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Abstract: In this paper, we present a new procedure to solve the global localization of mobile robots
called Environmental Stimulus Localization (ESL). We propose that the presence of common facts
on the environment around the robot can be considered as stimuli for the procedure. The robust
performance of our approach is supported by two concurrent particle filters. A primary particle filter
estimates and tracks the robot position, while a secondary filter is fired by environmental stimuli,
helps to reduce the influence of measurement errors and allows an earlier recovery from localization
failures. We have successfully used this method in a 5000 m2 real indoor environment using as
inputs the available environment information from a Geographical Information System (GIS) map,
the robot’s odometry and the output of an algorithm for the perception of facts from the environment.
We present a case study and the result of different tests, showing the performance of our method
under the influence of errors in real applications.
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1. Introduction

Robot navigation in indoor environments constitutes the main challenge of search and rescue
activities at urban locations (Urban Search and Rescue (USAR)) or, less dramatically but in a more
usual fashion, at domestic or surveillance tasks. Disaster evacuation missions at an office building
(for example an epidemiologic accident, bacteriologic attack, hazardous material leaking, etc.) require
that the navigation task specification manages symbolic information with semantic meaning, like “the
victim is found in room 424”. In this way, recent advances in Building Information Modelling (BIM) and
Geographical Information System (GIS) suggest that the robot can makes use of the advanced semantic
and geometric information included in an intelligent map, instead of the 2D geometric information of
a map (mostly obtained with SLAM (Simultaneous Localization And Mapping approaches) [1,2]. So, it
is clear that it would be quite useful for the robot to use the information from teh GIS systems directly.
It can be also stated that tasks like rescue require that the robot can boast the global localization in
order to provide an answer to questions like “where is the victim?” or “how to reach him?”.

Moreover, in USAR tasks, time is an important factor and the use of a robot can be restricted
by the time that robot would need to explore and build a map. Proposals like [3] try to reduce it
using emergency maps to support the SLAM strategy. Mur-Artal et al. [4] propose a visual inertial
ORB-SLAM (ORB denotes an Oriented fast and Rotated BRIEF fact detection procedure) that is able to
close loops in real time and can reuse the map, but it needs to perform the mapping task.
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Our work tries to avoid this situation drastically with an original global location approach that
combines a dual particle filter (PF) and a semantic map with natural landmarks obtained through GIS
and BIM (Building Information Modelling) technologies

In this context, several algorithms approach this problem using grid-based Markov filters [5]
or multi-hypothesis Kalman filters [6], but the most widely studied and tested algorithms are based
on particle filters [7]. More recently, the approach provided by [8] uses particle filter to perform the
localization task from MEMS (MicroElectroMechanical Systems) and camera devices, but it requires
loop-use and the availability of previous image-formatted maps.

These filters, like other global localization algorithms, use the movement model and external
perceptions to determine the robot’s localization (position and orientation). Modeling all the
movements of a mobile robot with accuracy is very difficult because they depend on uncontrollable
factors (shocks, slippages, etc.). In these situations, as it happens in the kidnapped robot problem,
the PF can fail because all particles would be in the wrong place. Several authors have proposed
modifications to the Monte–Carlo localization algorithm (MCL) [9], trying to resolve these situations. It
requires that the number of added particles is large enough to be likely to hit the actual robot location.
If this method is used for global localization in a very large environment, the number of particles
required may be too high, or the filter may take a long time to converge to the correct position.

An improvement of this method is the SRL (Sensor Resetting Localization) algorithm [10], based
on the addition of particles according to the probability distribution provided by sensor readings.
While this method can improve the convergence of particle filters and solve the kidnapped robot
problem in a very efficient way, it can also cause unwanted side effects when dealing with persistent
erroneous measurements, like false positives detecting beacons, or errors in the map, like a beacon
placed in a wrong position.

This paper describes a new localization method called Environmental Stimuli Localization (ESL),
based on a dual particle filter. It consists of two PF running in parallel using the same data input: a
primary or main filter and a secondary filter. The primary PF estimates and tracks the robot position,
while the secondary filter has a short lifetime, has its own shooting and resetting conditions based
on environmental stimuli and allows an earlier recovery from localization failures. In Section 3.2 this
method and its implications will be explained in detail. As we will show, our method is also robust
against persistent errors in perceptions, errors in the map or unmodelled robot movements.

There exist several works [11–13] where the dual particle filter idea is included, and more concisely
at [14] it is applied to location tracking. All of them are based on the management of different state
definitions at each filter where there are couplings of the respective prediction models. The data
exchange between the filters is done through the shared parameters, or variables, of the models. In the
opposite, at our proposal, both filters, Long-Term (LT) and Short-Term (ST) ones, consider the same
state, that is, the robot position and orientation, and the same observations, doors or natural facts. They
will have different firing conditions and execution (or duration) times. The data exchange mechanism
is also established in an asynchronous way determined when the convergence of the ST filter is suitable.
In this way, this is a new approach, as far as we know.

