach was tested on motionless human subjects up to 3 to 10 feet away from
a mid-wave infrared camera to measure HR from the wrist, neck, and forehead area [89]. Results
achieved 98% agreement and mean bias was 4.74 + 9.28 bpm of HR compared to the reference signal
from a piezoelectrical transducer.

3.6. Ballistocardiography (BCG) and Seismocardiography (SCG)

At every heartbeat, the blood travels along the vascular tree and produces subtle changes in
displacements and vibrations of the body surface. The BCG and the SCG techniques both record
different aspects of the mechanical activity of the body. BCG measures whole-body recoil forces in
response to blood ejection into the vascular tree, while SCG detects the positional vibrations of the
chest wall in reaction to the myocardial motions [90]. In principle, the recordings of the BCG and SCG
contain useful physiological information, such as HR.

Although BCG and SCG measure different aspects of cardiac activity, many sensor techniques
actually record a superposition of both signal sources [91]. Thus, both are jointly considered for signal
analysis and processing. Table 9 summarizes the BCG and SCG measurement for HR monitoring, and
these mechanical methods require physical coupling to the body surface and use force sensors [92,93],
pressure sensors [94,95], film sensors [96], stain gauges [97,98], optical sensors [96,99,100], and
acceleration sensors [101,102]. As they are not required to be directly attached to the body surface,
the sensors can be integrated into furniture, such as beds, chairs, and weighing scales. Thus, the
mechanical assessment of human HR allows an unobtrusive measurement.



Sensors 2020, 20, 2291 11 of 27

Table 9. Summary of Ballistocardiography (BCG) and Seismocardiography (SCG) measurements for

HR monitoring.
Citation Sensor Movement Quantitative Result
Wang et al. [94] Pressure sensor NA Accuracy: 98.22%
Aubert and Brauers [103] Electromechanical film Supine Error: 1.25 bpm

sensors

Flexible piezoelectric

Paalasmaa et al. [104] film Sleep Mean absolute error: 0.78 bpm
Park et al. [105] Piezoelectric film Motionless Standard deviation: 1.82 bpm
Bruser et al. [98] Strain gauge NA Mean error: 0.39 bpm

. . Mean error: 0.46 bpm (10 s);
Bruser et al. [97] Strain gauge Supine 0.5bpm (30 s)
Hernandez et al. [102] Accelerometer, Motionless (gyroscope) Mean absolute error:
gyroscope, camera 0.83 bpm
Average RMSE error: 0.33 bpm
Tadi et al. [101] Accelerometer Supine (supine); 0.62 bpm (right lateral);
0.45 bpm (left lateral)

NA: not available. Movement: movement status of the subjects when HR measuring.

3.7. Doppler Radar and Laser

During each cardiac cycle, the heart muscle pumps blood through the circulatory system, which
results in displacements and vibrations of the body surface, e.g., chest wall. The phenomena can be
measured by using Doppler radar and laser techniques, which are based on the Doppler effect with
certain displacement resolutions from a distance.

Radar-based approaches make use of electromagnetic radiation to measure body surface motion
related to heart mechanical activity in a noncontact manner, so it is possible to remotely sense HR.
In the past decades, there were three types of radar systems proposed for HR monitoring, namely
constant-frequency continuous wave (CW), frequency-modulated continuous wave (FMCW), and
ultrawideband (UWB) [6]. According to the Doppler theory, a target with a time-varying position
reflects the transmitted signal with its phase modulated proportional to the target displacement [106].
Continuous wave is the most commonly used method to detect HR among the aforementioned
three types, and it is based on the frequency shift. When CW measures the velocity of target, the
phase detecting radar adopts the method of analyzing phase differences between transmitted and
received signals to measure the distance to a target. Due to its fine resolution, it has been employed in
HR monitoring.

Another non-contact technique, which measures the displacement of body surface such as the
chest from a distance, utilizes a laser Doppler vibrometer. The approach is referred to as optical
vibrocardiography. With high displacement resolution, the laser has the ability to detect subtle
deflections of body area caused by the heart activity by measuring the frequency or phase differences
between a reference beam and a test beam [107]. Table 10 shows related research for HR measuring
using Doppler radar and laser techniques, including sensors, the distance between the sensor and
subject, the movement of the subject, and quantitative results.
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Table 10. Summary of Doppler radar and laser measurements for HR monitoring.

