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Abstract: Signal drift caused by sensors or environmental changes, which can be regarded as data
distribution changes over time, is related to transductive transfer learning, and the data in the target
domain is not labeled. We propose a method that learns a subspace with maximum independence of
the concentration features (MICF) according to the Hilbert-Schmidt Independence Criterion (HSIC),
which reduces the inter-concentration discrepancy of distributions. Then, we use Iterative Fisher
Linear Discriminant (IFLD) to extract the signal features by reducing the divergence within classes
and increasing the divergence among classes, which helps to prevent inconsistent ratios of different
types of samples among the domains. The effectiveness of MICF and IFLD was verified by three
sets of experiments using sensors in real world conditions, along with experiments conducted in the
authors’ laboratory. The proposed method achieved an accuracy of 76.17%, which was better than
any of the existing methods that publish their data on a publicly available dataset (the Gas Sensor
Drift Dataset). It was found that the MICF-IFLD was simple and effective, reduced interferences,
and deftly managed tasks of transfer classification.

Keywords: drift suppression; dimensionality reduction; electronic nose; domain adaptation;
transfer learning

1. Introduction

In recent years, as a reliable, time-saving, and cost-efficient technique, the Electronic Nose
(E-nose) has been applied in many fields, including aided medical diagnosis [1,2], food engineering [3],
environmental control [4,5], and explosive detection [6]. Specifically, Metal Oxide Semiconductor (MOS)
gas sensors, which have the advantage of cross-sensitivity, broad spectrum response, and low-cost,
have been widely used in conjunction with the E-nose [7]. Identification of an unknown odor is the
core content of the research and application of the E-nose. However, in the general environment,
adaptive identification is very difficult due to the inherent inconsistency (e.g. sensitivity, selectivity,
and reversibility) of the manufacturing process of sensors. As a dynamic process, signal drift, caused by
poisoning, aging, or environmental changes, is one of the most important defects of gas sensors [8], and it
reduces the selectivity and sensitivity of gas sensors. Once the sensor’s signal drifts, the input–output
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relations built at the calibration phase will be destroyed, rendering the classification or regression
model invalid for the E-nose and diminishing its practicality. It has not been possible to create a gas
sensor without drift because of the limitations of the relevant technology.

Strategies that are frequently used to solve the problem of sensor drift within the chemical sensing
field may be either univariate or multivariate, and include methods in which drift compensation
is performed either on each sensor individually or on the entire sensor array, such as baseline
calibration [9] and component correction [10,11]. There are several drawbacks to these methods.
For example, they require extra reference gas to approximate the drift direction by assuming that
the drift tendency of each sensor is the same. Ensemble learning, an important branch of machine
learning, has attracted much attention and has been used to cope with sensor drift [12,13]; it can
improve the generalization performance of the learning algorithm by building and combining multiple
learners. Although this type of approach automatically adapts classifier to drift, it cannot calculate or
explicitly describe the drift [14]. In addition, one must use the label of the target data (to be tested)
during the process of model training, which is insignificant in practice. With the improvement and
development of machine learning theories, transfer learning has recently become a focus in the field
of computer vision [15], and it is also used to address the problem of sensor drift [16–18]. The ideal
solution based on transfer learning will avoid expensive data-labeling efforts and thus greatly enhance
learning performance, given that no labeled data in the target domain is available while much labeled
data in the source domain is available [19].

In this paper, we extend the understandings of Hilbert–Schmidt independence criterion (HSIC)
and feature extraction method based on Fisher Linear Discriminant (FLD), to improve the transferring
capability and generalization of a general-purpose machine learning method among multiple domains,
with very few labeled guide instances in the target domain. Motivated by the idea of “domain
features” [18], we first defined “concentration features” for the samples to rank the concentration
information. Then, a latent feature space was found, in which the samples are mostly independent of
the concentrations, in terms of the HSIC [20]. However, for data which is collected from long-term
measurement processing, it was difficult to eliminate all the interference of the drift only by means of the
HSIC-based model. We think that the differences which are caused by the sensor’s self-drift (without
concentration interference) still exist among domains. The drift caused by unequal concentration is the
main factor for the gas classification, but the sensor’s self-drift (self-aging, long-term drift, etc.) could
not be overlooked. Then, we minimized the within-class scatter while maximizing the between-class
scatter, from source domain to target domain based on the FLD, to further reduce the differences of
data distribution among domains.

