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Abstract: Accurate and real-time quality prediction to realize the optimal process control at a
competitive price is an important issue in Industrial 4.0. This paper shows a successful engineering
application of how smart soft sensors can be combined with machine learning technique to significantly
save human resources and improve performance under complex industrial conditions. Ensemble
learning based soft sensors succeed in capturing complex nonlinearities, frequent dynamic changes,
as well as time-varying characteristics in industrial processes. However, local model regions under
traditional ensemble modelling methods are highly dependent on labeled data samples and, hence,
their prediction accuracy might get affected when labeled samples are limited. A novel active learning
(AL) framework upon the ensemble Gaussian process regression (GPR) model is proposed for smart
soft sensor design in order to overcome this drawback. Firstly, to iteratively select the most informative
unlabeled samples for labeling with hierarchical sampling based AL strategy, to then apply Gaussian
mixture model (GMM) technique to autonomously identify operation phases, to further construct local
GPR models without human involvement, and finally to integrate the base predictors by applying the
Bayesian fusion strategy. Comparative studies for the penicillin fermentation process demonstrate the
reliability and superiority of the recommended smart soft sensing. The cost of human annotation can
be dramatically reduced by at least half while the prediction performance simultaneously keeps high.

Keywords: Industrial 4.0; soft sensor; ensemble learning; active learning; hierarchical sampling;
fermentation processes

1. Introduction

In recent years, artificial intelligence (AI) and machine learning (ML) have contributed to the great
advancement of the Industry 4.0 [1,2]. It aims to ensure the high-quality control of production-based
industries in the increasingly complex environment, such as the increased process automation, more
efficient data analysis, lower human effort, safer working environment, and so on. Trillions of objects
are connected to the Internet of Things (IoT), emerging huge amounts of data. Sensors play an
important role in real-time and efficient data collection and processing. In industrial plants, many key
variables are closely related to the product or process qualities but they can hardly be measured online
with conventional hardware sensors. Soft sensors, which aim to realize the real-time prediction of these
desired variables at low costs via constructing a satisfactory inference model between quality variables
(usually are difficult-to-measure) and input variables (usually are easily accessible with sensors), have
attracted growing attention in many industrial applications [3,4]. The data-driven algorithms based
soft sensors are much more advantageous and easier for construction with litter process knowledge,
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which bring great convenience to the autonomous and intelligent control in industrial plants when
compared with the first-principle model-based soft sensors that heavily rely on the prior knowledge
and human experiences [4–7]. At present, plenty of multivariate statistical regression techniques
such as partial least squares (PLS) [7,8], principal component regression (PCR) [8] models, and ML
based techniques such as artificial neural network (ANN) [8], support vector machine (SVM) [9,10],
and Gaussian process regression (GPR) [11–14] have been introduced to soft sensing.

However, many traditional nonlinear soft sensors tend to construct a desired global model for
the estimation, which may perform poorly for processes with strong nonlinear and highly varying
characteristics in the wide operation ranges. Ensemble learning methodology is proposed in order
to effectively improve the generalization ability of the single predictor, and it has revealed great
superiority in stability improvement [14–16]. The first step for ensemble model design is to construct
a set of individual ensemble components. Several popular component generation approaches are
bagging, boosting, clustering, and the subspace method [17,18]. Many clustering-based methods,
which aim to divide the dataset into different clusters by exploring the internal structure of the objects
and the relationship between them, have been verified to be practically and theoretically useful, such
as K-means, expectation maximization (EM), fuzzy C-means (FCM), and Gaussian mixture model
(GMM) [19–22]. Generally, given enough weighted Gaussian-distributed mixture components, the
GMM technique makes it successful to smoothly approximate any given non-Gaussian probability
density, and each component is considered as a suitable mode that can effectively represent the local
distribution [22]. The prediction combination mechanism is the other step of the ensemble learning,
whose criterions include simple averaging rule, weighted averaging combination, stacking strategy,
Bayesian posterior probability, and so on [12,13,22,23]. The Bayesian fusion strategy has been proved
to be naturally fit for model combination because of its strong statistical learning ability and efficient
utilization for the collected dataset [13]. It contributes to better stability achievement by reducing the
estimation variance.

However, a practical difficulty that is encountered in traditional ensemble modelling methods is
the effective utilization of unlabeled dataset. When compared with process variables, the acquirement
of key quality variables is much costlier and more time-consuming, as it always needs significant human
expect, expensive measure instruments, or laboratory analyses [7,24]. Therefore, the historic dataset
that was collected from industrial processes would contain a large number of unlabeled samples, which
just consist of process variables. This unlabeled data that contain rich process information, if utilized
effectively, might greatly advance the development of soft sensing and intelligent process control
in Industry 4.0. Traditional semi-supervised learning techniques, including self-training methods,
co-training methods, probabilistic generative modelling methods, and graph-based methods [15], could
greatly enhance the generalization behavior of models by exploiting the unlabeled samples, but it also
leads to some issues, such as the increase of computational effort and model instability. Besides, this
method directly utilizes unlabeled samples to facilitate the learning process without any knowledge of
human experts, while the designed model structure greatly influenced the improvement degree [12].
Hence, we intend to construct a smart modelling framework for ensemble learning method, under
which both data information and process engineer knowledge can be driven for the soft sensor.

