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Abstract: Digital communication signals in wireless systems may possess noncircularity, which
can be used to enhance the degrees of freedom for direction-of-arrival (DOA) estimation in sensor
array signal processing. On the other hand, the electromagnetic characteristics between sensors
in uniform rectangular arrays (URAs), such as mutual coupling, may significantly deteriorate the
estimation performance. To deal with this problem, a robust real-valued estimator for rectilinear
sources was developed to alleviate unknown mutual coupling in URAs. An augmented covariance
matrix was built up by extracting the real and imaginary parts of observations containing the
circularity and noncircularity of signals. Then, the actual steering vector considering mutual
coupling was reparameterized to make the rank reduction (RARE) property available. To reduce
the computational complexity of two-dimensional (2D) spectral search, we individually estimated
y-axis and x-axis direction-cosines in two stages following the principle of RARE. Finally, azimuth
and elevation angle estimates were determined from the corresponding direction-cosines respectively.
Compared with existing solutions, the proposed method is more computationally efficient, involving
real-valued operations and decoupled 2D spectral searches into twice those of one-dimensional
searches. Simulation results verified that the proposed method provides satisfactory estimation
performance that is robust to unknown mutual coupling and close to the counterparts based on 2D
spectral searches, but at the cost of much fewer calculations.

Keywords: DOA estimation; mutual coupling; rectilinear sources; RARE.

1. Introduction

Uniform rectangular array (URA), due to its versatility in providing both azimuthal and elevational
coverage simultaneously, has attracted much attention in many applications, such as radar, sonar, and
wireless communication [1]. Two-dimensional (2D) direction finding with URA is thus of practical use
in many situations. Based on the subspace principle, the classical 1D super resolution algorithms such
as multiple signal classification (MUSIC) [2] and compressive sensing [3] can be readily generalized to
URA. Moreover, to further reduce the computational complexity or increase the accuracy of the direction
finding results, some effective schemes have been proposed [4–8]. In [4], the authors proposed a 2D
unitary ESPRIT algorithm for URA, which can be realized in both element space and beamspace. Also,
its main procedure is formulated in terms of real-valued operation and is therefore computationally
efficient. In [5], a dual-size spatial invariance array structure was proposed. Based on the ESPRIT theory,
it utilizes unambiguous but low-accuracy estimates to disambiguate high-accuracy but periodically
ambiguous direction cosine estimates. In [6], a 2D matrix pencil method is developed to convert the
complex data matrix to a real one, which can reduce the complexity of the computation significantly.
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In [7], to relieve the computational burden involved in 2D spectral searches, the authors decoupled the
2D MUSIC problem into two successive real-valued one-dimensional (1D) DOA estimation problems.
In [8], a 2D unitary ESPRIT-like DOA estimation algorithm was developed for coherent signals based
on a URA. It can provide better decorrelation performance and closed-form solutions due to the
properties of the 2D ESPRIT-like method.

Recently, in modern wireless communication systems, rectilinear or strictly noncircular signals
such as amplitude modulated (AM), binary phase shift keying (BPSK), and pulse-amplitude modulated
(PAM) signals are commonly applied. Notice that both conjugated and unconjugated covariance
matrices of rectilinear signals include the second-order statistical information [9]. Hence, the
rectilinearity can be utilized to promote the estimation accuracy and increase the maximum resolvable
sources. Accordingly, various algorithms have been developed to fully exploit the rectilinearity for
DOA estimation performance enhancement. In [10], Abeida and Delmas proposed a tailored MUSIC
algorithm for noncircular sources called NCMUSIC, which combines the statistics of conjugated and
unconjugated covariance matrices and thus outperforms the standard MUSIC algorithm. In [11],
the sparse representation technique was introduced for representing conjugated and unconjugated
covariance jointly with a sparsity constraint, which surpasses the performance of NCMUSIC. However,
it is computationally demanding since it requires complicate convex optimization procedures. In [12],
the difference and sum coarray was utilized for the DOA estimation of noncircular quasi-stationary
sources, which can extend the degrees of freedom (DOF) of the array effectively. In [13,14], the scenario
of coexisting circular and noncircular sources is considered, and various algorithms have been further
developed to distinguish the mixed sources and estimate the DOA parameters. Based on an URA, the
authors proposed a root-MUSIC method to obtain the 2D DOA parameters and classification of the
mixed sources [15]. In [16], the authors proposed a localization algorithm for rectilinear sources based
on the rank reduction (RARE) principle, which can cope with the mixed near-field and far-field sources.

Generally, the above mentioned DOA estimation algorithms are based on the assumption that the
array manifold is ideal without any perturbation. However, in practical direction finding systems,
systematic errors such as mutual coupling, gain and phase errors, and sensor position errors are
inevitable [17]. These model mismatches would substantially degrade the DOA estimation performance
of these algorithms. Mutual coupling effect, as an electromagnetic interaction between the array
elements, causes the current distribution of each sensor to depend on the excitations from both their
own and other adjacent element. It deviates the signal subspace of the observed array covariance
matrix from the ideal array steering vector, thus causing a decrease in direction finding performance.
Therefore, the mutual coupling effect cannot be ignored in the development of these algorithms.