The remainder of this paper is organized as follows. Section 2 introduces related work on
HSIC-based feature extraction and unsupervised domain adaptation. Concentration features and the
Fisher development criterion are described in Section 3 in detail. In Section 4, we show the experimental
process in detail and analyze the experimental results. Conclusions are drawn in Section 5.

2. Related Work

2.1. Maximum Independence of Domain Feature

Researchers have aimed to reduce the dependence between the extracted features and the domain
feature (or device feature) using the Hilbert–Schmidt Independence Criterion (HSIC) [18]. According to
reference [20], the estimation of the HSIC is shown as follows. Let Z = {(x1, y1), . . . . . . , (xn, yn)} ⊆X×Y
be a series of n independent samples drawn from pxy. An estimation of HSIC, written as HSIC (Z, F,
G), is defined as:

HSIC(Z, F, G) = (m− 1)−2tr(KHLH), (1)

where H, K, L∈Rn×n, Kij = k(xi, xj), and Lij = k(yi, yj) represent the kernel matrices associated with
RKHSs F and G, respectively, and H = 1 − n−111T. For suitable kernels, HSIC (pxy, F, G) = 0 if, and only
if, x and y are independent [21].
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2.2. Unsupervised Domain Adaptation

The transfer learning methods generally can be divided into three categories: (1) instance-based
methods, (2) model-based methods, and (3) feature-based methods [22]. We have given more attention
to feature-based methods, which attempt to preserve important properties (geometric structure and
statistical properties), or to reduce the discrepancy of distribution across domains. Maximum Mean
Discrepancy (MMD) was used to evaluate any dissimilarity across the empirical distributions of
the source and target domains [23]. For example, Transfer Component Analysis (TCA) searches
a latent space in which the variance of the data is preserved as much as possible, and the distance in
the marginal distribution is reduced across domains [24]. Long et al. proposed a joint distribution
adaptation method (JDA) to match both marginal and conditional distribution between domains [25].
However, these methods ignore the differences in class proportion between different domains. Geodesic
flow kernel (GFK) is another popular method used for domain adaptation; it represents the feature
space from the viewpoint of differential geometry, considering the subspaces along a path of geodesic
flow from the source domain to the target domain [16]. The main disadvantage of GFK is that
the constructed subspaces do not represent the original data accurately, because they select a small
dimension for smooth transit across flow [22].

2.3. Fisher Linear Discriminant (FLD)

FLD, as a supervised learning method, has been widely applied in the fields of statistics,
pattern recognition, and machine learning. The goal of FLD is to find a linear transformation, such
that the within-class scatter matrix, Sw, is minimized, and the between-class scatter matrix, Sb, is
maximized. The transform matrix, V, can be computed as:

arg max
V∈ Rn×k

J =
VTSbV
VTSwV

, (2)

where Sw =
ZN∑
Zi

∑
z∈Zi

(z− µi)(z− µi)
T refers to the within-class scatter matrix; Sb =

N∑
i=1

λi(µi − µ)(µi − µ)
T

is the between-class scatter matrix, in which µi is the mean vector in Zi, and µ is the mean vector of all
of the samples; λi is the weight of samples marked class i; and N is the total number of categories.

In general, Equation (2) can be equivalent to:

max
VTSwV=I

tr(VTSbV) (3)

and according to the Lagrange multiplier theory, Equation (3) could be simplified as:

SbV = λSwV. (4)

Finally, the problem of finding the optimal transform matrix, V, is simplified to the solution of
Equation (4) for the k largest eigenvectors.

3. Proposed Method

As we know, when drift exists, the gas measurement or identification result may cause errors.
Sensor drift is inevitable when a device runs continuously for long periods. In this study, we think
that the drift caused by unequal concentration is a main interference factor for the gas classification.
However, the sensor’s self-drift (self-aging, long-term drift, etc.) could not be overlooked, especially in
long-term measurement processing. Users have difficulty determining whether the signal drift is
caused by inconsistent concentration or by the drift of the sensor itself, especially if the concentration
of the sample to be tested is unknown. Therefore, the factors that cause sensor signal drift consists
of two parts: the concentration factor and the sensor’s self-drift. In order to suppress signal drift,
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we proposed the MICF-IFLD method. Firstly, the concentration interference is suppressed based on
the Maximum Independence of the Concentration Features (MICF), and we then eliminate the sensor’s
self-drift using the Iterative Fisher Linear Discriminant (IFLD).