Fortunately, the active learning (AL) technique shows great effectiveness and superiority in
making full use of process dataset, by iteratively selecting valuable unlabeled samples for labeling
with the knowledge of human experts. Therefore, the estimation capabilities of the AL based soft
sensors can be effectively improved with the minimum time cost and human resource [24–27]. For the
AL process, the most crucial issue is to determine a criterion that can effectively evaluate the potential
quality of each unlabeled data point. Generally, the most meaningful unlabeled data, which consist
of useful process information, are expected to be selected for labeling. However, many existing soft
sensors under AL framework only consider the information of unlabeled samples and ignore the
distribution information and spatial connectivity among them, which might result in more than one
sample being selected in one small area during each learning iteration. In fact, it is unnecessary to
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select all of them, as they are likely to share same process information. The hierarchical clustering (HC)
method provides a feasible approach for exploring spatial information between samples and their
neighborhoods [28,29]. Compared with partition clustering algorithms, one of the most important
advantages of this algorithm is that it can clearly show the clustering of dataset at different spatial
levels [30]. The spatial information can be effectively extracted and utilized by pruning the HC tree
with the AL strategy in order to mitigate the data sample selection problem.

Therefore, the motivation of this paper is to design a superior smart soft sensor, which can be
referred as ensemble GPR model with hierarchical sampling based AL strategy (AL-EGPR), expecting
to positively support the real-time data processing and process control in 4.0 industrial environments.
The limitation of traditional supervised learning based regression methods raises nontrivial concerns
regarding the efficient utilization of large amounts of unlabeled data. Subsequently, a novel AL
strategy is proposed and incorporated into soft sensor modelling method. With the hierarchical
sampling strategy, if the new unlabeled sample does not fall into any existing high-density clusters,
it is considered to be highly informative and representative. In such cases, a desired number of most
dissimilar unlabeled samples can be selected and used for manual annotation in each learning iteration,
and, after that, added into the training dataset for the next model construction, until achieving the
satisfactory accuracy, or all unlabeled samples have been labeled. Ensemble learning based on GPR
model is further introduced to robust soft sensor design, aiming to achieve better generalization
than single model-based predictors. Here, we choose the GPR model as the ensemble member as
its characteristic probabilistic structure as well as the strong ability to handle abrupt changes and
nonlinearity of industrial processes. In this method, the newly updated labeled training dataset is firstly
divided into several different local data domains that can be realized by applying the GMM method,
and multiple local GPR sub-models can be built for these sub-datasets, respectively. Afterwards, we
introduce the Bayesian inference strategy to estimate the posterior probability of each query data sample
with respect to local sub-models. Afterwards, the local predictions of GPR sub-models are effectively
integrated into final prediction results by applying the finite mixture mechanism. Besides, the Bayesian
information criterion (BIC) [18,20] is applied to determine the optimal number of GMM components in
attempting to reduce the soft model complexity and enhance estimation ability. The recommended
soft sensor has been applied to the prediction of penicillin concentration in the penicillin fermentation
process, demonstrating that the high performance can be achieved at a low cost, in terms of the
estimation accuracy and converge speed.

The remaining parts of this paper are structured, as follows. Section 2 briefly revisits the principle
of the GPR model and GMM method. Section 3 presents the detailed methodology of the AL strategy,
including the HC method and adaptive sampling strategy. Section 4 develops the ensemble GPR model
based soft sensing technique with the AL strategy. Section 5 evaluates the effectiveness of the AL-EGPR
method via the simulation results in an industrial process, and Section 6 concludes this paper.

2. Preliminaries

2.1. Gaussian Process Regression

A collection of random variables that all have a joint unknown Gaussian distribution can be
significantly seen as a Gaussian process (GP), which has been greatly applied in order to define the
desired distribution of flexible models in the field of regression and classification [12,13]. Given the
training dataset of m-dimensional variable X(n×m) = [x1, x2, · · · , xn]

T and y(n× 1) = [y1, y2, · · · , yn]
T,

the output observations with zero-mean Gaussian prior distribution can be represented by:

y = [ f (x1), f (x2), · · · , f (xn)] ∼ GP(0, K), (1)
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where GP(0, K) denotes the GP with zero-mean and K-covariance characteristics, while the ij-th
element in matrix K is correspondingly described by kernel function k

(
xi, x j

)
. In this research,

squared-exponential function is used as the desired kernel function, which is defined as:

k
(
xi, x j

)
= σ2

f exp
[
−

1
2

(
xi − x j

)T
M

(
xi − x j

)]
+ δi jσ

2
n, (2)

with the unknown positive hyperparameter set Θ =
{
l, σ2

f , σ2
n

}
, where l denotes length-scale, M = l−2I,

σ2
f , and σ2

n represent the signal variance and noise variance, respectively, while δi j is the Kronecker
operator satisfying δi j = 1 if given i = j, otherwise, δi j = 0.