Another key aspect of this paper is the selection of the observation model. External measurements
required by global localization algorithms are usually obtained by means of laser range finders [15],
wireless transceivers [14,16] or cameras using pattern-detection algorithms [17,18]. In most cases, the
implementation of these solutions requires a previous work on the whole robot environment, which
implies taking images, mapping from laser readings, or inserting custom markers.

The use of inherent marks in the environment avoids this stage of preprocessing. Indoor, these
marks could be rooms, windows, doors, walls, etc., while outdoors monuments, buildings, traffic
signs, etc. could be considered. These marks should be matched with those extracted from the map
of the robot’s navigation environment. In this work, we will present the application of the proposed
ESL method and the observation model for a real mobile robot with wheels that travels through
an interior environment and how it is able to work fine in large surface buildings (our campus).
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Among the distinguishing facts in indoor, we decided to use doors as external landmarks. Their main
advantages are that they are quite abundant, since doors can be found in all rooms, and they are
easier to detect than other objects since most of them share many common features. The size, shape
and color of doors is fairly standard, especially within the same building, they are usually on the
ground or over a doorstep, they usually have a frame, etc. Other objects, such as windows, present
larger variations in shape, location, colors and sizes. Halls and walls are elements that have been
widely used for localization tasks, but their detection is often achieved by means of a laser and it
is more difficult to achieve with cheaper sensors like cameras. To detect doors, we use a method
developed at our research group [19] that works well at a rate higher than 20 Hz and no environmental
intervention is required. By means of a large number of experiments, our procedure has been proven
to be very useful for confidently detecting nearby doors. Test scenarios included doors with different
morphological characteristics as size, color, texture, shape, double and single doors, etc., objects with
similar characteristics to the doors to test false positive and different livings spaces, as narrow and
wide corridors, hallways, hall, among others.

Semantic facts, as doors at a building, are specifically represented at BIM and GIS systems. Our
global localization solution does not require a manual pre-processing phase and it makes use of
semantics facts automatically extracted from a GIS map, e.g., the doors localization on a given floor
of the building. Currently, public and private institutions have services that maintain up-to-date
GIS maps of indoor and outdoor areas, which can be downloaded or consulted online. The spatial
databases that store GIS maps allow, among other advantages [20], to make queries on a wide variety
of spatial operations

For example, by means of an automatic procedure, an on-line query to the building’s PostGIS
database, we can obtain the location of the doors that are at a given distance, taking as origin the actual
robot location. Hence, since it is possible to take advantage of this information to feed localization
algorithms and is also possible for robots to detect doors, windows or other elements of those maps, it
is feasible to implement global localization algorithms for a whole organization in a short time, without
having to preprocess the environment or create custom maps.

When PFs are considered for global localization in large environments, one of the problems is that
the number of particles required can be too high to run the algorithm in real-time. Without a proper
method to initialize the position of the particles, in order to effectively sample the correct position of
the robot, many thousands of particles can be required even for relatively small environments, just a
few hundreds of square meters. USAR evacuation mission against an accident or hazardous material
attack is posed at higher education buildings like the building at the Science campus of the University
of Salamanca where our research group is located. The whole set of buildings in our University has an
extension of many thousands of square meters, hence the number of particles required, using known
approaches, could prevent the development of real-time global localization solutions. We will show
how our proposed algorithm is able to deal with this problem. It is able to provide correct results in
real-time doing global localization in a real environment using a low number of particles, even less
than 1000, for a surface of more than 5000 m2 that corresponds to the Science Faculty building of our
University where the robotic system was deployed.

The paper is organized as follows. First, we consider the main problems related to particle filters
when they are applied to mobile robots. This analysis will be useful to contextualize the improvements
of our approach. In Section 3 we present our proposal that, as a main result, improves the success rate
of global localization tasks when working in large environments with a reasonable particle number
and with erroneous maps or measurements. To prove it, we will present the real scenario where our
localization tests are performed and, based on it, we will show the results of different tests and a case
of study that evaluates the effectiveness of our method.
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2. Particle Filters Applied to Robot Localization in Real Large Contexts

In this section, common problems that usually appear doing global localization of mobile robots
in real environments will be discussed.

Sometimes, sensors produce unexpected measurements, which are not related to the information
provided by our maps. When creating a map from laser measurements, objects such as furniture or
paper bins, will appear in the generated map. If someone moves these objects, measurements from
certain places won’t be as expected and therefore, localization algorithms will perform worse. When
using computer vision techniques, as in our case to detect doors, these are especially prone to generate
erroneous measurements. Depending on factors such as light, decoration, obstacles or the perspective
of the camera, it is possible that certain objects are incorrectly detected, resulting in false positives or
false negatives.

Within each of these two types of errors, we can differentiate two subtypes: persistent errors and
short term errors. By short-term errors we mean those that happen during short periods of time (a few
seconds) because of very specific circumstances of lighting, perspective, etc. that confuse the detection
algorithm. By persistent errors we mean those that are caused by the presence of objects very similar
to those we want to detect. Such objects cause errors in the detection algorithm that remain until they
leave the robot’s field of view.