Method Device/Sensor Distance (m) Movement Quantitative Result
. . . Accuracy: 0.5 m, 100%; 1 m, 96%;
Xiao et al. [108,109] Ka-band Doppler 2 Motionless 1.5 m, 89.3%; 2 m, 81.5%; 2.5 m, 64.6%
. radar . Accuracy: 0.5,1,1.5,2,2.8 m: 98.82%,
Xiao etal. [110] 28 Motionless 91.71%, 92.40%, 85.78%, 81.35%
Accuracy: 0.5m,1m,1.5m,2m,
2.5 m: 99.1%, 89.8%, 98.9%, 85.2%,
0, . 0, 0, 0,
Lietal [111] 05-25 Motionless 83.3% (front); 96.3%, 89.8%, 89%,

80.5%, 85.7% (left); 100%, 93.2%,
93.8%, 97.4%, 85.1% (right); 97.6%,
100%, 94.3%, 93.6%, 85.5% (back)

Tavakolian et al. [112] Doppler radar 0.1 Motionless Accuracy: 92.9%
Obeid et al. [113] PP NA Motionless Relative error: 0.5-1.5%
Morbiducci et al. [114] Laser Doppler 1.5 Motionless Bias: 0.006 b}()fr;\n(lgzie);0.0lS bpm
. . . vibrometer
Scalise and Morbiducci 15 Motionless Mean bias: 0.026 bpm

[107]

NA: not available. Movement: movement status of the subjects when HR measuring.

3.8. Impedance

During cardiac cycle, due to motion of the thorax and of inner organs, the thoracic conductivity
distribution varies, which causes variation in the impedance. The electromagnetic coupling which
includes methods using inductive and capacitive coupling can be used to enable noncontact
measurement of these variations [8]. The magnetic induction method is based on coils sending
out an alternating magnetic field, which induces eddy currents in the conductive body. The eddy
currents generate an opposing magnetic field; therefore, a new effective coil impedance is established,
which is modulated by changes of the conductivity inside the body. When using the electrical
impedance for recording physiological activity, the electrical field is capacitively coupled into the body.
The method is based on the fact that two metal plates together with the body form a capacitance. Due
to the magnitude and direction of the induced displacement, currents vary with the electric property
distribution of the body, and the capacitively received signal reflects the changes of tissue parameters.

3.9. Animal HR Monitoring Techniques

HR is a crucial variable to quantify animal welfare and health state, process efficiency, and
environmental impact. A real-time and continuous monitoring of HR of animals is a potential tool to
improve its production efficiency and to monitor animal welfare based upon objective physiological
signals [115]. Animal HR monitoring methods currently reported in literature are mainly based on
acquiring ECG signals or IBIs directly because of the similarities in the heart characteristics of humans
and animals such as pigs, which are excellent models of human cardiovascular disease [116]. Various
portable devices are commercially available to record ECG signals for animals. Holter systems, widely
used in human clinics, are sometimes employed for ambulatory long-term recording of ECG signal
(mostly up to 24 h) for animals [117]. It is not practical to apply them to livestock, since these systems
are very expensive and technically vulnerable. Another relatively cheaper measurement is to use
belt monitors, which are primarily marketed for sports and relevant research in sports medicine, and
fabricated by a commercial manufacturer (Polar Electro Oy, Kempele, Finland) to record IBIs data,
like Polar Sport Tester. Polar S810i, Polar Vantage NV, and Polar R-R Recorder are widely applied
in veterinary and behavioral research, all using an electrode belt containing two coated electrodes
that fit around the thorax of the animals. When applying such wearable techniques to livestock, it
is inconvenient to mount it on animals tightly, and the obtrusive devices are also easily discovered
by their mates, which may cause aggressive behaviors. Implantable telemetric transmitters, which
have been applied in a wide range of small size laboratory animals, address the drawbacks mentioned
above, but it is an invasive approach to measure HR, since surgery or injection is needed, thereby
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animals need a couple of days of recovery after the procedure. Furthermore, complications during the
procedure may emerge.