Therefore, the aim of GPR training process is to estimate the hyperparameter set Θ. A log-likelihood
function maximization process can be performed to realize the parameter determination, which is
represented, as follows:

L(Θ) = log p(y
∣∣∣X)

= −n
2 log(2π) − 1

2 log(det(K)) − 1
2 yTK−1y

(3)

Θ∗ =
[
l∗, σ2∗

f , σ2∗
n

]
= arg max

Θ

log p(y|X, Θ )

= arg max
Θ

log
∫

p
(
y
∣∣∣ f , σ2

n

)
p
(
X
∣∣∣∣σ2

f , l
) (4)

Once the optimal hyperparameter set Θ∗ is estimated, the GPR model can give an accurate
estimation result regarding the distribution of quality variable ŷt for the new test sample xt, which is
formulated as:

p(ŷt
∣∣∣xt) =

∫
p[ŷt

∣∣∣ f (xt)]p[ f (xt)
∣∣∣xt]d f (xt). (5)

The posterior distribution of GPR output can be expressed by (ŷt
∣∣∣X, y, xt) ∼ N(µ(ŷt), σ(ŷt)

2) ,
whereµ(ŷt) andσ(ŷt)

2 denote the posterior mean and the variance of multivariate Gaussian distribution,
respectively. In this case, we can describe the estimation results by:

µ(ŷt) = kT
t K−1y, (6)

σ(ŷt)
2 = k(xt, xt) − kT

t K−1kt, (7)

where kt = [k(xt, x1), k(xt, x2), · · · , k(xt, xn)]
T is the covariance vector matrix between data point xt and

training points x1:n. Finally, the expectation µ(ŷt) of the present posterior distribution can be regarded
as the estimation result ŷt of the GPR based predictor.

2.2. Gaussian Mixture Model

GMM is commonly employed as an effective probabilistic modelling tool for the sake of
approximating the data distribution, which is under the assumption that the distributions of all
the data samples can be well approximated by the multivariate Gaussian mixture [21]. Given dataset
X(n×m), which is assumed to follow a K-component Gaussian mixture distribution, we suppose that
its probability density function is written as:

p(X |Ξ ) =
K∑

k=1

πkp(X|θk ) =
n∏

i=1

K∑
k=1

πkp(xi|θk ), (8)

where K is the number of Gaussian components, πk denotes the prior probability of the kth component

and it subjects to
K∑

k=1
πk = 1, 0 < πk < 1, and θk =

{
πk, µk, Σk

}
denotes the parameter set in the kth
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Gaussian component, Ξ = {θ1, · · · ,θK} =
{
π1,µ1, Σ1, · · · ,πK,µK, ΣK

}
denotes the vector of the GMM

parameters. The mean vector µk and the covariance matrix Σk specify an unknown multivariate
Gaussian distribution p(xi|θk ), whose probability density function can be formulated by:

p(xi|θk ) =
1√

(2π)m
|Σk|

exp
[
−

1
2
(xi − µk)

T
Σ−1

k (xi − µk)
]
. (9)

Expectation maximization (EM) algorithm, which consists of an E step and M step, is practically
and extensively applied to estimate GMM parameters. The estimation process is the maximization
process of the log-likelihood function defined as:

Ξ = arg max
Ξ

{
log L(X

∣∣∣Ξ)
}
, (10)

L(X|Ξ) =
n∏

i=1

K∑
k=1

πkp(xi|θk ), (11)

where L(X
∣∣∣Ξ) is the likelihood function of X. Given an initial parameter set Ξ(1), EM algorithm in

this way can produce a sequence of GMM parameters
{
Ξ(1), Ξ(2), · · · , Ξ(s), · · ·

}
by performing E step

and M step successively, where s denotes the iteration times. The E step and M step iterate until they
converge, which can be successfully carried out, as follows [21]:

E step: Calculate the posterior probability of ith training data point with kth component Ck in the
sth iteration:

p(s)(Ci
k|xi, Ξ(s)) =

π
(s)
k p(xi

∣∣∣∣θ(s)k )

K∑
k=1

π
(s)
k p(xi

∣∣∣∣θ(s)k )

. (12)

M step: Update θk =
{
πk, µk, Σk

}
of the kth component in the (s+1)th iteration by the

following equations:

π
(s+1)
k =

n∑
i=1

p(s)
(
Ci

k

∣∣∣xi, Ξ(s)
)

n
, (13)

µ
(s+1)
k =

n∑
i=1

p(s)
(
Ci

k

∣∣∣xi, Ξ(s)
)
xi

n∑
i=1

p(s)
(
Ci

k

∣∣∣xi, Ξ(s)
) , (14)

(s+1)∑
k

=

n∑
i=1

p(s)
(
Ci

k|xi
)(

xi − µ
(s+1)
k

)(
xi − µ

(s+1)
k

)T

n∑
i=1

p(s)
(
Ci

k

∣∣∣xi, Ξ(s)
) . (15)

3. Hierarchical Sampling Strategy Based Active Learning Framework

AL strategy has been developed and introduced to traditional sampling procedure in order to
reduce the sampling bias resulted from random selection for unlabeled samples, which is shown in
Figure 1. However, traditional AL based soft sensing cannot be able to make fully use of the spatial
information between process samples, thus, in this section, the HC method and adaptive sampling
strategy are introduced into the AL framework.
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3.1. Hierarchical Clustering Algorithm

The HC method has been proven to be valuable to the data clustering. A tree of HC can be
obtained by calculating the similarity of different clusters. In the clustering tree, the data samples with
different characteristics are the low level of the tree, and the top level of the binary tree can be seen as
the root node of the cluster. Additionally, the farther the distance on the cluster tree is, the less similar
the two samples are. It has been studied to fully consider the special information between samples
during the clustering process.