The effect of these unexpected measures on the probability density will be a probability decrease
at the real robot location and a probability increment at locations that maximize p

(
zt|x(k)t

)
(where

zt denotes the observations and x(k)t is referred as the state or robot localization). Once unexpected
readings disappear, the filter tends to converge again to the correct position. However, we should
consider that these filters only have a finite number of particles and that, due to the resampling phase,
they coalesce in places where the probability is higher. If during the time that wrong measurements
are being received, all particles in the correct place disappear, the filter will not be able to recover and
will fail in its estimation of the robot localization.

If erroneous measurements appear at the initialization phase of a filter and it is based on the
probability distribution provided by sensor readings, the consequences can be fatal. It may be that,
from the beginning, there are no particles placed near the robot’s real location or that, in the early stages
of the filter, when there are a lot of places to explore and very few particles in each one, all particles
near the real robot position disappear due to its worse matching with the erroneous measurements.

Less severe cases in which particles disappear from the right place can be usually solved by
increasing the number of particles, by slowing down the convergence of the filter or by running the
resampling phase only in some iterations of the filter. However, these solutions are not always feasible.

Increasing substantially the number of particles is not possible when we have a limited computing
power, as in embedded systems, or when the localization must be performed on a very large
map. However, there are optimizations that can help us to mitigate this problem like the usage
of performance improvements [21] or adaptive sample sets [22].

Slowing down the convergence of the filter is not acceptable if you want to have a reliable
estimation as soon as possible. In some cases, when using global localization modules, we may want
to obtain a fast estimation more than a reliable estimation which requires too much time. In real
applications, if we have a relatively accurate estimation of the robot’s position, we can activate the
planning and navigation algorithms, so that the robot can start moving. While moving, the localization
algorithm can continue working and finding the most accurate position, if the previous one was a
wrong one.

The omission of the resampling phase in some of the iterations of the filter has a dual effect [23].
On one hand, it can prevent the disappearance of the particles located in the correct area. On the
other hand, especially in the first iterations, it may cause the number of particles to track each possible
robot position to become too small to successfully track the robot movement. If we want to avoid this,
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we must increase the number of particles according to the time we omit the resampling and to the
dispersion of the initial probability distribution of the robot state.

When these problems cannot be fixed with these three approaches, we must restart the particle
filter or add particles regardless of the normal execution. One possible solution is to reset the filter
when we realize all the particles of the filter are at the wrong places. This can be detected when the
sum of the particle weights before normalization is below a threshold. However, when using low
accuracy sensors in environments with a lot of marks, it is very difficult for this solution to work
properly in practice. If we set the threshold too low, the time to detect the localization failure can be
too long because of casual coincidences between real and detected marks. Otherwise, if the threshold
is too high, it is possible to reset the filter because of sensor errors even when it contains the correct
robot location. It is, therefore, necessary to be very conservative when using this solution.

The addition of particles in the filter regardless of the normal execution is done in methods like
SRL or Mixture-MCL [9] to enhance the performance of particle filters, but it has severe problems when
dealing with unexpected sensor measurements, errors in the map or unmodeled robot movements.

3. Proposed ESL Method for Global Localization

Our approach is inspired by the natural behavior of humans trying to determine their own
location. At any moment, a person can have a reasonable certainty of being in a specific location but,
when a significant fact is perceived in the environment that conflicts with his estimation (maybe a
monument or anything familiar to the person), if it is important enough, it can create a doubt and the
person can start evaluating a second guess. Both the current estimation and the second guess can be
evaluated in parallel and, if the doubt becomes important enough based on the next perceptions, the
person can change his mind about his estimated position.

The core components of our proposed ESL localization method is detailed in Figure 1 where the
architecture of our approach is presented. We propose the usage of a double concurrent particle filter
and a GIS map as the sources of information, the output of a door detector [19] and the odometry of
the robot. However, ESL filter doesn’t have any dependency on those sources of information, so our
method should be easily applicable using others.

Figure 1. Core components of Environmental Stimuli Localization (ESL) method: the dual particle
filter, Geographical Information System (GIS) map and landmark detector.

In order to explain how the ESL filter works, we will start showing how its state is evaluated.
This evaluation is a key element in defining what the final output of our localization method is, and
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also the interaction between the two particle filters that run concurrently. This interaction allows the
ESL filter to react to stimuli provided by the environment and, at the same time, it dramatically reduces
the negative impact of sensor misreading, unmodeled robot movements or map errors. It will also
be demonstrated that the number of particles required to get successful results using ESL is highly
reduced compared to other approaches, so it is suitable to be applied in huge real environments.

3.1. Evaluation of Particle Filters

In order to save computing resources, ESL uses a simple clustering algorithm to group individual
particles. Starting with an empty set of clusters, it iterates over the whole set of particles. When a
particle is closer than a threshold to the center of an existing cluster, the particle is added to this cluster,
its probability is added to the probability of this cluster, and the cluster center is updated to stay in the
weighted mean position of the particles it contains. Otherwise, a new cluster is created with the same
center and probability as the particle. Resulting clusters can be observed in Figure 2.