Fortunately, many effective schemes have been proposed by various researchers to compensate for
the mutual coupling effect or to obtain the DOA estimates blindly. One class of compensation methods
are based on calibration sources. Using a set of predefined sources in known locations, the mutual
coupling coefficients can be calculated by the least square method [18]. However, the calibration
sources are often inaccessible in real-time direction finding applications. Moreover, the mutual
coupling characteristics of the array may vary as the environmental conditions change, and therefore
the calibration source-based methods are only effective under certain circumstances. Consequently,
another class of auto-calibration algorithms is advanced to compensate for the mutual coupling effect
without any calibration sources [19–25]. In [19], an eigenstructure-based algorithm was developed
for the DOA estimation and mutual coupling auto-calibration at the same time. However, it requires
multidimensional alternating minimization which is computationally prohibitive. To avoid exhaustive
multidimensional searches over the unknown DOA and mutual coupling parameters, the authors
proposed a modified MUSIC algorithm [20]. By taking the sensors at either side of the array as auxiliary
ones, the authors found that the MUSIC algorithm is resilient against unknown mutual coupling effects.
However, the array aperture loss problem of these methods is severe particularly under the strong
mutual coupling scenario, because only the observations from middle subarray array elements can
be utilized for DOA estimation. Aiming at resolving this problem, Liao et al. utilized the banded
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symmetric Toeplitz property of the mutual coupling matrix and transformed this matrix into gain and
phase perturbations of the array [21], where the perturbations of the middle subarray elements are
identical. Consequently, the observation data from all the array elements can be fully utilized for DOA
estimation via simple 1D RARE method. Furthermore, a fourth order cumulant (FOC) method was
also proposed [22], which performs better especially for strong mutual coupling effects. In [23–25],
the authors utilized sparse reconstruction methods to improve the DOA estimation performance
under unknown mutual coupling. However, these methods are computationally demanding due to
the l1-norm minimization problem. In [26], the authors presented a method for the localization of
mixed sources using the noncircular information of the impinging signals under unknown mutual
coupling. In [27], an ESPRIT-based algorithm is proposed for the ODA estimation of strictly noncircular
sources with unknown mutual coupling, which has large virtual array aperture and low computational
load. According to the latest work by B. Friedlander [28], the mutual coupling matrix is a direction
dependent matrix, and not a constant matrix as is commonly assumed, which may impact some of
the work presented in the DOA estimation literature. However, few of the works on DOA estimation
have taken into account the direction-dependent mutual coupling effect. In [29], a decoupled 2D
DOA estimation algorithm is proposed for uniform circular arrays. Yet, it assumes that the mutual
coupling effect is only elevation-dependent. Also, it is an offline technique, for which is costly to build
a calibration setup. In [30], a unified transformation method is proposed for the DOA estimation
under direction-dependent mutual coupling. This method can be used in many array structures,
but it requires convex optimization and iteration processes, which is computationally inefficient.
In [31], the authors proposed a RARE-based low complexity DOA estimation method to solve the
direction-dependent mutual coupling problem. Moreover, coprime sparse arrays are proposed to
reduce the mutual coupling effect between the elements [32–35].

For the 2D array calibration problem, several effective methods have been developed [36–40].
In [36], the authors proposed a blind calibration scheme for uniform circular array based on azimuthal
symmetric structures in the mutual coupling matrix. However, it only provides the azimuth angle
estimates of the radiating sources, while the elevation angles are assumed to be zeros. In [37], a robust
method was proposed to calibrate the mutual coupling and channel gain/phase inconsistency of
uniform circular array. Yet, it requires calibration sources and 2D spectral searches. In [38], the auxiliary
sensor-based algorithm is generalized for URA and uniform hexagon arrays, where the elements at
the boundary of the array are set as the auxiliary ones. In order to mitigate the array aperture loss
problem in the auxiliary sensor-based method, Wu et al. proposes a RARE-based auto-calibration
method for URA [40], which can fully utilize the array observations. However, all these planar
array calibration methods require exhaustive 2D spectral searches for the DOA estimation, which is
computationally demanding.

To the extent of our knowledge, few works have been devoted to the 2D direction finding
algorithms for rectilinear sources in the presence of unknown mutual coupling effects. Despite the
various advantages that were manifested in the approaches cited above, there are some fundamentally
inherent problems to be overcome in view of the previous analyses: (1) all of the above-mentioned
2D DOA estimation works only use the covariance matrix for direction finding and mutual coupling
calibration, the rectilinearity of the sources are not fully utilized. (2) These works require 2D spectral
searches for the azimuth and elevation angle estimations, which is computationally demanding.
(3) Generally, subspace-based direction finding algorithms require complex-valued operations for the
calculation of covariance matrix, eigenvalue decomposition (EVD), and spectral searching. Many
works have been devoted to converting the complex-valued covariance into a real-valued one.
The computational complexity of EVD and spectral searches for this kind of transformation can be
decreased by a factor of four. Yet, the transformation itself and the computation of the covariance still
require additional complex-valued operations.

Therefore, aiming at addressing these problems, we developed a computationally efficient 2D
direction finding algorithm for rectilinear signals under unknown mutual coupling. Based on the
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rectilinearity of the signal, the received data is transformed into the real-valued domain. Then the
structure of the virtual steering vector is utilized to decouple the DOA parameter from other nuisance
parameters. According to the RARE principle, the y-axis direction-cosine estimates are first obtained
via a 1D spectral search. Consequently, the x-axis direction-cosines are then generated through another
RARE estimator, which also only requires a 1D spectral search with the y-axis direction-cosine estimates.

The main contributions of this paper are as follows:

(1) The proposed DOA estimation method avoids the two-dimensional spectral search and effectively
reduces the computational complexity;

(2) Only real-valued operations are needed, and its computation load is reduced to 1/4 of the complex
value operations;

(3) The estimation accuracy is improved by the efficient use of the source rectilinearity.

The rest of this paper is organized as follows. In Section 2, we present the signal model for the
rectilinear sources of a URA under unknown mutual coupling. In Section 3, derivation of the proposed
real-valued two stage 2D DOA estimation algorithm is detailed. Then we discuss the computational
complexity and the maximum number of resolvable sources in Section 4. In Section 5, several numerical
simulations are carried out to validate the performance of the proposed algorithm. In Section 6, the
paper ends with conclusions. Finally, in the Appendix A, we have derived the Cramér-Rao Bound
(CRB) for the problem.

Throughout the paper, we make use of the following notations as listed in Table 1.

Table 1. List of notations.

Notations Explanation

(·)∗ conjugate operator
(·)T transpose operator
(·)H conjugate transpose operator
Re{·} real part of the operand
Im{·} imaginary part of the operand
E{·} expectation operator

vec(·) vectorization operator
e Hadamard product operator
⊗ Kronecker product operator

Tr{·} trace of the operand
det(·) determinant of the operand

In identity matrix of order n

2. Signal Model

As shown in Figure 1, consider a URA composed of M = Mx ×My omnidirectional elements, with
the inter element spacing along the x-axis and the y-axis being dx and dy, respectively. Suppose that
there are K far-field narrowband sources radiating onto the URA from directions (θ1,φ1), . . . ,(θK,φK),
where θk and φk are the azimuth and elevation angles of the k-th source.
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Figure 1. The structure of a uniform rectangular array (URA) with M elements.

Under the ideal scenario, the received data of each element only depends on the incident wavefield.
Accordingly, the ideal array received data vector without mutual coupling can be modeled as

x(t) =
K∑

k=1

a(θk,φk)sk(t) + n(t) = As(t) + n(t) (1)

where x(t) = [x1(t), · · · , xMx(t), xMx+1(t), · · · , x2Mx(t), · · · , xMyMx(t)]
T, s(t) = [s1(t), s2(t), · · · , sK(t)]

T

is the source signal vector, n(t) = [n1(t), · · · , nMx(t), nMx+1(t), · · · , n2Mx(t), · · · , nMyMx(t)]
T denotes the

array noise vector, and A = [a(θ1,φ1), · · · , a(θK,φK)] represents the ideal steering matrix, with its
steering vectors being

a(θk,φk) = ay(ψy,k) ⊗ ax(ψx,k), k = 1, · · · , K (2)

where
ax(ψx,k) =

[
1, e jψx,k , · · · , e j(Mx−1)ψx,k

]T
(3)

ay(ψy,k) =
[
1, e jψy,k , · · · , e j(My−1)ψy,k

]T
(4)

Herein, ψx,k and ψy,k are the electrical angles of the kth source with respect to the x-axis
and the y-axis, with ψx,k = 2πdx cosθk sinφk/λ and ψy,k = 2πdy sinθk sinφk/λ where λ is the
carrier wavelength.