The first important step of the HC algorithm is to calculate the distances between the data
samples. As the most common distance measurement method, the Euclidean distance has been widely
introduced to calculate the absolute distance between all given data points in the multidimensional
space, which is defined by:

d(x1, x2) =

√√ m∑
i=1

(x1i − x2i)
2, (16)

where x1 = [x11, x12, · · · , x1m] and x2 = [x21, x22, · · · , x2m] represent the data points with m-dimension.
Another crucial task is the combination of different clusters. In this study, ward-linkage method,

which aims to minimize the total variance of the clusters being merged, is employed to cluster
combination [31,32]. The pair of data clusters that lead to the minimum increase in total produced
variance, or the error sum of squares (ESS), are selected to merge at each union step to implement
this method.

When considering the dataset {xi}
n
i=1 in one-dimensional space, the variance is expressed, as follows:

Var(x) =
1
n

n∑
i=1

x2
i −

1
n2

 n∑
i=1

xi

2

, (17)

where n is the number of points. Subsequently, ESS is usually given by the following functional
relation [31]:

ESS =
n∑

i=1

x2
i −

1
n

 n∑
i=1

xi

2

. (18)
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In ward-linkage cluster, the ESS value of the newly obtained cluster being merged is taken as the
similarity of two clusters, which can be formulated as:

ESS(c1, c2) =
∑

xi∈c1∪c2

d(xi, oc1∪c2)
2
, (19)

where xi represents any data sample of two clusters before merging, c1 and c2 is a pair of clusters,
oc1∪c2 is the central data point of the new cluster, and d(xi, oc1∪c2) is the Euclidean distance between
each sample xi to oc1∪c2 . In this way, the clusters with high similarity in measured characteristics are
merged, and the complete hierarchical structure can be obtained by repeating the union process.

Figure 2 shows the implementation steps of the HC algorithm in detail.
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3.2. Adaptive Sampling Strategy

A binary tree can represent the HC results, and the adaptive sampling based AL strategy is
introduced into the smart soft sensor modelling. It aims to adaptively remove some redundant subtrees
that were composed of those nodes that are homogeneous in HC tree according to a certain criterion.
Here, the combined process is denoted as pruning. It aims to find an optimal pruning with minimum
classification error and selected the most uncertain and informative samples for model training through
an iterative process. Those samples that have less similarity with the labeled dataset are generally
preferred as they have much useful information. Data sampling probability can effectively be reduced
in regions of the space that already have labeled samples with relatively large numbers, which fully
considers and makes use of the sample spatial information as compared to random selection (RS) and
other sampling strategies.

Given the labeled dataset as {XL} ∈ Rnl×m and unlabeled dataset as {XU} ∈ Rnu×m, where m denotes
the number of measured process variables, nl and nu denote the numbers of the labeled data points
and unlabeled data points, respectively, usually nl � nu holds. Suppose the HC tree T has nu leaves,
the number of data points in a node v ∈ T is expressed as nv. A weight of the node is the proportion of
the sample points in Tv, which can be represented as:

pv,c =
nv,c

nv
, (20)
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where c = 1, 2, · · · , k is all possible classes and nv,c is the number of points that belong to class
c. Generally, the class c with the maximal probability can be taken as the classification results of
corresponding nodes. However, nv,c is sometimes small, and it might result in serious classification
errors since the obtained classification probability pv,c has no enough robustness.

The generalization bounds are used to assess the quality of probability estimates in order to
address this issue. When considering any given time t, we introduce a confidence interval [pLB

v,c, pUB
v,c ] to

replace pv,c by associating with each node v and class c [32]:

pLB
v,c = max(pv,c(t) − ∆v,c(t), 0), (21)

pUB
v,c = min(pv,c(t) + ∆v,c(t), 1), (22)

where ∆v,c(t) =
dv(t)
nv(t)

+

√
dv(t)pv,c(t)(1−pv,c(t))

nv(t)
, dv(t) = 1− nv,c(t)

nv(t)
.

If it incurs at most β times as much as any other classes when class c is taken as the class of the
node v: (

1− pLB
v,c(t)

)
< β ·

(
1− pUB

v,c′(t)
)
, ∀c′ , c. (23)

We consider class c to be an admissible class for node v, which implies that (v, c) is admissible at
time t. In this study, we set β = 2, in which case:

pLB
v,c(t) > 2pUB

v,c′(t) − 1, ∀c′ , c. (24)

For any node v, several different classes may meet this criterion at time t. It is necessary to
determine which class is chosen to be the optimal class for node v. In order to select the optimal class
of nodes, the admissibility of all classes of nodes are first calculated, and then choose the class with the
greatest probability as the optimal class to which the node belongs among all admissible classes.

The adaptive pruning strategy aims to combine similar subtrees and find an effective pruning in
order to minimize the classification error as much as possible, which is directly related to the output of
classification results. The classification error can be defined as:

∼
εv,c(t) =

{
1− pv,c(t) , i f (v, c) is admissible

1 , otherwise
. (25)

Generally, it starts from the root node and toward the leaves, evaluating whether the child nodes
should replace its parent node if all of the descendants of the node are able to replace their parents. For
each node of HC structure, its class and error are calculated. If it satisfies:

∼
εv,c >

∼
εvp,cp +

∼
εvq,cq , (26)

where nodes vp and vq are the child nodes of v, in such cases, we can replace node v with its child
nodes vp and vq, which aims to reduce the overall classification error.