Figure 2. At the screenshot the building map where the different tests were developed. Black dots
represent doors on the map. Circles represent the clusters and their size is related to their accumulated
probability. Cluster color: green corresponds to the short-term (ST) filter and red represents the
long-term LT) filter. As it can be seen, the largest red cluster corresponds to final estimation of the
robot position.

Using these clusters as input, the convergence of the filter is estimated using the entropy Ht that
is defined as

Ht = − ∑
cluster C

p̂C
t log2

(
p̂C

t

)
, (1)

where p̂C
t represents the probability of each cluster C. When Ht is high, the filter is too dispersed

and needs to continue working to provide a reliable output. When Ht is low, the convergence of the
filter is high, with few clusters accumulating most of the probability. This value is essential for two
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different purposes: managing the interaction between the LT and the ST particle filters and providing
a reliable output.

3.2. Concurrent Dual Particle Filter

When we consider the information provided by the environment (in our case the doors in front of
the robot at a short distance), due to similarities and symmetries that appear in real environments, it is
not possible to determine the localization of the robot based on the first detected doors. In these cases,
if the available number of particles is low and the accuracy of sensors is not high enough, it is probable
that one PF converges towards a wrong position. For that reason, it is important to take advantage of
significant information that can appear in front of the robot at any time. This event has been referred
to as stimulus in our approach. In our case, that significant information can be an accumulation of
doors in few meters or a distribution of doors that is unlikely on other points of the map.

Since significant information or stimulus about the environment can be detected by the robot at
any moment, that might not be the initial state, we propose a second particle filter (Short-Term PF, or
ST). The ST filter is started every time that the environment provides significant information about the
robot position.

As can be seen in Figure 1, we propose the usage of two particle filters running concurrently.
The LT filter represents the certainty of being on each location of the map, so that the localization of
the cluster with the highest probability (p̂C

t ) in the LT filter is considered the output of our algorithm
when Ht is below a certain threshold. The ST filter is intended to react to extra information provided
by robot environment, stimulius, and provide that second guess, in this case a probability distribution,
to the LT filter when the number of external measurements is higher than a given threshold. This
environmental stimulus will be referred as the firing event of the ST filter 2, defined as follows

Inf t > Inf T, (2)

where Inf T is the selected threshold and Inf t is defined as

Inf t = card
{

ẑ(j)t

}
. (3)

In our case, external observations z(j)
t are the doors in front of the robot detected by the method

proposed by Fernandez–Carames et al. [19]. So Inf t is the number of detected doors. Just after the
firing event the ST filter is initialized according to the probability distribution provided by sensors
(Section 3.3.1).

In this sense, our approach ESL is related to the SRL or Mixture-MCL proposal. The main
difference is that, in those approaches, new particles are immediately introduced in the filter and, as
we have commented in the Section 1, that causes severe problems when particles are added based on
wrong external measurements. In our proposal ESL, the new particles are evaluated in the ST filter,
without affecting the stability of the LT filter and the output of our algorithm.

To evaluate the quality of the particles in the ST filter, we use the filter entropy Ht, defined in
Equation 1. When that value is low enough, the particles in the ST filter participate in the resampling
phase of the LT filter, taking a low percentage of the available probability. After that, the ST filter is
reset, waiting for the next firing event based on environmental stimulus.

So, we propose the reset condition as

Ht < HT , (4)

where HT will measure the maturity of the ST filter. This value should be low enough to ensure that the
filter has received enough external information to be able to converge, grouping most of its particles in
few clusters with a high probability. In our case, the value HT was experimentally determined.



Sensors 2020, 20, 2116 8 of 17

Thanks to this hybrid resampling phase on the LT filter, some particles of those high-probability
clusters of the ST filter start being evaluated in the LT filter. This makes a big difference between
ESL compared to SRL or Mixture MCL. In those methods, added particles are introduced in the filter
just based on a single observation (which could be wrong) and are immediately evaluated with very
related sensor readings, giving new particles a clear advantage over others and worsening the negative
effects of measurement errors. With the ESL method, the new particles have been already evaluated in
the ST filter during a period of time, and are the result of the convergence of the ST filter. When these
new particles start participating in the LT filter, current sensor readings are, with a high probability, not
so related to the ones used to initialize them due to the time and robot movement that has happened
during the maturation of these particles in the ST filter. These two factors reduce the amount of
noise introduced in the LT filter and protect it against particles generated based on wrong external
measurements or errors in the map.

Of course, with the ESL method, it is still possible to introduce wrong particles generated by
wrong external measurements during the initialization of the ST filter but, in that case, those wrong
particles stay isolated in the ST filter without affecting the stability of the LT one. When they are finally
sampled by the LT filter, the external measurements used to evaluate them are much more independent
of the measurements that generated them, so it is very unlikely that the wrong particles still evaluate
better with current measurements than correct ones in the LT filter.

So, when the LT filter is wrong and few correct ST filter particles are added, it is probable that they
cause the LT filter converges to the correct localization. When the ST filter just adds wrong particles, it
is highly unlikely that they compromise the stability of the LT filter and cause it to fail. As we will
show in the next section, the ESL approach has been successfully implemented and tested in a large
real environment with a short response time and a very high success rate.