However, in practical direction finding systems, a mismatch may be introduced by the
electromagnetic interaction between the array elements. Therefore, taking into account the mutual
coupling effect between the array elements, we can modify the received data model as

x(t) = CAs(t) + n(t) (5)

where C is the MxMy ×MxMy mutual coupling matrix, with its elements being mutual coupling
coefficients (MCCs). As illustrated in [19], the mutual coupling effect between the elements is inversely
proportional to their distance. Thus, the MCCs between the neighboring sensors are approximately
equal. When two elements are far apart, the mutual coupling effect is negligible, and the coefficients
approach zero. As in [30], the general mutual coupling model for URA is developed by the following
block matrix
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C =



C1 C2 · · · CP

C2 C1 C2
. . .

...
. . . . . . . . .

CP C2 C1 C2 CP
. . . . . . . . . . . .

...
. . . C2 C1 C2

CP · · · C2 C1


(6)

and the Mx ×Mx submatrix Cp (p = 1, . . . ,P) is expressed as [27]

Cp =



cp−1,0 cp−1,1 · · · cp−1,P−1

cp−1,1 cp−1,0 cp−1,1
. . .

... cp−1,1 cp−1,0
. . . cp−1,P−1

cp−1,P−1
. . . . . . cp−1,1

...
. . . cp−1,1 cp−1,0 cp−1,1

cp−1,P−1 · · · cp−1,P−1 cp−1,0


(7)

The complex mutual coupling coefficient cm,n = ρm,ne jξm,n symbolizes the electromagnetic
interaction between a reference sensor defined as the origin of a Cartesian coordinate system and the
sensor located at (±mdx, ±ndy) under the corresponding coordinate [30]. Note that c0,0 is especially
defined as 1. Therefore, the mutual coupling matrix C can be further expressed as

C =
P∑

p=1

Jp ⊗Cp (8)

and Jp is a My ×My selection matrix, whose elements are

[
Jp

]
m,n

=

{
1, |m− n| = p− 1
0, otherwise

(9)

Moreover, for rectilinear sources, the signal vector is of the following form [10]

s(t) = Φs0(t) (10)

where s0(t) = [s0,1(t), · · · , s0,K(t)]
T, with s0,k(t) being the real-valued zero-phase version of the k-th

source signal, Φ = diag{e jϕ1 , · · · , e jϕK } contains the noncircular phase shifts of the sources [9].
Owing to the above analysis, the received data vector of the planar array can be formulated as

x(t) = CAΦs0(t) + n(t) (11)

With the received data vector x(t), the main problem to be addressed in this paper is to obtain the
2D DOA estimates of rectilinear signals under unknown mutual coupling effects. Unlike the traditional
methods which require multidimensional spectral searches and omit the rectilinearity of the signals,
a novel algorithm is investigated in the next section for reducing the computational complexity and
promoting the estimation performance.
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3. Proposed Real-Valued 2D DOA Estimation Algorithm

In order to generate accurate 2D DOA estimates with low computational complexity, we creatively
utilize the rectilinearity of signals and factorize the steering vector with respect to the DOA and
other nuisance parameters. Our technique proceeds through the following stages: (1) based on the
rectilinearity of the signal, the received data is transformed into the real-valued domain; (2) the
structure of the virtual steering vector is utilized to decouple the DOA parameter from other nuisance
parameters; (3) according to the RARE principle, the y-axis direction-cosine estimates can be obtained
via a 1D spectral search; (4) with the y-axis direction-cosine estimates, the x-axis direction-cosine can be
found through another RARE estimator, which also only requires a 1D spectral search. The following
subsections give the details of the proposed algorithm.

3.1. Extended Real-Valued Signal Model

It is well known that by transforming complex-valued data into the real-valued domain, the
computational cost can be effectively reduced by a factor of four. Therefore, it inspired us to look for a
more efficient algorithm to reduce the complex-valued computational loads.

Based on the sources’ rectilinearity, the transformation can be realized by extracting the real and
imaginary parts of x(t), respectively.

xR(t) = Re[x(t)], xI(t) = Im[x(t)] (12)

From Equation (11), xR(t) and xI(t) can be further expressed as

xR(t) = ARs0(t) + nR(t) (13)

xI(t) = AIs0(t) + nI(t) (14)

where AR = [vR(θ1,φ1,ϕ1, C), · · · , vR(θK,φK,ϕK, C)] and AI = [vI(θ1,φ1,ϕ1, C), · · · , vI(θK,φK,ϕK, C)]

are the real-valued manifold matrices of xR(t) and xI(t). nR(t) and nI(t) symbolize the real and
imaginary components of sensor noise vector n(t), respectively. Accordingly, the real-valued virtual
steering vectors in AR is of the following form

vR(θk,φk,ϕk, C) =
[
Ca(θk,φk) · e jϕk + C∗a∗(θk,φk) · e− jϕk

]
/2 (15)

Based on Equations (2) and (8), we can obtain the following equation from the Kronecker product
property (A⊗B)(C⊗D) = (AC) ⊗ (BD) [41]

Ca(θk,φk) =

 P∑
p=1

Jp ⊗Cp

(ay(ψy,k) ⊗ ax(ψx,k)
)
=

P∑
p=1

(
Jpay(ψy,k)

)
⊗

(
Cpax(ψx,k)

)
(16)

Therefore, the real-valued virtual steering vector vR(θk,φk,ϕk, C) can be further written as

vR(θk,φk,ϕk, C) =
P∑

p=1

(
Jpay,c(ψy,k)

)
⊗

(
Γc,p(ψx,k)ax,c(ψx,k)

)
−

P∑
p=1

(
Jpay,s(ψy,k)

)
⊗

(
Γc,p(ψx,k)ax,s(ψx,k)

)
−

P∑
p=1

(
Jpay,c(ψy,k)

)
⊗

(
Γs,p(ψx,k)ax,s(ψx,k)

)
−

P∑
p=1

(
Jpay,s(ψy,k)

)
⊗

(
Γs,p(ψx,k)ax,c(ψx,k)