Once the optimal pruning is accomplished, a classification result can be obtained with minimum
error. Subsequently, it can query some informative samples to refine pv,c in the iteration procedure,
which further reduces the classification error. In this study, the AL strategy is introduced to effectively
select queried samples for labeling. Normally, the node v with the minimal value of pLB

v,c is chosen to
select samples for querying, and then one child node of v is chosen according to its node division.
Repeat these two steps until the informative sample is selected and labeled.

After an iterative sampling process, the most dissimilar samples can be selected. As a result, the
cost of human efforts and time for labeling can be greatly reduced. With the labeled dataset enlarged,
pv,l the value increases while the confidence of classification is improved.

Figure 3 presents a schematic illustration of the HC tree and different pruning strategy. Algorithm 1
summarizes the proposed hierarchical sampling strategy under the AL framework.
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Algorithm 1. The proposed hierarchical sampling strategy under AL framework.

Input: a HC tree of n unlabeled data samples; iteration step ns

Process:

1: Repeat following steps until labeled samples are enough for high-quality soft sensing or all unlabeled
samples are labeled.

2: Choose the node v ∈ T with minimal value of probability pLB
v,c, and replace node v with its child nodes vp

and vq if it satisfies
∼
εv, c >

∼
εvp,cp +

∼
εvq,cq .

3: Choose one of the child nodes z in the same way, until there are no child nodes, then an informative
sample x is selected.

4: Update pLB
u, c of all nodes u ∈ T.

5: Repeat step2 to step4 until ns unlabeled samples are selected.
6: Query the labels of ns selected data points, and then configure the selected dataset xs.
7: Update the labeled dataset as xl

new ← [xl + xs] , yl
new ← [yl + ys] , the unlabeled dataset xu

new ← [xu
− xs] .

Output: Newly labeled dataset xl
new ← [xl + xs] , yl

new ← [yl + ys] .

4. Ensemble GPR Modelling Method Under AL Framework

Traditional soft sensing that is based on the AL strategy only constructs a global model for quality
prediction, as shown in Figure 1, it usually ignores the multiphase and multistage characteristics of
complex chemical processes. Therefore, a novel smart soft sensing technique with an AL strategy based
on ensemble learning can be developed for better prediction performance. To guarantee the prediction
capability of each ensemble sub-model, the GMM method is applied to obtain a set of local domains
from updated training samples. Subsequently, sub-models can be built from different datasets, which,
if applied effectively, could highly enlighten the generalization performance of soft sensing model.
Besides, BIC criterion is chosen to determine the optimal number of Gaussian components, as it tends
to establish a great structure for GMM model [22], which can be formulated, as:

BIC = −2 log L(X |Ξ ) + 3Klog(N), (27)

where N denotes training data number, K denotes component number, and L(X |Ξ ) represents the
maximal values of the log-likelihood function. BIC aims to balance generalization performance with
GMM model complexity and the model with the lowest BIC value is preferable.
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In this paper, the GPR modelling method is chosen for ensemble model construction due to its
better generalization behavior since the proposed AL method has no restrictions on the selected data
model structure. In such cases, several GPR sub-models are driven by local datasets. Further, the
posterior probabilities for each arbitrary observation xq with respect to all different phases can be
formulated, as follows, since we apply Bayesian inference knowledge:

p(Ck|xq, Ξ) =
πkp(xq|θk)

K∑
k=1

πkp(xq|θk)

. (28)

Afterwards, the localized GPR models are adaptively incorporated to an ensemble inferential
model with posterior probability by applying the finite mixture mechanism. Usually, the final online
estimation of key variable is the weighted combination of each individual, which is formulated,
as follows:

yp =
K∑

k=1

yk
qp

(
Ck

∣∣∣xq , Ξ
)
, (29)

where xq represents the new observation of test samples, Ck =
{
xk, yk

}
, k = 1, 2, · · · , K represents kth

process phases, and yk
q represents the local output.

Figure 4 illustrates the comparisons between traditional global GPR modelling method based on
RS sampling strategy and ensemble GPR modelling method based on the AL strategy presented in
this paper.
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5. Case Study

5.1. Process Introduction

The purpose of this section is obviously to prove the feasibility and superiority of the smart soft
sensing method. Penicillin fermentation process (PFP) is traditionally regarded as a typical chemical
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process with nonlinearity, time-varying, dynamic, multi-batch, and other characteristics, which has
been widely applied as a benchmark process in order to evaluate the effectiveness of soft sensor
modelling methods. There are three physiological stages: cell growth, penicillin synthesis, and cell
autolysis stage. For illustration, Figure 5 shows the detailed flowchart of the PFP. During the cultivation
process, many factors, such as temperature, PH, sterile substrate, acid/base and cold/hot water flow
rates, and dissolved oxygen concentration, can make a difference to penicillin production [13,33,34].
It is significantly important for humans to monitor and predict the penicillin concentration. However,
there are many difficulties on penicillin measurement in a direct way due to the cost of hardware
sensors. Soft sensor development is an effective solution for realizing the real-time estimation of
penicillin concentration.
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A simulator, named PenSim, has been proposed and widely applied in order to simulate the
PFP under different operating conditions [34]. We can easily and effectively collect process data
samples of PFP via PenSim platform. The Process Modeling, Monitoring, and Control Research
Group of Illinois Institute of Technology developed PenSim, which is available at the website:
http://simulator.iit.edu/web/pensim/index.html. A total of 16 process variables can be measured
in the simulation plant. Generally, multidimensional datasets with more input variables contain
abundant process information that makes a difference to informative model construction. However,
some undesired problems, such as information redundancy and complex model structure, may also
arise concerning the informative model based soft sensors. Less input variables give litter process
information and that based models may lead to inaccurate predictions. In this case, we select seven
input variables according to the experience of process engineers, which are enlisted in Table 1. For soft
sensor development, 800 data samples are extracted under the normal operation condition, and then
partitioned into two parts: 400 training samples for model establishment and remaining 400 test
samples for model evaluation. For simulating the case of a little number of labeled samples, only 2%
labeled samples (eight samples) are assumed. Subsequently, the other 392 data samples are unlabeled,
and each sample only has the values of seven input variables without quality variable value.