In recent years, a variety of less invasive and attached methods have been proposed to assess HR
in farm animals. The PPG based sensor located in the ear of pigs can provide HR information. Due
to the motion-induced artifacts, the quality of signal is not good enough accurately measure the HR
of animals [118]. Researchers are currently investigating non-contact computer-based techniques to
monitor HR in livestock [119]. A low to high correlation coefficient (0.09-0.99) was found between
HR obtained from the red, green and blue color channels (RGB) videos and from the gold standard
method in cattle [120]. The study also showed that the accuracy of HR measurement is related to both
the position of the cameras and the area analyzed on the images. Thus, it is necessary to develop an
accurate and convenient promising approach for real-time continuous animal HR monitoring.

4. Transferable HR Monitoring Techniques in Livestock

4.1. Evaluation Criteria

The techniques discussed in Section 3 are reported to be successful and capable of providing
HR measurement with a certain reliability and accuracy for humans, which provides new ideas to
transfer them in livestock. Each of the techniques has its advantages and limitations that are method
dependent. These techniques have different performances in specific environments. The comparison
of various properties and capabilities related to application in livestock are discussed, including the
measuring sensor, the distance between the subject and sensor, the frequency of movement of the
subject when measuring, and the cost, which are shown in Table 11. Then we evaluate the feasibility of
each technique for application to livestock.

Table 11. Comparison of different HR monitoring techniques.

Technique Measuring Sensor Distance Movement Cost

PPG Phototransistor mm Exercise low

PPGI Camera/webcam m Motionless low
Thermal imaging Thermal imaging camera m Motionless highest

BCG/SCG Pressure sensor, strain gauge, optical sensor, etc. mm Motionless low

Video-based motion Camera/webcam m Motionless low
Radar Microwave sensor m Motionless medium

Laser Laser m Motionless high
Wet ECG Wet electrodes 0 Subtle Motion medium
Dry ECG Dry electrodes 0 Exercise medium
CCECG Capacitively coupled electrodes mm Exercise medium
Impedance Coils/electrodes cm Motionless medium

e Accuracy

Accuracy is an essential factor for HR measurement. A total error within 5 bpm is an acceptable
margin [72]. According to the discussion above, it can be seen that almost all the techniques are reliable
for HR monitoring in a specific scenario.

e Distance

Distance between the sensor and the animal is an important variable for the assessment of the
different techniques and their potential applications in livestock, since accurate measurement does not
only depend on the technique itself, but also on the specific implementation. Table 11 shows the orders
of magnitude for distances. According to our definition of the categories of wet/dry electrode methods,
they require direct contact with the subjects. Gaps between the sensor and subject in the range of
millimeters are required by PPG, BCG/SCG, and CCECG methods. For the impedance technique,
slightly increased separation of electrodes or coils and subject is possible, and the distances can be in
the range of centimeters [6]. Significantly longer distances can be covered by the remaining systems,
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which are camera-based techniques like PPGI, thermal imaging, and video-based motion, as well as
radar and lasers. Such systems can be easily operated from distances in the range of meters.

e Movement

It can be seen that all investigated HR monitoring techniques are to some extent sensitive to MAs.
Hence most of them require that the detected subjects remain motionless. For wearable PPG and
CCECG technologies, even though they have good performance even in extensive exercises, close
proximity to the body surfaces is also necessary.

e C(Cost

Cost of the different techniques is fuzzy if no limiting definitions are employed. Here we just
consider the lowest possible cost for sensors. The cost of algorithm development, which is a very
important aspect for the commercial success of a technology, is beyond the scope of this review.
Considering the measuring sensors for various techniques, the techniques PPG, PPGI, video-based
motion, and the BCG/SCG approach exhibit the lowest costs. The PPG system consists of inexpensive
phototransistors. Video-based motion and PPGI systems can be realized using consumer grade cameras
and webcams that are mass produced; hence they are very inexpensive as well. The sensors used for
BCG/SCG methods, such as very simple optical sensors, strain gauges, and pressure sensors, are very
cheap. We consider the techniques of ECG, impedance, and radar to be in the medium range of costs.
Although the principle of CCECG is simple, high demands of the design and assembly process are
needed to achieve ultrahigh-input impedances. For the impedance method, complex components like
coils or electrodes and assembly processes are necessary. The laser is an expensive method because
of its complex optical assemblies and costly devices. The most expensive method among all of the
techniques is thermal imaging because a very sensitive thermal imaging camera is needed when
monitoring perfusion.