3.3. Additional Improvements in Standard Phases of Particle Filters

In order to improve our proposal, we have also introduced additional optimizations in the
standard phases of particle filters applied to robot localization. In the initialization phase, we reduce
the number of particles required to get successful results using the probability distribution provided
by sensors. Additionally, we skip the resampling phase in some iterations of the filter to reduce
the adverse effect of wrong external measurements. We explain these improvements in detail in the
next sections.

3.3.1. Initialization Phase

In order to locate the robot in a short period of time, the filter must sample the correct position
and that usually requires the use of a huge amount of particles to explore a big surface (in our case,
over 5000 m2). As the number of particles required by a filter usually increases with map dimensions,
the required computational power to run the filter in real-time also increases. When the available
hardware can not meet these requirements, additional solutions are needed to achieve successful
results with a reduced set of particles.

The most used improvement in this sense is to select the initial particle set based on the probability
distribution generated from the sensor readings (p (xt|zt)). This improvement was proposed as part of
the SRL algorithm, in which the particles are placed in locations that maximize (p (xt|zt)).

Since we use a GIS map as a source of information, we use it to initialize the filter according to the
probability distribution generated by sensor readings. Our external landmarks are doors perceived
by our robot. To take advantage of them, only at the initialization phase for both filters, we group
all detected doors in pairs, its relative distance is calculated and a search for pairs of doors with the
same distance between them in the GIS map is performed, in order to achieve successful results with
a reduced set of particles. Thanks to the use of a GIS map (stored in a PostGIS database), we obtain
these pairs with a simple spatial query (Figure 3), where distance is the distance between both doors
detected by the robot, and error is the estimated error for the measurement. The first condition in the
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WHERE clause prevents the evaluation of each pair of doors twice (in a different order) while the
second and the third conditions select pairs of doors according to their distance.

Figure 3. Query that is used to obtain the doors location at POSTGIS.

Once we have the candidate door pairs, the detection of the robot is inversely applied over each
door pair to calculate from which points of the map those doors could be seen in that way. Applying
this method, each door pair provides two candidate positions for the robot on the map. To finish
the initialization, the particles of the filter are distributed among those places, following a Gaussian
distribution around each point. This way, the required number of particles to get a successful result
does not depend on the extension of the map, but on the possible candidate positions, which is limited
by the number of doors in the map and is much lower than its surface.

Therefore, the required number of particles is significantly reduced thanks to an initialization
based on the instantaneous probability distribution provided by sensors and our map. This significantly
reduces the time to locate the robot globally.

3.3.2. Resampling Phase

The resampling phase of particle filters is intended to explore more efficiently the places of the
map with a higher probability to be the actual position of the robot. However, it can also remove all
particles from areas that have a low probability, but not zero, to be the current robot location. If all
particles close to the actual robot position disappear, the filter will fail unless further actions are taken.
An improvement to mitigate this undesired effect is to omit the resampling phase in some iterations.
When the resampling is omitted, we must propagate the weights to the next iteration (Equation (5)) to
not lose the information acquired during the correction phase.

w(i)
t = w(i)

t−1 p
(

zt|x(i)t

)
. (5)

This modification has already been proposed in [23] to prevent loss of diversity in the positions of
the particles and is implemented in the localization algorithm from the Carnegie Mellon Robot Toolkit
(CARMEN), providing good results. In our algorithm, this improvement has also proved to be helpful
in mitigating the negative effect of short term errors in measurements.

4. Results and Discussion

For tests, the Morlaco robot, designed at the Robotics and Society Group of the University of
Salamanca (GroUsal) was used. It was equipped with a Sick LMS 200 laser range finder and an
inexpensive Webcam Pro 9000 monocular camera from (Logitech, Lausanne, Swidish) Both sensors
were connected to a Lenovo Thinkpad Edge laptop with an Intel Core i3 U380 CPU with two 2.54 GHz
cores and 2GB of RAM (Lenovo, Beijing, China), where CARMEN was running.

Our proposed USAR task was developed at an office building where a hazardous material leaking,
epidemiologc accident or bacteriological attack occurred and the building structure was not damaged.
In this scenario, the Morlaco robot developed typical Search and Rescue activity. As Morlaco has heat,
sound and video sensors, it could wander in the building at a victim search task so, finally, he can
answer questions like: Where is the victim? or “how to reach him?”.

The tests were developed on the second floor of the Faculty of Sciences of the University of
Salamanca, which has an extension of about 5000 m2 and a significant number of doors. Figure 2
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shows the experimental environment where the experiments were performed. It is a large environment
in which other approaches fail due to the very large number of required particles.

As a working procedure, we have moved the robot around different locations of the floor, saving
all robot perceptions and odometry data using the logger tool from CARMEN. We have also provided
the initial position of the robot to CARMEN to let it successfully track its movement and have an
accurate estimation of the actual position of the robot to compare it with the result of our algorithm.
Later, using the tool that CARMEN provides to replay logs, we ran multiple tests changing different
configuration values and comparing the results.

In order to ease the understanding of the proposed ESL method, we are going to show a case
study in detail. Later, our method will be compared to an SRL filter working in the same circumstances.
Finally, the number of particles required by our approach will be compared to the usage of a random
initialization, and the results of 50 different tests of the ESL method in our working environment will
be shown.