http://simulator.iit.edu/web/pensim/index.html
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Table 1. Input variables selected in PFP.

Input Variables Description Unit

u1 Culture volume L
u2 Agitator power W
u3 PH -
u4 Substrate feed temperature K
u5 Fermenter temperature K
u6 Substrate feed rate g/h
u7 Aeration rate L/h

5.2. Performance Evaluation of the Proposed AL Strategy

For the AL strategy, in this study, we set the learning step as 20 points, which means that
20 unlabeled samples are assigned with their real labels and become a part of labeled training dataset
in each learning iteration. Under AL framework, all of the unlabeled candidates will be queried and
labeled after a total of 20 iterations. However, we can stop the iteration process in advance when
the soft sensors have satisfactory estimation accuracy, as it is unnecessary to update training dataset.
Furthermore, two different global GPR model based soft sensors are developed for performance
comparisons, which are designed with the RS strategy and hierarchical sampling based AL strategy,
respectively. Here, the following root-mean-square error (RMSE) is traditionally used for an assessment
of the soft sensing fit:

RMSE =

√√
1
n

n∑
i=1

(yi − ŷi)
2, (30)

where n is the number of test data, and yi and ŷi denote the real and estimated values of ith test data
point, respectively. The prediction accuracy and reliability of soft models to be tested can be greatly
reflected by RMSE. Besides, 10 simulation times are carried out for two sample selection strategies,
while the RMSE value is the mean value of 10 experiments in each iteration.

In our study, the HC method is introduced to explore the spatial information of all unlabeled
samples that were collected in PFP. On the clustering tree, samples and their neighborhoods that
sequentially merged in the same spatial level share the similar process information. The higher two
samples are connected on the tree, the more dissimilar they are. The hierarchical sampling based
AL strategy is then proposed in order to evaluate each unlabeled sample and selected the most
valuable ones for labeling. The pruning results are relevant to the estimation ability of the AL based
soft sensors. Figure 6 shows the prediction performance of the soft sensors under different pruning
results. Here, RMSE values of penicillin concentration are used for model performance evaluation.
Generally, an informative and detailed pruning of the HC tree makes a significant difference to superior
generalization ability, as seen in Figure 6. However, it might also lead to the high costs of clustering
and pruning as well as complex model structure. The number of pruning is recommended to be set as
150 when considering the balance of estimation performance and model complexity, in this case.

Figure 7 demonstrates the RMSE values for global GPR models that are developed with AL
and RS strategy in each iteration, respectively. The results reveal that, for both sampling strategies,
GPR predictors are tested for their estimation accuracy and performance by selecting some unlabeled
samples. This is because modelling space is significantly enlarged by labeling unlabeled samples and
adding them into labeled dataset pool in each iteration. Obviously, those GPR models with AL strategy
perform much better than those that were developed with the RS strategy, as the RMSE index values
of the former are much smaller than that of the later in all iterations. The AL based GPR modelling
method selects the most dissimilar samples that have the most valuable information for processes,
while it cannot be guaranteed under the RS strategy. The estimation performance of GPR models
that are based on RS may not be improved; if handled badly, it would even be deteriorated. Because
there exists a potential risky issue that some samples in bad quality, usually with environment noise,
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measurement error, or variable mismatch, may be sampled and labeled for modelling, which might
distort the structure of the soft sensing models.
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strategies during iteration.

It can be easily observed that the RMSE index values of AL based GPR soft models heavily
decrease after two iterations, which is the same as the RS based models. It means that, for both sampling
strategies, the estimate performance has been converged after the first two iteration steps because of the
enlarged modelling space. However, the AL strategy converges faster than the RS strategy, especially
in the third iteration step. This result shows that less unlabeled samples are recorded for selection and
labeling under AL framework. Moreover, during the first three iterations the converge speed that we
can find in Figure 6 is greatly higher than that one during the later iterations. Thus, we can infer from
the result that the estimation ability of AL based soft model is effectively enlightened during the first
three iterations, but the improvement trend after that is greatly limited during the third to twentieth
iterations. As iteration number increases, the additional information of the selected samples in later
iterations could hardly have a significant impact on high-quality soft sensor development.