4.2. Transferable Feasibility from Human to Livestock of Various Techniques
e ECG

The wet and dry electrodes both require direct contact with the skin of measured subjects.
The attachment site should be cleaned, and its hair should be shaved off if necessary. Wet electrodes
need conductive gel, while dry electrodes depend on sweat and moisture between the electrodes and
skin, which may cause skin irritation and allergic reaction after prolonged usage. Although CCECG is
a non-contact method to detect ECG signal even through hair and clothing, it is sensitive to corruption
by MAs. In order to secure the non-contact electrodes in place, a tight vest, chest band, or strap are
required. When applied to livestock, it is inconvenient to be mounted on animals, and the obtrusive
devices are easily discovered by conspecifics, which may cause aggressive behaviors.

e PPG

The contact PPG is a low cost, simple, and non-invasive optical measurement, which provides
good accuracy of HR measurement for humans even during intensive physical exercises. It was
concluded that PPG technique has the potential for a transfer to livestock. Previous research has
identified several factors that affect PPG signals, and it is still challenging to develop such a wearable
PPG sensor for livestock. The underlying factors are discussed in Section 5.

e PPGI

Compared to the contact requirements of PPG, the PPGI is based on the camera, which is a
non-contact, low-cost, and convenient technique, and is preferable above a PPG sensor for the reasons of
hygiene, animal welfare, and practical installation for housed animals. From literature we can conclude
that although these studies showed promising results, most of them require that subjects remain
motionless and facing the cameras during recording. The distance between the camera and measured
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subject within several meters is another limit. PPGI signals are susceptible to motion-induced artifacts
and illumination variations, particularly when dealing with webcams during ambient light [76]. Due to
the complex environment of livestock, including low light levels and variations, movement of animals,
and their distance to cameras, many issues of the signal processing techniques remain to be addressed
to transfer PPGI to livestock in the future.

e Video-based motion

The video-based motion technique for HR measuring possesses certain advantages over the PPGI
methods. For example, it is invariant to illumination variance and not restricted to any particular view
of the face. Furthermore, it is effective even when skin is not visible, while for PPGI, the sensitivity to
color noise and changes in illumination should be considered, which requires facial skin to be exposed
to the camera during tracking. However, the video-based motion approach would be highly vulnerable
to internal facial motion and external movement of the head [121]. In realistic scenarios, particularly in
livestock farming, it is still a big challenge to use current methods to obtain high-quality video due to
the unavoidable voluntary motion variations of the animals.

e Thermal imaging

Thermal imaging is a passive and non-contact method, and still presents several limitations.
Its signal is affected by physiological and environmental thermal phenomena [122]. Results so far
come from research in experimental controlled settings, where the subject remains motionless. Any
spontaneous movements, such as small movements of the limbs or even stressed breathing, affect
the shape of the measured signal dramatically. Furthermore, the method is dependent on unwanted
thermal distortions, such as thermal exchanges, sweating, external heat radiation, airflow, etc. Moreover,
the infrared-based measurement is much more expensive, as high-quality cameras must be used. We
don’t think it is currently practical to employ the technique particularly at the farm level, due to the
uncontrolled animals, environment, and the costly cameras.

e BCG and SCG

BCG and SCG techniques often show high signal-to-noise ratios, which allow extraction of HR
information accurately from signals on the basis of quantitative results in Table 9. The signals are
vulnerably affected by MAs caused by body movements, position, and respiratory movements, and
hence the quality of the corresponding HR recordings is impacted [123]. We don’t think it is currently
appropriate and applicable in livestock.