4.1. Case Study

Among all tests we made, we are going to focus on one of them. This case study is especially
interesting because it shows the behavior of our concurrent particle filter in difficult circumstances. The
performance of the filter can be observed in the video (http://gro.usal.es/Localization.mp4), where
the estimated position of the Morlaco robot is shown at the same time as the images of the camera
used for the detection of doors (stimuli).

The video shows the robustness of the method in situations where no facts are detected (the
doors are marked as small black circles) or even false facts are detected (false positives and negatives)
due to perception errors or inaccuracies in the map, so the behavior of the procedure is shown in a
realistic fashion. In the case that there exists no door in the robot’s surroundings for a long time period,
the ST will not be fired, so only the LT filter will still be running, that is, existing particles will be
propagated using the odometry although uncertainty will increase. However, at the time if a stimuli,
such as doors, appears, the ST filter will be fired and in a short period it will introduce some particles
with high quality (small uncertainty) to LT filter, and this one will get a more satisfying situation
with better particles. In this way, the global localization process will be clearly enhanced It would
be useless to compare localization algorithms in an ideal use-case in which the map is perfect and
external measurements are accurate because all methods should succeed. Instead, during our case
study, inaccurate perceptions force our double filter to demonstrate that it can provide good results
even in that hard scenario. The ST filter is reset several times according to our method (eight times can
be observed in the video). Due to inaccuracies in external measurements, the ST filter succeeded in
some of the iterations and failed in others, but it never caused problems to the LT filter, that kept stable
once the correct position of the robot was found.

Figure 2 shows the state of our concurrent particle filter just after the first resampling phase
involving both filters. The big circles with a transparent background and different sizes and colors
are the clusters of particles of each filter (the red color for LT filter and the green color for ST filter).
The radius of the circle is related to the sum of the probabilities of the particles in the cluster (PC). The
actual localization of the robot at that moment was at the main horizontal corridor, near the fourth
office starting from the left side, in the middle of the screenshot. The actual position is displayed as a
big blue circle and the estimated position is shown as a big yellow circle, both overlapping in Figure 2.

In Figure 4, we can see the temporal evolution of our solution. The upper graph corresponds
to the accuracy of both particle filters (the probability next to the correct location). The red line is
associated with the LT filter and the green line corresponds to the ST filter. The second plot corresponds
to the entropy Ht (Equation (1)) for both filters. The third graph represents the number of detected
doors In ft (Equation (3)). It can be observed that most of the time a small number of facts are detected
(one or even zero), but several times the firing event is met. The last graph shows the total distance
traveled by the robot, so we can observe the amount of time and distance needed to get a correct

http://gro.usal.es/Localization.mp4
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localization. Firing events and resetting conditions are tagged in Figure 4 with vertical lines. All of
them are also labeled at the video to get a complete understanding of the filter behavior.

Figure 4. Time evolution (in seconds) of the concurrent filter. At first plot the normalized accuracy (red
shows the LT filter and green shows the ST filter) is shown. Second plot represents the entropy (red
shows the LT filter and green shows the ST filter). The third figure shows the number of detected doors.
Fourth figure represents the travelled distance. Vertical lines represent the different times when the
firing and resetting conditions are met.

As it can be seen in the video and in the Figure 4, few meters are needed (about 8 m, t = 35 s)
to detect the correct position with a normalized accuracy (Equation (7)) close to 1, as it will be
demonstrated later with a large set of executions. It is also very relevant that the correct localization is
successfully maintained with time even, in situations where no information is available or the ST filter
is wrong.

As can be observed, the initialization of the LT filter (t = 4 s) puts some particles in the correct
position at the beginning of our test. In the vicinity of t = 18 s (about 4 m), the first firing event
(In ft > 1) starts the ST filter. After 7.5 m (t = 54 s), the entropy of the ST filter becomes low enough
to trigger the resetting condition. We have experimentally determined that a reasonable threshold is
HT = 3. The moment of the first resetting condition is spatially represented in Figure 2.

When particles of the ST filter are sampled in the resampling phase of the LT one (we reserve a
20% of the probability for it), the entropy of the LT filter raises a bit and, very quickly, the LT filter
converges to the correct position. After that (around 7 s after), the firing event is met, so the ST filter
starts a new iteration.

In order to evaluate the robustness of the method, we define the plausibility of the filter as

V = ∑
cluster C

{AC NC} , (6)

where AC is normalized accuracy of the cluster (the inverse of the distance from the centre of the
cluster to the correct position)

AC = min
(

1
abs (DC + ε)

, 1
)

(7)
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being DC the distance from the cluster center to robot position and ε a small number greater than 0 to
avoid singularities; and where NC is normalized size of the cluster

NC =
PC

Pmax
(8)

being
Pmax = max

cluster C
{PC} .