Besides, the influence of different query sample numbers upon AL based soft sensors is also
examined in this study. For this purpose, various AL steps for soft sensing are selected in each iteration,
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which are set as 5 to 40. Figure 8 illustrates a comparative testing result of the average index values
under different point numbers to be labeled in each iteration. Smart soft models with a different
number of selected data points are developed and compared under the same iteration. For example,
after 10 iterations, the smart soft predictor with 40 learning steps, have queried and add all of the
unlabeled samples into previous labeled dataset, while only 50 unlabeled samples are labeled for
the soft predictor with five learning steps. In most cases, the prediction ability of the smart sensor
is enhanced when more unlabeled data points with useful information are selected and queried in
each iteration. However, it also increases the computational burden and needs more human efforts for
sample annotation process to model construction.Sensors 2020, 20, x FOR PEER REVIEW 15 of 22 
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Figure 8. RMSE values of penicillin concentration for the AL based soft sensors under different number
of selected samples.

Furthermore, we intend to research the estimation performance of some different soft sensors
that are based on AL with the same total number of labeled data points. With the increase of labeled
numbers, as shown in Figure 9, the converge speed of the soft sensors becomes higher in early iterations,
while the additional process information of the remaining selected samples in later iterations could
hardly make a big impact on generalization enhancement of the GPR model. Under AL framework,
a desired GPR model can be constructed with less labeled data samples, which is significantly helpful
in human effort reduction.
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5.3. Prediction Results and Discussions

Two other different kinds of smart predictors are built with the updated training data in order to
research the influence of the ensemble learning based on GPR model with a great number of unlabeled
data samples. There are four soft sensors built in the present work:

(1) GPR (GPR based on RS strategy): To iteratively select unlabeled samples for labeling with RS
sampling strategy, and to construct a global GPR model.

(2) EGPR (ensemble GPR based on RS strategy): Firstly, to iteratively select unlabeled samples for
labeling with RS sampling strategy, to further construct local GPR models on different regions
divided by GMM method, and finally to integrate the base predictors by applying the Bayesian
fusion strategy.

(3) AL-GPR (GPR based on AL strategy): To iteratively select unlabeled samples for labeling with
hierarchical sampling based AL strategy and construct a global GPR model.

(4) AL-EGPR (ensemble GPR based on AL strategy): the proposed method.

Table 2 describes and compares the characteristics of all different soft sensors.

Table 2. Characteristics of different soft sensor modelling methods.

Methods Sample Selection Learning

GPR Random Global
EGPR Random Ensemble learning

AL-GPR Active learning Global
AL-EGPR Active learning Ensemble learning

In addition to RMSE, the tracking precision (TP) criterion is also applied to assess the generation
capabilities of these soft sensors, which is obtained by:

TP = 1−
σ2

error

σ2
true

, (31)

where σ2
true denotes the variance of the true value and σ2

error denotes the variance of the error between
the output value and true value. TP is the variance correlation between the estimation error and the
actual outputs, which can be applied to measure the tracking performance of the regression model.
The soft sensing model with the higher TP value is preferable.

In this case, GMM is used to divide the updated process dataset into three subsets. Subsequently,
the BIC criterion is applied for structure optimization to avoid the model over-fitting and contribute to
data interpretation ability enhancement. The BIC value decreases gradually while Gaussian component
number increases, as shown in Figure 10. However, further increases of K value do not cause further
decreases of the BIC value. Combined with the prior knowledge of PFP, which consists of three
physiological stages, one can be judged that the most optimal component assignment should set as 3.

The estimation results of predictors for penicillin concentration after the 3rd and the 7th iterations
are tabulated and compared in Table 3 for detailed analysis on the performance of different soft models.
From the results of the RMSE and TP values, the AL-EGPR model based soft sensor obtains the best
generalization performance, as it has the lowest RMSE value and the highest TP value for penicillin
concentration prediction. When comparing the RMSE and TP values between AL based and RS based
GPR models, it can be easily found that the modelling ability becomes highly improved because the
informative unlabeled samples are considered. By introducing the AL based hierarchical sampling
strategy, the global GPR model and ensemble GPR model can all achieve higher prediction accuracy
than other two GPR models with RS strategy after the 3rd and the 7th iterations. When comparing
with the AL-GPR model, the AL-EGPR model under the ensemble learning framework performs
much better and obtains the smaller error, since it partitions the updated dataset into several subsets
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for sub-predictor construction. In general, for two different data sampling strategies, the estimation
accuracy and model capability can both be improved when iteration step increases. Meanwhile,
the models after the 7th sampling iteration can achieve a better prediction performance than those
that were developed after the 3rd sampling iteration. It should be noticed that, similar to the previous
case, here, also, local GPR based soft sensors yield lower RMSE values and higher TP values, which
performs better than the single GPR predictors under ensemble learning framework. However, in
the present case, there is a relatively small reduction in RMSE, which can be attributed to the enough
samples for labelling and model training. The recommended soft sensor shows its superiority and high
performance in modelling the uncertainty of estimation under the complex measurement environment.
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Table 3. Prediction performance indicators of different modelling methods after the 3rd iteration and
the 7th iteration.