e Doppler radar and laser

With regard to Doppler effect techniques, the experimental protocols in related research require
the subjects to remain motionless to limit body movements, since the Doppler radar and lasers, which
have high displacement resolution, are prone to be affected by MAs, and even a small movement of
the body can result in a high deformation of the signals. In addition, Doppler effect techniques are
active measuring methods since they emit energy. When applying Doppler in livestock, the direct
contact of the laser to the animals’ eyes is a risk for animal welfare. For Doppler radar, the greater the
required measuring distance, the higher the frequency and transmitted power are needed, which are
prone to present a safety threat. Furthermore, these technologies are relatively expensive because of
the special hardware required.

e Impedance

When conducting electrical/magnetic impedance measurements with human subjects, as the
changes in the heart are smaller than the lung, the signal content related to respiratory activity is always
higher than the cardiac signal [8]. Thus, it requires accurate positioning of the sensor to optimize the
monitoring related to more cardiac information [124]. Moreover, impedance measurement is vulnerable
to motion. Cardiac activity modulates the impedance distribution by organ motion; thus, it is difficult
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to distinguish between signals related to cardiac activity and random motion noise. Therefore, even
with a minor motion such as finger movement, the performance of HR monitoring will degrade [125].
In an ambulant environment, particularly in livestock farming, it is still a big challenge to use the
technique due to the unavoidable voluntary motion variations of the animals.

According to the properties of various techniques, a low-cost, motion-resistant, and accurate
sensor is needed for animal HR monitoring in livestock. We conclude that the PPG principle techniques
might be the mostly transferable since they satisfy the above requirements.

5. Challenge and Future Work

To transfer the PPG technique successfully applied in human beings to livestock, one important
consideration is whether the PPG theory based on skin blood perfusion is applicable for animals.
Thus, the similarities of skin between humans and animals need to be checked first. For mammals,
such as pigs, there are several anatomical and physiological similarities to humans, including skin
characteristics. Porcine skin is increasingly being employed as a model of human skin in various
research fields, including pharmacology, toxicology, and immunology, with particular interest in
percutaneous permeation and organ transplantation for wound healing. There are several anatomical
and physiological similarities between porcine and human skin. As in humans, porcine skin is
divided into three layers, i.e., the epidermis, the dermis, and the hypodermis (or subcutis) from top
to bottom. Human epidermis ranges from 50 to 120 um and pig epidermis ranges from 30 to 140
pum. The epidermal thickness varies considerably based on body site, and a better measure is the
dermal-epidermal thickness ratio [126]. It has been reported that this ratio ranges from 10:1 to 13:1 for
pigs, which is comparable to human skin. Moreover, the size, orientation, and distribution of blood
vessels in the dermis of pigs are also similar to blood vessels of human skin. Additionally, the dorsal
site of pig ears represents the area of porcine tissue with the highest similarity to human skin, with
regard to the thickness of the different skin layers [127].

From the above, we conclude that PPG theory has the potential for HR assessment for pigs, since
porcine skin is known to be similar to human skin, anatomically and physiologically. To design such a
wearable PPG sensor for livestock, several factors that affect PPG signals need to be considered, including
motion artifacts removal, measurement site, light wavelength, contact force, power consumption,
weight and size, and the expected price. This section briefly discusses these factors.

e Motion artifacts removal

Despite the attractive attributes of PPG, a major limitation is that PPG is sensitive and vulnerable to
MAs. The quality of PPG signals can be easily affected by movement especially during intensive physical
exercise. MAs on signals are considered the relationship between motion and noise. This includes
voluntary and involuntary movements of the interface between the sensor and skin (tissue) [128].
The change in blood flow due to movements is another MA source [37]. In fact, it is difficult to remove
MAs because they do not have a predefined narrow frequency band and their spectrum often overlaps
the PPG signals [129]. Consequently, MA removal in the original PPG signals is a challenging task.

To date, many signal processing techniques have been proposed to remove MAs in PPG signals.
Adaptive noise cancellation (ANC) is a popular approach to remove MAs where reference signals can be
constructed from acceleration data or another PPG signal [39,120-133]. However, the drawback is that
the performance of ANC is sensitive to the reference signal, and it is difficult to reconstruct qualified
reference signals during exercising. Independent component analysis (ICA) is another technique to
remove MAs. Kim and Yoo (2006) proposed a basic ICA algorithm and block interleaving to remove
MAs [134]. Krishnan et al. (2010) suggested using frequency-domain-based ICA [135]. However, the
key assumption of ICA is statistical independence or noncorrelation; MAs contaminated PPG signals
are not satisfactory [136].