3.1. Maximum Independence of the Concentration Features (MICF)

We proposed the MICF method according to the HSIC. Here, we considered that the concentration
of the gasses used for training impacts the performance of the classifier in the class task of target
domain (a detailed analysis will be shown in Section 4). Thus, we seek to extract a novel feature that is
as independent as possible from the concentration information. First, a set of “concentration features”
was designed to describe and rank the concentration information. We denote X∈Rm×n as the matrix of
n samples, which consisted of training samples and testing samples, and had a concentration range
from tens to thousands of ppm. According to the subject of this study, no tag information (class and
concentration) was available in the testing samples.

We define d j = ln c j, j=1, . . . , n, where cj is the concentration of xj, and the integer portion of dj

is considered the concentration level. The concentration features of matrix Y are set up as follows.
For c-levels of concentration, the analogous one-hot coding scheme can be borrowed; i.e., Y∈Rc×n,
yij = I if xj is labeled as concentration level I, and I =1, . . . . . . , c; yij = 0. Otherwise, xj belongs to the
testing samples. The linear kernel function is selected for the concentration kernel matrix as follows:

Ky = YTY. (5)

For mapping X to a new space, a linear or nonlinear mapping function, Φ, is needed. The exact
form of Φ is not required based on the kernel trick, and the inner product of Φ(X) can be acquired
by the kernel matrix Kx = Φ(X)TΦ(X). Like other kernel dimensionality reduction algorithms [18,26],
the matrix W∈Rn×h (h ≤m) makes the following equation true:

Z = WTKx. (6)

Intuitively, if the projected features are independent of the concentration features, then we believe
that the concentration is no longer affecting the fingerprint of the projected features, which indicates
that the concentration discrepancy in the subspace decreases. As a result, after omitting the scaling
factor in Equation (1), our goal is to find an orthogonal transformation matrix W∈Rn×h such that HSIC
(Z, X, Y) is minimized:

min
WTW=I

tr(KzHKyH) = min
WTW=I

tr(KxWWTKxHKyH) (7)

where Kz represents the kernel matrix of Z.
In transductive transfer learning, the goal is to minimize the difference in data distributions and to

preserve important properties of the original data. According to variance maximization theory, this can
be achieved by maximizing the trace of the covariance matrix of the project samples. The covariance
matrix is:

cov (Z) = cov
(
WTKx ) = WTKxHKxW, (8)

where H = I − n−11n1T
n . An orthogonal constraint is further added to W. The learning problem then

becomes:
max

WTW=I
tr(−WTKxHKyHKxW + µWTKxHKxW), (9)

where µ > 0 is a trade-off hyper-parameter. Using the Lagrangian multiplier method, we can find that
W represents the eigenvectors of Kx

(
−HKyH + µH

)
Kx corresponding to the h largest eigenvalues.

For computing the kernel matrices, Kx and Ky, some common kernel functions are available,
including the Linear function, the Polynomial function, and the Gaussian Radial Basis function.
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3.2. Iterative Fisher Linear Discriminant (IFLD)

It is particularly noteworthy that Z is a mixed samples matrix consisting of samples from
both source domain and target domain where class labels are unavailable. To apply FLD across
domains, we first train a benchmark classifier only on the source domain, and we can then predict
the labels of the testing samples of the target domain. Thus, if we use these labels as the pseudo
target labels and run FLD iteratively, which we define as IFLD, we will gradually improve the
authenticity of these pseudo target labels until convergence. The effectiveness of the pseudo label
refinement procedure, which is similar to the Expectation-Maximization (EM) algorithm, is verified
by experiments. The complete algorithm of the proposed MICF-IFLD is presented as follows.

Algorithm: MICF-IFLD

Input: The matrix of all samples X; class labels and concentration information of the training samples.
Output: The adaptive matrix, V, in Equation (4), the classifier, f.
Begin
Step 1: Construct the concentration features according to MICF.
Step 2: Compute the kernel matrices, Kx and Ky.
Step 3: Obtain orthogonal transformation matrix, W; namely, the eigenvectors of
Kx

(
−HKyH + µH

)
Kx corresponding to the h largest eigenvalues; Z =WT.;

Step 4: Train the classifier based on the labeled features of the projected samples, Z.
Repeat
Step 5: Construct with-class scatter matrix, Sw, and between-class scatter matrix, Sb.
Step 6: Compute transformation matrix, V, according to Equation (4).
Until Convergence.
Step 7: Return to the adaptive matrix, V, and classifier, f.
End

4. Experiments

4.1. Experiments in the Authors Laboratory

We used a dataset that was recorded by a PEN3 E-nose (Airsense Analytics GmbH, Germany [27],
Figure 1) to verify the proposed method. The key part of the E-nose is a sensor array consisting of
10 different metal-oxide-semiconductor (MOS) sensors. Table 1 lists the details of the 10 sensors used
in the experiments [27].Sensors 2018, 18, x  6 of 15 
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Table 1. The details of sensor array in PEN3 [27].