In Figure 5, each cluster is represented by its normalized size NC in the horizontal axis and the
normalized accuracy AC in the vertical axis. Clusters located in the actual position of the robot are
green and others are red. Different plots show the state of the clusters (lost or not) for both filters
when the resetting condition is met and the LT filter takes particles from the ST one. Each row of plots
corresponds to a different resetting condition (timestamps at the video). For each row, the first plot
represents the state of the LT filter before the hybrid resampling, the second one the state of the ST
filter, and the third one the state of the LT filter after the hybrid resampling.

As it can be observed at the first timestamp, the value of V for the filter is not too high.
This situation is described also in Figure 4. At the same time, the ST filter has recovered from
the environment enough information to place particles on the correct location (a green cluster, although
without the majority of particle population).

The result of the first resetting process is shown on the upper-right plot of the Figure 5a, with the
LT filter having incorporated new particle clusters that let it explore places in the map that otherwise
wouldn’t be sampled anymore, and therefore helping it to recover from errors without compromising
its stability.

In the next resetting condition (timestamp 2) the few correct particles added by the ST filter (at the
first timestamp) have evolved with the following observations and have managed to put all particles of
the LT filter in the correct localization. Although the ST filter added wrong particles to the LT filter on
the second (more than 60% of wrong particles) and the third (almost all the wrong particles) resetting
conditions, the LT filter discarded them before the next iteration. So, we can see how the addition of
wrong particles from the ST filter does not cause any problem to the LT one. Mainly, because it is very
hard for wrong particles on the ST filter, that was added based on wrong external measurements from
the past, to compete with correct particles in the LT filter being evaluated by independent external
measurements (obtained several meters far from the others). In these two situations, the entropy of
the LT filter will increase slightly, but the filter estimation remains robust over time and discards the
incorrect ST filter particles in a short time.
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(a) LT plausibility before TS 1 (b) ST plausibility before TS 1 (c) LT plausibility after TS 1

(d) LT plausibility before TS 2 (e) ST plausibility before TS 2 (f) LT plausibility after TS 2

(g) LT plausibility before TS 3 (h) ST plausibility before TS 3 (i) LT plausibility after TS 3

(j) LT plausibility before TS 4 (k) ST plausibility before TS 4 (l) LT plausibility after TS 4

Figure 5. State of particle filters during the first four resetting conditions (timestamp or TS’s). It can be
observed that the robustness of the procedure remains on time.

4.2. Comparison ESL with SRL

In order to prove the feasibility of our ESL approach, we have compared it with the performance
of an SRL implementation in the same scenario. Figure 6 shows how our proposal correctly detects
the position of the robot while SRL is unable in a moment of that test. The complete execution can
be observed on a video (http://gro.usal.es/ComparisonWithSRL.mp4). The continuous addition of
particles based on the probability distribution provided by sensors helps to SRL filter to recover from
errors (like our ST filter) but also destabilizes it when there are perception errors or inaccuracies in the
map. In consequence, SRL lose track of the correct position of the robot several times, while our ESL
keeps it very accurately during the whole test. So, our method keeps the best advantage of SRL but
avoids its main inconvenience.

http://gro.usal.es/ComparisonWithSRL.mp4
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Figure 6. At the figure the localization based on SRL (left) is compared with our ESL filter (right). It can
be seen that the robot on SRL is posed wrongly at a different position (bottom on the right) while on
our ESL the robot is “strongly” placed (the red circle, in the middle, is large).

4.3. Number of Particles

Based on a previous case study, we have made several tests using ESL with a different number
of particles to know how many are needed to get successful results and how many to get repeatable
results in the course of the tests.

During the initialization phase of the LT and ST filters, the number of candidates to be the current
localization of the robot, based on the doors detected and the GIS map, is between 199 and 375 in
our case study. For that reason, we started using 400 particles on each filter. With a lower number of
particles, it wouldn’t be possible to sample all candidate localizations, not even with one particle. We
ran 10 tests with 400, 800, 1200, 2500 and 5000 particles per filter, using in all cases the same odometry
and perceived data as in our case study.

The obtained results can be found in Table 1. The repeatability is defined from executing 10 times
each initialization. Very low indicates, in a qualitative way, that the clusters obtained are completely
distinct from one execution to others and the results vary significantly so the localization is unbelievable.
Low indicates that the clusters do not present such a big variation but the result has lower quality.
The high value is assigned when main clusters appear at every execution and finally, at very high,
no difference between clusters can be appreciated. From Table 1, it can be concluded that when
5000 particles are considered, the localization result has great confidence.

Table 1. Filter performance with our ESL initialization.

Particles Success Rate Repeatabilty
400 70 % Low
800 90 % Low

1200 100 % High
2500 100 % Very High
5000 100 % Very High

Based on the previous case study, we have also run several tests to compare ESL initialization
with random initialization with a different number of particles (Table 2). We started with 5000 particles
because, due to the extension of our environment (about 5000 m2), it would be very unlikely to sample
the correct position with a lower number of particles in random initialization. Using 5000 particles,
our 10 tests failed. Table 2 shows that by using 50,000 particles, we got a 20% of success. With 100,000
particles, our CPU was already at 100% usage, but with a 60% of correct results. Using 200,000 particles,
the delay in data processing was clearly noticeable. Probably for that reason, the number of successful
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tests was reduced to 30%. Tests with 500,000 particles made clear that the hardware was unable to
process the data fast enough and provided wrong results in all cases.