) (17)

where
ax,c(ψx,k) =

[
1, cos(ψx,k), · · · , cos

(
(Mx − 1)ψx,k

)]T
(18)

ax,s(ψx,k) =
[
0, sin(ψx,k), · · · , sin

(
(Mx − 1)ψx,k

)]T
(19)

ay,c(ψy,k) =
[
1, cos(ψy,k), · · · , cos

(
(My − 1)ψy,k

)]T
(20)
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ay,s(ψy,k) =
[
0, sin(ψy,k), · · · , sin

(
(My − 1)ψy,k

)]T
(21)

Γc,p(ψx,k) = h(p)c · diag
[
α
(p)
c,1 , · · · ,α(p)c,P−1, 1, · · · , 1, β(p)c,1 , · · · , β(p)c,P−1

]
(22)

Γs,p(ψx,k) = h(p)s · diag
[
α
(p)
s,1 , · · · ,α(p)s,P−1, 1, · · · , 1, β(p)s,1 , · · · , β(p)s,P−1

]
(23)

h(p)c =
P−1∑

i=1−P

ρp−1,|i| cos
(
ξp−1,|i| + ϕk + i · 2πλ−1ψx,k

)
(24)

h(p)s =
P−1∑

i=1−P

ρp−1,|i| sin
(
ξp−1,|i| + ϕk + i · 2πλ−1ψx,k

)
(25)

Note that Γc,p(ψx,k) and Γs,p(ψx,k) are Mx ×Mx diagonal matrices comprising Mx − 2P + 2 ones

between α
(p)
c,P−1 and β

(p)
c,1 (also between α

(p)
s,P−1 and β

(p)
s,1 ). h(p)c and h(p)s are two scalar parameters

determined by the x-axis direction-cosine, rectilinearity phases, and MCCs. For p = 1, 2, · · · , P − 1,
we have

α
(p)
c,q =

h(p)c −
P−1∑
i=q

ρp−1,i cos
(
ξp−1,i + ϕk − i · 2πλ−1ψx,k

)
h(p)c

, q = 1, . . . , P− 1 (26)

α
(p)
s,q =

h(p)s −
P−1∑
i=q

ρp−1,i sin
(
ξp−1,i + ϕk − i · 2πλ−1ψx,k

)
h(p)s

, q = 1, . . . , P− 1 (27)

β
(p)
c,q =

h(p)c −
P−1∑

i=P−q
ρp−1,i cos

(
ξp−1,i + ϕk + i · 2πλ−1ψx,k

)
h(p)c

, q = 1, . . . , P− 1 (28)

β
(p)
s,q =

h(p)s −
P−1∑

i=P−q
ρp−1,i sin

(
ξp−1,i + ϕk + i · 2πλ−1ψx,k

)
h(p)s

, q = 1, . . . , P− 1 (29)

Similarly, the real-valued virtual steering vectors of AI can be defined as

vI(θk,φk,ϕk, C) =
P∑

p=1

(
Jpay,c(ψy,k)

)
⊗

(
Γs,p(ψx,k)ax,c(ψx,k)

)
−

P∑
p=1

(
Jpay,s(ψy,k)

)
⊗

(
Γs,p(ψx,k)ax,s(ψx,k)

)
+

P∑
p=1

(
Jpay,c(ψy,k)

)
⊗

(
Γc,p(ψx,k)ax,s(ψx,k)

)
+

P∑
p=1

(
Jpay,s(ψy,k)

)
⊗

(
Γc,p(ψx,k)ax,c(ψx,k)

) (30)

Based on the above real-valued signal model, we can concatenate the real part and the imaginary
part to generate an augmented data vector in the real-valued domain.

y(t) =
[

xR(t)
xI(t)

]
=

[
AR
AI

]
s0(t) +

[
nR(t)
nI(t)

]
= AEs0(t) + nE(t) (31)

where AE = [aE(θ1,φ1,ϕ1, C), · · · , aE(θK,φK,ϕK, C)] is the augmented manifold matrix, and the
corresponding real-valued steering vector of the k-th source is defined as

aE(θk,φk,ϕk, C) =

[
vR(θk,φk,ϕk, C)

vI(θk,φk,ϕk, C)

]
(32)
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Therefore, the covariance matrix of the augmented real-valued data matrix y(t) is of the
following form

Ry = E
{
y(t)yT(t)

}
= AERS0AT

E + σ2
nI2M (33)

where RS0
= E{s0(t)s

T
0 (t)}, I2M denotes a 2M × 2M identity matrix. In practical applications, Ry can be

approximated from the snapshots generated at L distinct time instants

^
Ry =

1
L

L∑
t=1

{
y(t)yT(t)

}
(34)

Through the eigenvalue decomposition of Ry, we can obtain that

Ry = EsΛsE
H
s + σ2

nEnEH
n (35)

Herein, Λs is a diagonal matrix comprised of the largest K eigenvalues of Ry. Es is the signal
subspace matrix which contains the eigenvectors corresponding to the largest K eigenvalues. En is the
noise subspace matrix, which is composed of the remaining 2M-K eigenvectors of Ry.

Based on the subspace principle that the noise subspace is orthogonal to the signal subspace, we
can construct the following MUSIC spectrum function for estimating the azimuth and elevation angles
of the sources.

P(θ,φ,ϕ, C) = aT
E(θ,φ,ϕ, C)EnET

n aE(θ,φ,ϕ, C) (36)

Unfortunately, this multidimensional spectrum function presented above requires a (P + 2)-
dimension joint spectral search for 2D DOAs, MCCs, and noncircular phases, which is computationally
prohibitive. Therefore, to decrease the complexity of the algorithm, we first factorize the augmented
steering vector aE(θk,φk,ϕk, C) with respect to the y-axis direction-cosine and present a novel
real-valued RARE estimator in the next subsection, which only requires a simple 1D spectral
search procedure.