Number Sensor Object Substances for Sensing

MOS1 W1C aroma constituent
MOS2 W5S sensitive to nitride oxides
MOS3 W3C ammonia, aroma constituent
MOS4 W6S hydrogen
MOS5 W5C alkane, aroma constituent
MOS6 W1S sensitive to methane
MOS7 W1W sensitive to sulfide
MOS8 W2S sensitive to alcohol
MOS9 W2W aroma constituent, organic sulfur

compounds
MOS10 W3S sensitive to alkane

First, we prepared ethanol solutions and n-propanol solutions at concentrations of 10%, 20%, 33%,
50%, 67%, 80%, and 90%. Then, for each kind and concentration, three samples were measured every
three days, and the experiments lasted for 45 days. All experiments were conducted in the authors
laboratory (temperature: 25 ± 1°C, relative humidity: 50 ± 2%).

From the measurements on the first day, as shown in Figure 2a,b, the two subgraphs clearly display
that the distributions significantly changed in terms of concentration. By extracting new features
(a set of data which was transformed from the original data by the MICF) that were independent of
the concentrations, it was obvious that the distributions tended to be uniform, which are shown in
Figure 3a,b.
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In addition, we compare the classification performance of the original features (raw data) and
MICF by means of a BP network classifier for the two kinds of samples. The training set was built from
the measurements tested on the first day, and the testing set was based on the last day. It was found
that the accuracy of classification increased from 73.81% to 87.62% after using MICF, as compared to
the original features. Therefore, the various distributions of the measurements caused by different
concentrations is a major obstacle in terms of the qualitative identification of gasses conducted by the
MOS-based E-nose. From the above experiments, it was found that concentration is an important
factor that cannot be neglected in the area of gas classification.

4.2. Experiments on a Publicly Available Gas Sensor Drift Dataset

4.2.1. Gas Sensor Drift Dataset and Experiments Set

The gas sensor drift dataset is a popular publicly available dataset created by Vergara et al. [12,28],
which is used in pattern recognition for gas analysis. The dataset was employed in our experiments
to evaluate the performance of the proposed algorithm for dealing with gas classification tasks that
involve sensor drift. The dataset is created over a period of three years, and it gathers 13,910 records
measured from 16 metal-oxide gas sensors that are positioned in six gasses with different concentrations.
The possible gas type-concentration pairs are all sampled in a random order. Each sample data includes
class label, concentration, and a 128-dimension feature vector (16 sensors, and each sensor contains
two steady-state features and six transient features).

Table 2 details the dataset. Samples are split into 10 batches according to their acquisition time to
ensure a sufficient number of samples in each batch. The goal of our experiment was to identify the
types of gasses as accurately as possible, ignoring the interference of data drift.
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Table 2. Dataset details.

Batch No. Months Etha Ethy Ammo Acetal Acet Tolu Total

1 1–2 90 98 83 30 70 74 445
2 3–4, 8–10 164 334 100 109 532 5 1244
3 11–13 365 490 216 240 275 0 1586
4 14–15 64 43 12 30 21 0 161
5 16 28 40 20 46 63 0 197
6 17–20 514 574 110 29 606 467 2300
7 21 649 662 360 744 630 568 3613
8 22–23 30 30 40 33 143 18 294
9 24, 30 61 55 100 75 78 101 470
10 36 600 600 600 600 600 600 3600

As we learned from [12], the samples in batch 1 were used as labeled training samples, and those
in batches 2–10 were considered unlabeled testing samples. In other words, the measurements of
the labeled samples in batch 1, which we considered to be closest to the true values (data without
drift), was divided into source domain samples. The unlabeled samples in the other batches (batch
2, 3, . . . , 10) were adopted as the target domains. To evaluate the generalization performance of
the proposed method, the model was trained only in the source domain and tested in several target
domains. Before the experiment, we normalized each feature to a zero mean first, and recorded the
unit variance of each batch.

In this three-year Gas Sensor Drift Dataset, although the drift caused by unequal concentration
was the main interference factor for the gas classification, the sensor’s self-drift (self-aging, long-term
drift, etc.) could not be overlooked. In order to strengthen the generalization ability of the MICF-based
model (solving the sensor’s self-drift problem), we proposed an IFLD method, and combined it with
the MICF (named MICF-IFLD) to further improve the accuracy of gas classification.