Other MA removal techniques include the wavelet-based method [137-139], non-line
methods [140], empirical mode decomposition [141-143], time-frequency analysis [144], Kalman
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filtering [145], electronic processing methodology [146], and spectrum subtraction using acceleration
data [147], to name a few. However, most of the above techniques were proposed for small motions,
where MAs were not strong.

Motion is often an arbitrary and spontaneous behavior which can be rhythmic or non-rhythmic.
The acquired PPG signals exhibit both MA spectral peaks that lie distant from HR spectral peak as well
as overlapping ones, rendering them indistinguishable [148]. In the presence of rhythmic movements
such as running and walking, the peak corresponding to MA might be close to the HR peak. With
regards to this situation, a number of signal processing techniques have been proposed for robust HR
estimation from the PPG signals and acceleration data when subjects are running on treadmills (see
Tables 4 and 5). The MA cancellation and spectral peak tracking for HR extraction are both important
to gain improvements in accuracy and robustness of HR estimation. However, non-rhythmic exercises,
like boxing, can give large erroneous peaks if the entire window is considered. Sometimes, estimating
HR during steady running is easier than the rest position, since the MA peaks are large in number
and are scattered all over the spectrum in the latter case [61]. For ambulant livestock conditions,
the movements of animals are generally non-rhythmic, and it is more challenging to MA reduction
algorithms. However, the promising techniques for humans can be used as references in the future to
deal with the PPG signal in livestock. As solutions and patents already show, there are techniques to
reduce the MA regardless of whether they are rhythmic or non-rhythmic as shown in at least eight
patents [149].

e Measurement position

Although sensing components are physically changed to decrease MAs, more analysis is needed
to determine which measurement location is the best for HR monitoring. For humans, the perfusion
values of 52 anatomical sites showed that the fingers, palm, face, and ears offer much higher perfusion
values compared with other locations, and that especially the earlobe provides the largest perfusion
values in transmitted PPG signal [150]. Likewise, porcine ear was chosen because of its higher
cutaneous perfusion, lower body fat, and more suitable to place the sensor probe in practice. The
development of ear tag for pigs is basically complete and practical. We consider that it is realistic to
integrate the PPG technique into an ear tag today.

e Light wavelength

The wavelength determines the penetration depth of light [151]. Infrared and near infrared
lights can pass easily and measure the deep-tissue blood flow because of their longer wavelengths.
The shorter wavelength of green light will not reach deeper tissues, but it is suitable to measure the
superficial blood flow in skin. Thus, for transmission mode, green light does not suit. As a result, the
infrared wavelength is often used as the light source. Compared to infrared light, green light has much
greater absorption for both oxyhemoglobin and hemoglobin. Reflected green light is less influenced by
the tissue and vein region, resulting in a better signal quality [152]. That is why green wavelength
PPG devices are becoming increasingly popular in recent years. Signal quality is largely influenced by
the skin properties like skin pigmentation [153]. A longer wavelength yellow-orange light showed
consistent improvement in the signal quality of PPG acquired from varied skin tone subjects [154]. For
livestock, suitable mode (transmission or reflection) and light wavelength for porcine ear skin both
need to be tailored to maximize the signal quality acquired.

e Contact pressure

The PPG signal waveform may be affected by the contacting force between the sensor and the
measurement site. Insufficient pressure may cause inadequate contact and result in low PPG signal
amplitude. On the other hand, excessive pressure conditions may also lead to low PPG signal amplitude
because of blood occlusion. As a result, pressuring the tissue increases the pulsation amplitude and
thereby provides a better signal to noise ratio, but then decreases with increasing contact force [155].
Although there are no generally accepted standards for contact pressure, some attempts to define it have
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been conducted. Daniel et al. (1981) suggested the pressure less than 90 mm-Hg causes no long-term
circulation problems [156]. For different contacting forces, from 0.2 N to 1.0 N, most of the subjects
achieved their maximum pulse amplitude within 0.2-0.4 N [157]. Another work applied 0-200 mm-Hg
contact pressure to the finger, and indicated that the highest amplitude ratio was 60 mm-Hg [158].
Rhee et al. (2001) examined the relationship between skin pressure and pulsation amplitude using
finger ring sensors [43]. The experiments indicated that the pulsation amplitude increased until the
skin pressure reached 100 mm-Hg, and then gradually decreased. At around 180 mm-Hg, the blood
completely occluded and thereby the pulsation disappeared. The results suggest that the effects of
contacting force should be carefully examined in the design of a PPG ear tag.