3.2. First Stage Rank Reduction DOA Estimation

In this stage, the real-valued steering vector aE in Equation (32) is first factorized with respect to
the y-axis direction-cosine and other nuisance parameters. From Equations (17) and (30), the mutual
coupling effect in the two virtual steering vectors can be deemed as angle-dependent gain and phase
perturbations. However, it is clear that the central elements on the main diagonal of both Γc,p(ψx) and
Γs,p(ψx) comprise a vector of all ones, which implies that the middle subarray can be handled as an
unperturbed one. Therefore, we can obtain the following equations

Γc,p(ψx)ax,c(ψx) = Tx,c(ψx)α
(p)
x,c (37)

Γc,p(ψx)ax,s(ψx) = Tx,s(ψx)α
(p)
x,c (38)

Γs,p(ψx)ax,s(ψx) = Tx,s(ψx)α
(p)
x,s (39)

Γs,p(ψx)ax,c(ψx) = Tx,c(ψx)α
(p)
x,s (40)

where Tx,c(ψx) and Tx,s(ψx) are Mx × (2P − 1) real matrices, and α(p)
x,c and α(p)

x,s are (2P − 1) × 1 real
vectors, which can be expressed as
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Tx,c(ψx) =



1
cos(ψx) 0

. . .
cos((P− 1)ψx)

...
cos((Mx − P)ψx)

0
. . .

cos((Mx − 1)ψx)



(41)

Tx,s(ψx) =



0
sin(ψx) 0

. . .
sin((P− 1)ψx)

...
sin((Mx − P)ψx)

0
. . .

sin((Mx − 1)ψx)



(42)

α
(p)
x,c = h(p)c

[
α
(p)
c,1 , · · · ,α(p)c,P−1, 1, β(p)c,1 , · · · , β(p)c,P−1

]T
(43)

α
(p)
x,s = h(p)s

[
α
(p)
s,1 , · · · ,α(p)s,P−1, 1, β(p)s,1 , · · · , β(p)s,P−1

]T
(44)

Similarly, for the y-axis direction-cosine related steering vector, we have that

Jpay,c(ψy) = Ty,c(ψy)α
(p)
y,c −Ty,s(ψy)α

(p)
y,s (45)

Jpay,s(ψy) = Ty,s(ψy)α
(p)
y,c + Ty,c(ψy)α

(p)
y,s (46)

where Ty,c(ψy) and Ty,s(ψy) are My × (2P − 1) real matrices, and α(p)
y,c and α(p)

y,s are (2P − 1) × 1 real
vectors, which can be expressed as

Ty,c(ψy) =



1
cos(ψy) 0

. . .
cos((P− 1)ψy)

...
cos((My − P)ψy)

0
. . .

cos((My − 1)ψy)



(47)
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Ty,s(ψy) =



0
sin(ψy) 0

. . .
sin((P− 1)ψy)

...
sin((My − P)ψy)

0
. . .

sin((My − 1)ψy)



(48)

For simplicity, we also denote Ty,c(ψy) as Ty,c in the following derivation. Based on the
relationships derived above, we can factorize the virtual steering vectors vR and vI in Equations (17)
and (30) as

vR(θ,φ,ϕ, C) =

(Ty,cαy,c) ⊗ (Tx,cαx,c) − (Ty,cαy,c) ⊗ (Tx,sαx,s) − (Ty,sαy,s) ⊗ (Tx,cαx,c) + (Ty,sαy,s) ⊗ (Tx,sαx,s)

−(Ty,sαy,c) ⊗ (Tx,sαx,c) − (Ty,sαy,c) ⊗ (Tx,cαx,s) − (Ty,cαy,s) ⊗ (Tx,sαx,c) − (Ty,cαy,s) ⊗ (Tx,cαx,s)

(49)

vI(θ,φ,ϕ, C) =

(Ty,cαy,c) ⊗ (Tx,cαx,s) + (Ty,cαy,c) ⊗ (Tx,sαx,c) − (Ty,sαy,s) ⊗ (Tx,cαx,s) − (Ty,sαy,s) ⊗ (Tx,sαx,c)

−(Ty,sαy,c) ⊗ (Tx,sαx,s) + (Ty,sαy,c) ⊗ (Tx,cαx,c) − (Ty,cαy,s) ⊗ (Tx,sαx,s) + (Ty,cαy,s) ⊗ (Tx,cαx,c)

(50)

where αx,c, αx,s, αy,c, and αy,s are defined as

αx,c =
P∑

p=1

α
(p)
x,c , αx,s =

P∑
p=1

α
(p)
x,s (51)

αy,c =
P∑

p=1

α
(p)
y,c , αy,s =

P∑
p=1

α
(p)
y,s (52)

Therefore, utilizing the Kronecker product property (AB)⊗ (CD) = (A⊗C)(B⊗D), we can write
the virtual steering vector aE as the following expression
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a C
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where 1( )yψT  is a 2 2 (2 1)x y xM M M P× −  matrix which only depends on the y-axis direction-cosine, 
and 1( , , , )x yψ ψ ϕα C  is a 2 (2 1) 1xM P − ×  vector which depends on the x-axis and y-axis direction-
cosines, MCCs, and noncircular phases. 
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column rank. Note that 1α  is presumed to be a non-zero vector, thus Equation (55) holds only when 
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where 1( )yψT  is a 2 2 (2 1)x y xM M M P× −  matrix which only depends on the y-axis direction-cosine, 
and 1( , , , )x yψ ψ ϕα C  is a 2 (2 1) 1xM P − ×  vector which depends on the x-axis and y-axis direction-
cosines, MCCs, and noncircular phases. 
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where T1(ψy) is a 2MxMy × 2Mx(2P− 1) matrix which only depends on the y-axis direction-cosine, and
α1(ψx,ψy,ϕ, C) is a 2Mx(2P− 1) × 1 vector which depends on the x-axis and y-axis direction-cosines,
MCCs, and noncircular phases.
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Substituting the above equation into Equation (36), we have

αT
1 (ψx,ψy,ϕ, C)Q1(ψy)α1(ψx,ψy,ϕ, C) = 0 (55)

where Q1(ψy) is defined as
Q1(ψy) = TT

1 (ψy)EnET
n T1(ψy) (56)

It is obvious that Q1(ψy) is a 2Mx(2P − 1) × 2Mx(2P − 1) real matrix, T1(ψy) is a 2MxMy ×

2Mx(2P − 1) real matrix, and En is the 2MxMy × (2MxMy − K) real-valued noise subspace matrix.
Accordingly, if 2MxMy −K ≥ 2Mx(2P− 1), Q1(ψy) will generally be of full column rank. Note that α1

is presumed to be a non-zero vector, thus Equation (55) holds only when Q1(ψy) rank drops, which
implies that Q1(ψy) becomes a rank-deficient matrix when ψy = ψy,k, k = 1, · · · , K. Therefore, based
on the principle of RARE, the y-axis direction-cosines can be estimated from the highest peaks of the
following 1D spectral search function:

P1(ψy) =
1

det
[
TT

1 (ψy)EnET
n T1(ψy)

] (57)

Since the y-axis direction-cosine ψy has been decoupled with other nuisance parameters in this
stage, we can simplify the previous multidimensional optimization problem in Equation (36) into a
1D spectral search problem, which is computationally more efficient. Additionally, the operations
involved in this stage are all real-valued, which means the computational load can be reduced by a
factor of four compared with its complex-valued counterparts.

Our next objective is to estimate the values of x-axis direction-cosines and correctly pair them
with the corresponding y-axis direction-cosines. Therefore, in the following subsection, we will present
another RARE function which can generate the estimation of x-axis direction-cosines ψx,k, k = 1, · · · , K
without any additional matching procedures.