Table 2. Filter performance with random initialization.

Particles Success Rate Repeatabilty
5000 0 % Very Low

50,000 20 % Very Low
100,000 60 % Low
200,000 30 % Very Low
500,000 0 % Very Low

To get results at least 60–70% of success, we needed 400 particles per filter using our ESL
initialization method, and 100,000 using a random initialization. So the ESL method reduced around
250 times the number of needed particles. Our method also made it possible to get successful and
repeatable results in all executions in our environment, while it was impossible for our hardware using
a random initialization.

4.4. Success Rate

In order to know the success rate of the ESL method, we made 50 different tests to our case of
study in order to be able to repeat and analyze the possible failures in different circumstances. During
the tests, the Morlaco robot was moved between different places in our environment. We have used
5000 particles since our hardware can still run the algorithm in real-time. We have stored the error
in the estimated position by ESL algorithm at each moment. In order to take into account not only
the position of the robot but also its estimated orientation, we have considered each 20 degrees of
deviation as 1 m of error.

Figure 7a shows the graphic representing the error of all tests (in meters) during a displacement
of 12 m. We can see that the as meters the robot travels, more tests providing successful results will
appear. For a better readability, Figure 7b shows the number of tests that provide a successful result
(less than 2 m of error) versus the distance traveled by the robot.

(a) Error vs distance (both in meters) (b) Successful tests vs distance (in meters)

Figure 7. Results correspond to 50 executions where the robot has followed different paths

In just 4 m, in 50% of the tests the robot was already correctly localized. After 9 m, in 90% of the
tests, our method was providing the correct position of the robot. After 12 m, 98% of the tests were
successful.

Since only one test failed after 12 m, we investigated it to see the cause. When we repeated that
test using the same data, we saw that the first initialization failed due to false positives in the door
detection algorithm. Some meters later, the ST filter was able to start sampling the correct position and
sent some correct particles to the LT filter, but due to symmetries in the environment and inaccurate
door detections, another position took more probability. The problem continued during several meters
in which the robot was unable to perceive any door, until the 12 m that we considered the end of the
test. Allowing the test to continue, as soon as the robot started detecting new doors, the localization
algorithm started providing the correct localization, in this case after a total movement of 18 m. So,
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even in cases like this one, in which there were very adverse circumstances, our method was able to
finally provide the correct localization of the robot as soon as it perceives significant information from
the environment.

We consider that the fact that the robot gets a global localization in 90 % of the execution tests
when the robot displacements are less than 9 m can be seen as very satisfactory with a temporal
perspective when the large workspace (5000 m2) is considered. Any human in the same scenario
would have this sensation. On the other hand, the measurement accuracy is supported by the door
detection precision that, although influenced by the observation angle, is around 1 cm of precision [19].

5. Conclusions

In this work, we have proposed a new method for indoor robot localization based on two
concurrent particle filters, one of which reacts to additional information provided by the environment
(stimuli). The localization can be related within a BIM approach so this approach can be quite useful at
search and rescue missions or domestic task completion.

The proposed method has been applied to the localization of a real robot working in a large and
complex environment. Intense experimental work has been carried out with realistic tests in which
the robot follows different paths. In 90% of the tests, after 9 m of travel, our method provided the
correct position of the robot, despite persistent errors in perceptions, errors in the map or unmodeled
robot movements. There are several reasons that explain and justify the results obtained by applying
this algorithm.

First, the importance of the filter initialization. If we want to use a reduced number of particles
in a large map, we must rely on the sensor measurements to place our particles in the most probable
locations. If these measurements are erroneous, the initialization will be erroneous too, and the filter
will probably fail. The stimuli based reinitialization of our ST filter gives the LT filter more chances to
find the correct location of the robot.

Second, the independence between initialization data of the ST filter and correction data in the
LT filter after the hybrid resampling (usually far enough in time and distance) prevents that the extra
particles coming from the ST filter destabilize the LT one. In methods like SRL or Mixture-MCL,
the new particles are added directly to the filter and are corrected using the same data used to generate
them or, at least, with a strong conditional dependence (because they start being evaluated immediately
after the addition). This gives new particles an advantage over the others, worsening the negative
effects of measurement errors. With our method, even if the added particles were initialized based
on wrong measurements, they do not cause the LT filter to converge to new erroneous locations and,
at the same time, ESL still has the advantages of SRL or Mixture-MCL: fast recovery from errors or
unmodeled robot movements. The robustness of our ESL approach has been proved on a real large
indoor environment.

As future work, we could take into consideration the use of several secondary (or ST) filters
where the stimuli are fired from different information sources or different kinds of characteristics or
facts, like doors, columns or any other facts that can be contained at a GIS map. In this way, if we
have environments where information is repeated (poor information in fact), like a corridor with
symmetrically distributed doors or with a few doors, then we could use the other stimuli that provide
useful information in such a way the particles will have more quality. A problem can appear if several
filters are fired and the priority that would be assigned to these ones.
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