e Power consumption

Since the PPG ear tag uses batteries, it requires small batteries to fit the tag size. To some extent,
the battery size determines its capacity, so a very low power consumption sensor is demanded. Little
research presented battery lifetime. The total current consumption of a finger-ring PPG sensor is
0.491 mA, and the transmitter and CPU-LED circuit consume 0.098 mA and 0.393 mA, respectively.
The ring sensor can continuously detect and transmit PPG signals for 23.3 days, while the battery life
can be extended to several months with an intermittent measurement schedule [43]. Some algorithms
work well for data sampled at a low sampling rate, thus saving energy consumption in data acquisition
and in wireless transmission [55,60]. To extend the battery lifetime, all components of the ear tag sensor
should be chosen from low-power options, and some battery-saving techniques are also necessary.
Particularly, data communication is always one of the most power-hungry parts, thus an extremely
low-power wireless communication protocol should be used.

e Weight and size

As mentioned previously, the weight and size of the pulse oximeter is small enough to be integrated
in a finger ring, ear-worn device, and wristband. In animal ecology studies, in order to minimize the
effects of the tracking devices on animal behavior and performance, the weight of body-mounted
equipment is commonly recommended to be less than 5% of the animal’s body weight [159]. The size
of current Radio Frequency Identification (RFID) ear tag for individual identification is appropriate for
PPG sensors. We conclude that this sensor technology, being able to be integrated into an ear tag, can
be employed for mid-sized and larger animals, and the application should be started with cow, pig,
sheep, goat, etc. Within the coming years, we expect more miniaturized hardware, making the concept
also applicable to smaller animals, such as poultry.

e (Cost

For the price of the sensor, the PPG is a low-cost technique. When a large number of sensor
units are manufactured, reduced price is expected. This means that the big industrial farms, using
high numbers of sensors, will help to reduce the price so that small farms can also afford using
these products.

6. Conclusions

Knowing that this year again over 65 billion animals will be slaughtered for food production, it
would be a serious advantage if we could monitor animal health and welfare in a continuous and
automated way. This needs accurate, reliable, and affordable sensors. As we have seen so far, there are
currently a significant number of different sensor technologies for HR monitoring under investigation,
and this paper has critically reviewed the progress. Eight promising measuring technologies used
on human beings were investigated, and the principles and the theories of HR measurement were
discussed. Moreover, advantages and drawbacks with further elaboration were emphasized by
comparing various properties and capabilities related to the application to livestock. By analyzing
the challenges to design such a sensor, we conclude that it is realistic today to develop a continuous
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PPG sensor for HR monitoring that can be integrated into an ear tag for mid-sized and larger animals,
such as cow, pig, sheep, goat, etc. Research endeavors of HR online monitoring on pigs would be a
game changing milestone in the livestock sector. Moreover, the monitoring could become applicable
for small species such as poultry when more miniaturized hardware is realized in a predictable future.
We hope that this study will inspire researchers and technology companies to invest in such technology
and develop prototypes of the ear tag as well as to produce the sensors in very high numbers. It will
allow monitoring of animal welfare based upon physiological variables and to follow the metabolic
energy balance of animals day and night in an automated way. This energy balance directly links to
production results and creates disruptive innovation for animal health monitoring.
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Abbreviations

The following abbreviations are used in this manuscript:

BCG Ballistocardiography

CCECG Capacitively Coupled ECG

ECG Electrocardiography

FAO Food and Agriculture Organization of the United Nations
HR Heart Rate

PLF Precision Livestock Farming

PPG Photoplethysmography

PPGI Photoplethysmographic Imaging

SCG Seismocardiography
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