Method
After the 3rd Iteration After the 7th Iteration

RMSE TP RMSE TP

GPR 0.0472 0.9894 0.0106 0.9995
EGPR 0.0155 0.9988 0.0069 0.9997

AL-GPR 0.0143 0.9991 0.0065 0.9997
AL-EGPR 0.0039 0.9998 0.0017 0.9999

Figures 11 and 12 illustrate the prediction results of test samples by these four soft sensors after
the 3rd iteration and the 7th iteration, respectively, to show the prediction performance more intuitively.
In Figure 11, the GPR predictor presents the worst prediction performance on account of its RS strategy
and global model structure. By contrast, EGPR and AL-EGPR, on the basic of ensemble model structure,
further enhance the generalization capability by partitioning the training data into isolated regions
for local modelling. The two ensemble model based soft sensing strategies are both able to track the
main trend of the penicillin concentration. In comparison, the proposed AL-EGPR soft sensing model
as well as AL-GPR model performs much better than GPR and EGPR do, as its prediction output
results are closer to the real values. The similar conclusion can be drawn from the prediction results in
Figure 12. Generally, the modelling space is enlarged, and it contributes to developing a satisfactory
soft sensor with high prediction accuracy. In addition, the dataset partition based ensemble learning
is particularly effective to handle the multiphase processes with high complexity, and thus further
enhances estimation behavior of regression model.



Sensors 2020, 20, 1957 17 of 21

Sensors 2020, 20, x FOR PEER REVIEW 18 of 22 

 

 

Figure 11. Prediction results of test samples for four different soft sensors after the 3rd iteration. (a) 

Gaussian process regression with random selection strategy (GPR) model; (b) ensemble Gaussian 

process regression with random selection strategy (EGPR) model; (c) Gaussian process regression 

based on active learning (AL-GPR) model; and, (d) ensemble Gaussian process regression based on 

active learning (AL-EGPR) model. 

 

Figure 12. Prediction results of test samples for four different soft sensors after the 7th iteration. (a) 

GPR model; (b) EGPR model; (c) AL-GPR model; and, (d) AL-EGPR model. 

The estimation error results of four different manners after the 3rd and the 7th iterations are 

given in Figures 13 and 14, respectively, to reveal the effectiveness of the proposed soft sensor 

further. The closer the error curve is to the zero line, the more accurate the prediction is. By 

comparing these four prediction error results, we can readily conclude that the global GPR model 

that is based on RS strategy performs worst among the four soft sensing models and the proposed 

soft sensor modelling under ensemble learning framework further provides a more accurate 

prediction on the basis of AL-GPR with active learning strategy.  

Figure 11. Prediction results of test samples for four different soft sensors after the 3rd iteration. (a)
Gaussian process regression with random selection strategy (GPR) model; (b) ensemble Gaussian
process regression with random selection strategy (EGPR) model; (c) Gaussian process regression based
on active learning (AL-GPR) model; and, (d) ensemble Gaussian process regression based on active
learning (AL-EGPR) model.
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Figure 12. Prediction results of test samples for four different soft sensors after the 7th iteration. (a)
GPR model; (b) EGPR model; (c) AL-GPR model; and, (d) AL-EGPR model.

The estimation error results of four different manners after the 3rd and the 7th iterations are given
in Figures 13 and 14, respectively, to reveal the effectiveness of the proposed soft sensor further. The
closer the error curve is to the zero line, the more accurate the prediction is. By comparing these four
prediction error results, we can readily conclude that the global GPR model that is based on RS strategy
performs worst among the four soft sensing models and the proposed soft sensor modelling under
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ensemble learning framework further provides a more accurate prediction on the basis of AL-GPR
with active learning strategy.Sensors 2020, 20, x FOR PEER REVIEW 19 of 22 
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6. Conclusions

The data produced from any element of the industrial process drive the implementation of
Industry 4.0. Our basic idea is to process large amounts of data with smart data-driven soft sensors that
can extract useful process information that is contained in labeled data as well as unlabeled data by
means of machine learning and artificial intelligence. The hierarchical sampling based AL strategy has
been proposed and introduced into the traditional ensemble GPR modelling method for soft sensing.
Under the AL framework, the most representative and uncertainty samples with additional process
information are selected and labeled to enlarge the labeled dataset and, thus, lots of human efforts
and time costs that are related to labeling samples can be saved. We use the hierarchical sampling
strategy rather than the RS to accelerate the convergence process and maximize the prediction capacity
of ensemble models with the minimal labeled samples. We have evaluated the recommended soft
sensor in penicillin fermentation process, showing that at least half of the time and human resource
can be saved.

The exploitation of the hierarchical sampling based AL strategy can be a boost for unlabeled data
analysis and processing. It is remarkably effective for engineers to handle the control and modelling
problems with a limited number of labeled samples. Another outstanding advantage of our smart soft
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sensing technique is that the ensemble learning based GPR model can significantly address the strong
nonlinear, highly varying, and multiphase characteristics of complex industrial processes. Hopefully,
these contributions would provide the leaders of Industry 4.0 with a novel data analysis and modelling
method for achieving a better performance of sensors under a small percentage of labeled process data.
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Abbreviations

The following abbreviations are used in this manuscript:

AI artificial intelligence
AL active learning
AL-GPR Gaussian process regression based on active learning
AL-EGPR ensemble Gaussian process regression based on active learning
ANN artificial neural network
BIC Bayesian information criterion
EGPR ensemble Gaussian process regression with random selection strategy
EM expectation maximization
FCM fuzzy C-means
GMM Gaussian mixture model
GP Gaussian process
GPR Gaussian process regression
HC hierarchical clustering
ML machine learning
PCR principal component regression
PFP penicillin fermentation process
PLS partial least squares
RMSE root-mean-square error
RS random selection
SVM support vector machine
TP tracking precision
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