3.3. Second Stage Rank Reduction DOA Estimation

In the second stage, the real-valued steering vector aE in Equation (32) is factorized in another
form with respect to the x-axis direction-cosine and other nuisance parameters. Since the y-axis
direction-cosine ψy has already been obtained in the previous stage, we can calculate the values of

P∑
p=1

(
Jpay,c(ψy,k)

)
and

P∑
p=1

(
Jpay,s(ψy,k)

)
. Also we denote that

βy,c =
P∑

p=1

(
Jpay,c(ψy,k)

)
, βy,s =

P∑
p=1

(
Jpay,s(ψy,k)

)
(58)

Therefore, the virtual steering vectors vR and vI in Equations (17) and (30) can be also factorized as

vR(θk,φk,ϕk, C) = βy,c ⊗
[
Tx,cαx,c −Tx,sαx,s

]
−βy,s ⊗

[
Tx,sαx,c + Tx,cαx,s

]
(59)

vI(θk,φk,ϕk, C) = βy,c ⊗
[
Tx,cαx,s + Tx,sαx,c

]
−βy,s ⊗

[
Tx,sαx,s −Tx,cαx,c

]
(60)

Utilizing the Kronecker product property β ⊗ (T · α) = (β ⊗ T) · α, we have the
following expression

vR(θk,φk,ϕk, C) =
(
βy,c ⊗Tx,c

)
αx,c −

(
βy,c ⊗Tx,s

)
αx,s −

(
βy,s ⊗Tx,s

)
αx,c −

(
βy,s ⊗Tx,c

)
αx,s (61)

vI(θk,φk,ϕk, C) =
(
βy,c ⊗Tx,c

)
αx,s +

(
βy,c ⊗Tx,s

)
αx,c −

(
βy,s ⊗Tx,s

)
αx,s +

(
βy,s ⊗Tx,c

)
αx,c (62)
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where Iβ is a My ×My identity matrix. Consequently, the extended real-valued steering vector aE can
be written in the following form
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where βI  is a My × My identity matrix. Consequently, the extended real-valued steering vector Ea  
can be written in the following form 
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where 2 ( )xψT  is a 2 2(2 1)x yM M P× −  matrix which only depends on the x-axis direction-cosine, 
and 2( , , )xψ ϕα C  is a 2(2 1)P−  vector which depends on the x-axis direction-cosines, MCCs, and 
noncircular phases. 

where T2(ψx) is a 2MxMy × 2(2P − 1) matrix which only depends on the x-axis direction-cosine,
and α2(ψx,ϕ, C) is a 2(2P − 1) vector which depends on the x-axis direction-cosines, MCCs, and
noncircular phases.

Again, according to the RARE principle, we substitute the above equation into Equation (36)

αT
2 (ψx,ϕ, C)Q2(ψx)α2(ψx,ϕ, C) = 0 (64)

where Q2(ψx) is defined as
Q2(ψx) = TT

2 (ψx)EnET
n T2(ψx). (65)

Note that Q2(ψx) ∈ R2(2P−1)×2(2P−1) and T2(ψx) ∈ R2MxMy×2(2P−1). If 2MxMy − K ≥ 2(2P − 1),
then Q2(ψx) is of full column rank in general. As both αx,c and αx,s are supposed to be non-zero
vectors, α2 must be non-zero as well. One can deduce that (64) holds only if the rank of Q2(ψx) drops,
that is, rank deficiency occurs in Q2(ψx) provided that ψx = ψx,k, k = 1, · · · , K. By the principle of
RARE, the x-axis direction-cosines can be obtained by searching for the highest peaks of the following
spatial spectrum function:

P2(ψx) =
1

det
[
TT

2 (ψx)EnET
n T2(ψx)

] . (66)

Since the x-axis direction-cosine ψx has been decoupled with other nuisance parameters in the
second stage, the multidimensional optimization problem can be reduced to a computationally efficient
1D spectral searching problem. Moreover, the computations involved are all real-valued, which
means the computational load can be reduced by a factor of four compared with its complex-valued
counterparts. Also, due to the orthogonality between the signal subspace and noise subspace, the 2D
DOA parameters are automatically paired without any additional matching procedures.

Therefore, the 2D DOA estimates can be obtained from the following equations:

θ̂k = arc cot

( λψ̂x

2πdx

)
/

 λψ̂y

2πdy

 (67)

φ̂k = arcsin


√√(

λψ̂x

2πdx

)2

+

 λψ̂y

2πdy

2
 (68)

3.4. Procedures of the Proposed Algorithm

The steps of the proposed algorithm can be summarized as follows.
(1) Collect the real and imaginary parts of x(t) based on Equation (12);
(2) construct the augmented data vector via Equation (31);
(3) calculate the covariance matrix of y(t) by Equation (34);

(4) perform the eigenvalue decomposition of
^
Ry, and extract the noise subspace matrix

^
En;

(5) formulate the matrix T1(ψy) for each y-axis direction-cosine searching grid according to
Equation (54);

(6) find the estimation of y-axis direction-cosines ψy,k, k = 1, · · · , K through the 1D spectral search
in Equation (57);
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(7) compute the values of βy,c, βy,s and T2(ψx) for each x-axis direction-cosines estimates based
on Equations (58) and (63);

(8) obtain the estimates of x-axis direction-cosines ψx,k, k = 1, · · · , K according to Equation (66);
(9) calculate the DOA estimates of the azimuth and elevation angles according to Equations (67)

and (68).

4. Discussion

In this section, we compare the performance of the proposed algorithm with respect to two
state-of-art 2D DOA estimation algorithms considering mutual coupling effects: the auxiliary
sensor-based method (AUX) in [39] and the 2D rank reduction-based method (2D-RARE) in [40].

4.1. Computational Complexity

In this subsection, the computational complexity of the proposed algorithm is evaluated with
respect to AUX and 2D-RARE. Note that the computational complexity is investigated in terms
of the major multiplications in constructing the statistical matrices, EVDs, and spectral searches.
Suppose that an Mx ×My URA is utilized and the grid size for spectral searching is ∆θ. From [29],
it can be observed that AUX constructs a (Mx − 2P + 2)(My − 2P + 2) × (Mx − 2P + 2)(My −

2P + 2) covariance matrix, takes the EVD of this matrix, and performs a 2D spectral search for
DOA estimation, which require a computational complexity of O(4(Mx − 2P + 2)2(My − 2P + 2)2L),
O(4(Mx − 2P + 2)3(My − 2P + 2)3/3), and O(4(Mx − 2P + 2)2(My − 2P + 2)2(360◦/∆θ)(90◦/∆θ)),
respectively. 2D-RARE constructs a MxMy ×MxMy covariance matrix, performs the EVD, calculates the
rank reduction testing matrix, and performs a 2D RARE spectral search, which require a computational
complexity of O(4(MxMy)

2L), O(4(MxMy)
3/3), and O((360◦/∆θ)(90◦/∆θ))(MxMy(MxMy −

K)(2P− 1)2 + (MxMy −K)(2P− 1)4 + (MxMy)
3)), respectively [30]. For the proposed algorithm, the

establishment of the 2MxMy × 2MxMy real-valued statistical matrix takes O(4(MxMy)
2L) operations,

the EVD of this matrix requires O(8(MxMy)
3/3) multiplications, the first stage of the 1D RARE spectral

search takes O
(
(360◦/∆θ)(2Mx(2P− 1))3

)
, and the second stage of the 1D RARE spectral search has

a complexity of O
(
K · (90◦/∆θ)(4P− 2)3

)
. It is worth noting that the calculations involved in the

proposed algorithm are in the real-valued domain. Thus, with the same matrix dimensions, the
computational load can be effectively reduced by a factor of four.

4.2. Maximum Number of Resolvable Sources

In this subsection, we compare the maximum number of resolvable sources for the three algorithms.
Note that AUX only utilizes the (Mx − 2P + 2)(My − 2P + 2) sensors in the middle of the URA. As a
result of the subspace identification technique, at least one eigenvector is required for spanning the
noise subspace. Therefore, AUX is capable of resolving no more than (Mx − 2P + 2)(My − 2P + 2)
− 1 sources. Similarly, 2D-RARE requires that (2P − 1)2

≤MxMy-K. Thus, it can also resolve MxMy

− (2P − 1)2 sources at most. For the proposed method, it requires 2MxMy − K ≥ 2Mx(2P − 1) and
2MxMy −K ≥ 2(2P− 1) in the two consequent RARE estimators, which means the maximum number
of resolvable sources for the proposed method is 2MxMy − 2Mx(2P− 1). Therefore, it can be concluded
that the alleviation of computational loads is at the cost of DOF reduction, since the signal subspace
has been decoupled.

4.3. Dependence of Mutual Coupling on Directions

In this subsection, we discuss the dependence of antenna mutual coupling effects on the angles of
signals. According to the latest work by B. Friedlander [28], the mutual coupling matrix is a direction
dependent matrix, and not a constant matrix as is commonly assumed. In this work, the mutual
coupling matrix of the URA is assumed to be direction-independent with a block banded Toeplitz
structure, which has been simplified compared with the analytic manifold [28]. Therefore, the DOA
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estimation performance may deteriorate due to the mismatch between the assumed model and the
physical characteristics of the array antennas.

5. Simulation Results

In this section, we present several numerical simulations to analyze the DOA estimation
performance of the proposed algorithm with respect to 2D-MUSIC, AUX, and 2D-RARE. In the
following simulations, a 10 × 10-elements URA is employed with the inter-element spacing being
dx = dy =λ/2. The impinging sources are BPSK modulated with equal power and uncorrelated
to each other, while the noise is amenable to the spatially white complex Gaussian distribution.
The mutual coupling length is assumed to be P = 2, and MCCs are c0,1 = c1,0 = 0.7527 + j0.4854,
c1,1 = 0.2825 + j0.2801. The estimation performance is assessed in terms of spatial spectrum, root
mean-square error (RMSE), and computational complexity. The RMSE is measured by 500 independent
Monte Carlo runs:

RMSE =

√√√
1

1000K

500∑
n=1

K∑
k=1

((
θk − θ̂n,k

)2
+

(
φk − φ̂n,k

)2
)

(69)

where θk is the DOA of the k-th source, and θ̂n,k stands for the estimate of in the nth trial.
In the first case, we investigate the DOA spectra of the three algorithms. We consider that

three incident rectilinear signals radiate from (θ1 = −20◦,φ1 = 40◦), (θ2 = 40◦,φ2 = 30◦), and
(θ3 = 80◦,φ3 = 50◦), respectively. The corresponding x-axis direction-cosines are (0.604, 0.383, 0.133) in
radians, and y-axis direction-cosines are (–0.220, 0.321, 0.754) in radians, respectively. The signal-to-noise
ratio (SNR) is 10 dB, and the number of snapshots is fixed at 1000. In Figure 2d, the proposed algorithm
generates three sharp peaks corresponding to the y-axis direction-cosines of the three BPSK sources
in the first DOA estimation stage. In Figure 2e, the three spectra produce three sharp peaks at the
desired locations of the x-axis direction-cosines, respectively. Note that the DOA estimates of in the
two stages are automatically paired without any postprocessing. From Figure 2a, it is can be seen that
2D-MUSIC fails to distinguish all three sources, and its two resolvable spectra peaks are biased due
to the mismatch caused by the mutual coupling effects. Although AUX and 2D-RARE can generate
three peaks corresponding to the sources in the 2D DOA spectrum plain, the former sacrifices eight
sensors (i.e., the auxiliary sensors) to make the remaining part of the URA coupling-free while the latter
requires exhaustive 2D spectral searches to obtain the joint azimuth and elevation DOA estimates.
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The number of snapshots remained at 1000. Other simulation settings were the same as the first 
experiment. Figure 3 depicts the RMSE of the proposed method while the RMSEs of the other three 
solutions, 2D-MUSIC, AUX, 2D-RARE, and the corresponding CRB for noncircular source DOA 
estimation in the presence of mutual coupling is also calculated for comparison. It is clear that 2D-
RARE performs the best among the four algorithms, overall AUX takes second place, our method 
provides better accuracies than it at 10 dB and above but is inferior to AUX at low SNRs, and 2D-
MUSIC has the worst performance due to the low robustness to the unknown mutual coupling. 
Besides, the performance of the proposed method, 2D-RARE, and AUX bears down on the CRB 
asymptotically at high SNRs, while the RMSE of 2D-MUSIC is stabilized at approximately 4  when 
the SNR is larger than 5dB. 

Figure 2. The spatial spectra of (a) Two-dimensional multiple signal classification (2D-MUSIC), (b) the
auxiliary sensor-based method (AUX), (c) the 2D rank reduction-based method (2D-RARE) and (d) the
first stage and (e) the second stage of the proposed method.

In the second experiment, we studied the RMSE of the DOA estimates as a function of the
SNR. The number of snapshots remained at 1000. Other simulation settings were the same as the
first experiment. Figure 3 depicts the RMSE of the proposed method while the RMSEs of the other
three solutions, 2D-MUSIC, AUX, 2D-RARE, and the corresponding CRB for noncircular source DOA
estimation in the presence of mutual coupling is also calculated for comparison. It is clear that 2D-RARE
performs the best among the four algorithms, overall AUX takes second place, our method provides
better accuracies than it at 10 dB and above but is inferior to AUX at low SNRs, and 2D-MUSIC has
the worst performance due to the low robustness to the unknown mutual coupling. Besides, the
performance of the proposed method, 2D-RARE, and AUX bears down on the CRB asymptotically at
high SNRs, while the RMSE of 2D-MUSIC is stabilized at approximately 4◦ when the SNR is larger
than 5dB.

In the third experiment, we examine the variation of RMSE with the increase of the number of
snapshots from 10 to 1000, where the SNR is set as 10dB. Figure 4 demonstrates that RMSEs of the
proposed method, 2D-RARE, and AUX decline steadily as the snapshot size raises. This is because that
the covariance and elliptic covariance matrices can be estimated more accurately from a larger number
of observations. Additionally, the performance of our developed approach is almost the same as
2D-RARE and strictly superior to AUX, asymptotically approaching the corresponding CRB, while the
RMSE of 2D-MUSIC saturates at 4◦ as similar to the second scenario, which is the worst performance.
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In the last experiment, the computational burdens of the three algorithms versus the variation of
the number of sensors were compared. The searching step size for DOA estimation was set as 0.1◦,
and the number of snapshots was fixed at 200. Suppose the URA is square, i.e., Mx = My, and the
number of elements ranges from 10 to 40. It can be observed from Figure 5 that our method is the most
efficient compared with other two as it is only reliant upon a 1D spectral search, followed by AUX, and
2D-RARE requires the highest complexity.



Sensors 2020, 20, 1914 18 of 22

Sensors 2020, 20, x FOR PEER REVIEW 18 of 22 

 

In the last experiment, the computational burdens of the three algorithms versus the variation 
of the number of sensors were compared. The searching step size for DOA estimation was set as 0.1°, 
and the number of snapshots was fixed at 200. Suppose the URA is square, i.e., x yM M= , and the 
number of elements ranges from 10 to 40. It can be observed from Figure 5 that our method is the 
most efficient compared with other two as it is only reliant upon a 1D spectral search, followed by 
AUX, and 2D-RARE requires the highest complexity. 

 
Figure 5. Computational complexity of the four methods versus number of antennas. 

6. Conclusions 

In this paper, a 2D real-valued DOA estimator that is robust to unknown mutual coupling was 
developed for rectilinear sources. Taking advantage of the noncircularity in signals and the 
structured mutual coupling matrix revealed as block Toeplitz, a RARE estimator in real-value field 
was proposed to extract the angular information from the coupling coefficients. Compared with state-
of-the-art approaches, our solution has satisfactory estimation performance with more efficient 
computations. A series of numerical simulations showed that the proposed method has its own 
advantages on estimation accuracy and computational complexity over previous algorithms with a 
favorable robustness to unknown mutual coupling. To apply the proposed algorithm to further 
applications, we may extend the proposed algorithm to considering the physical characteristics of the 
array antennas, such as direction-dependent mutual coupling and unstructured mutual coupling 
matrix in further studies. 

Author Contributions: All authors contributed extensively to this paper. Conceptualization, J.X. and Y.W.; 
methodology, J.X. and Q.W.; software, X.Y. and Q.W.; writing—original draft preparation, Y.W., and X.Y. All 
authors have read and agreed to the published version of the manuscript. 

Funding: This research was funded by the National Natural Science Foundation of China under Grant 
No.61971355, 61971357, 61901390, 61771404, 61871459, and in part by the Natural Science Basic Research Plan in 
Shaanxi Province of China under Grant 2019JM-350. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix 

In the appendix, we derive the unconditional or stochastic CRB of DOA estimation for 
noncircular sources under unknown mutual coupling effects. Since the signals are rectilinear (also 
called strictly second-order noncircular), 0( )ts  is zero-mean real-valued Gaussian distributed with 

Figure 5. Computational complexity of the four methods versus number of antennas.

6. Conclusions

In this paper, a 2D real-valued DOA estimator that is robust to unknown mutual coupling
was developed for rectilinear sources. Taking advantage of the noncircularity in signals and the
structured mutual coupling matrix revealed as block Toeplitz, a RARE estimator in real-value field
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Appendix A

In the Appendix A, we derive the unconditional or stochastic CRB of DOA estimation for
noncircular sources under unknown mutual coupling effects. Since the signals are rectilinear (also called
strictly second-order noncircular), s0(t) is zero-mean real-valued Gaussian distributed with covariance
E
(
s0(t)sT

0 (t)
)
= Rs. Furthermore, the model can be parameterized by the following real-valued

unknown parameter vector Θ = [θT,φT,ϕT, cT
R, cT

I ,ρT,σ2
n], where θ = [θ1, · · · ,θK]

T denotes the
azimuth angle vector, φ = [φ1, · · · ,φK]

T represents the elevation angle vector, ϕ = [ϕ1, · · · ,ϕK]
T

contains the noncircular phases, cR and cI are the real and imaginary parts of the mutual coupling
coefficients vector, and ρ = [ρ1, · · · ,ρK]

T is the K × 1 vector made from [Rs]i,i, 1≤ i ≤K. Based on the
results in [42], the Fisher information matrix (FIM) corresponding to the parameter vector Θ can be
written as:
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Fm,n = L · Tr
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¯
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x

∂Θn
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¯
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 (A1)

where R ¯
x

is the extended covariance matrix corresponding to the augmented signal
¯
x(t) =

[xT(t), xH(t)]T, which is formed as:

R ¯
x
= E

{
¯
x(t)

¯
x

H
(t)

}
=

¯
ARs

¯
A

H
+ σ2

nI (A2)

where
¯

A =

[
CAΦ

C∗A∗Φ∗

]
=

[
¯
a1, · · · ,

¯
aK

]
, with

¯
ak =

[
e jϕk Ca(θk,φk)

e− jϕk C∗a∗(θk,φk)

]
.

The FIM for the unknown parameters and their cross terms can be readily derived following the
steps in [43]. Since F is a symmetric matrix, we only need to find the upper triangular parts of F, and
the block matrices in F can be obtained as:
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FcR,mcR,n = 2L ·Re
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where the partial derivative of A with respect to the parameters θ,φ,ϕ, cR, cI in the above equations
can be calculated as: .
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Since the noise power is not coupled with other parameters, the cross terms with respect to σ2
n are

all zeros. Consequently, the FIM can be formulated as the following form:

F =
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Subsequently, the CRB for DOA parameters is defined as:

CRBDOA =

√√√
1

2K

2K∑
k=1

[
F−1

]
kk

(A27)
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