4.2.2. The Effect of Concentration on Data Distributions

For a given MOS sensors array, fingerprints formed by the same gas with different concentrations
were not consistent because of the non-linear relationship and broad-spectrum response of the sensors,
resulting in a difference in fingerprints, which can be regarded as the data distribution variations in the
feature space.

Taking the ethylene samples in Batch 10 as an example, as shown in Figure 4, the subgraphs a–d
clearly display the distribution changes over concentration. These samples belong to the same category,
even though their distributions appear to be different due to different concentrations, which makes gas
classification more difficult. Therefore, for gas classification, concentration is an important factor that
should be considered, regardless of which domain the samples came from. By extracting new features
that were independent of concentrations based on the MICF, we found that the distributions tended to
be consistent, which is shown in Figure 5a–d.
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original data in each batch is shown in Figure 6. The drift is clearly demonstrated by the different
data distributions among batches. Figure 7 shows the principal component space of 10 batches for all
new data which were transformed from original measurements by the MICF. The results of the data
distribution were not as good as we expected, because the MICF-based model is poor at solving the
problem of long-term gas measurement. It is necessary to consider the interference of the long-term
drift of sensors. In order to solve the long-term drift of sensor, we proposed the IFLD-based model,
and combined it with the MICF-based model to further improve the accuracy in the gas classification
task. The long-term drift will be overcome based on the IFLD during the classification model training.
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4.2.3. Suppression of Sensors Drift Based on MICF-IFLD

In terms of comparisons, several mainstream machine learning methods were employed to
classify the samples with original features, including Random Forest (RF) [29], eXtreme Gradient
Boosting (XGBoost) [30], Support Vector Machine (SVM) [31], and Back Propagation Neural Network
(BPNN). Other transfer learning (domain adaptive)-based methods, such as TCA [19], Comgfk-ml [14],
and SMIDA [18], were also referenced. Based on new projected sample features obtained by the MICF
and the MICF-IFLD, we used the BPNN as the classifier, and the classification accuracy was used to
evaluate the methods’ performance.

Table 3 shows the experimental results. Seven methods were compared, including the mainstream
machine learning methods and transfer learning-based methods. In general, the MICF and the
MICF-IFLD obtained significant improvements in accuracy for several of the batches, and the
MICF-IFLD had the highest accuracy among all the methods. From Table 3, we can draw the
following conclusions:

Table 3. Accuracy of classification obtained by the experiment results (%).

Batch 2 3 4 5 6 7 8 9 10 Average

RF 82.07 76.92 62.11 74.62 52.26 43.54 53.4 32.55 28.61 56.23
XGBoost 84.81 80.01 63.98 78.68 63.48 53.42 56.46 37.45 32.44 61.19
SVM 87.78 77.68 57.14 73.60 62.35 47.91 46.94 32.77 32.25 57.60
BPNN 88.26 78.18 59.63 73.10 55.70 43.15 55.78 35.32 34.92 58.23

TCA 82.96 81.97 65.22 76.14 89.09 68.98 49.32 66.17 49.50 68.82
Comgfk-ml 80.25 74.99 78.79 67.41 77.82 71.68 49.96 50.79 53.79 67.28
SMIDA 83.68 82.28 73.91 75.63 93.00 63.49 79.25 62.34 45.50 72.23
MICF 88.91 83.04 68.94 91.88 83.35 58.04 60.88 56.81 47.86 71.08
MICF-IFLD 95.18 84.05 71.87 93.99 89.54 63.93 65.48 66.50 54.97 76.17

Compared with mainstream machine learning methods without transfer learning, overall,
the MICF and the MICF-IFLD performed significantly better than the other methods. The single MICF
model can effectively reduce the interference caused by the concentration in the gas classification task,
and the fusion MICF-IFLD model presents the best results over several iterations between the source
domain and the target domain.

Additionally, the performance of all participating methods in Table 3 degrades over time because
of the distance between the target domain and the source domain, which leads to the gradual increase
of drift measures. Therefore, the MICF-IFLD can improve the performance and reduce the recalibration
rate, but the method still cannot fundamentally resolve the sensor drift.
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4.3. Experiments on the Application of Commercial Chinese Liquor Classification

4.3.1. Experimental Samples and Experiment Setup

The measurements were carried out on three different kinds of commercial Chinese liquor
samples (their details were shown in Table 4) provided by Hunan Xiangjiao Liquor Industry Co., Ltd.,
over one year to verify the impact of sensor drift on the online measurements. For each kind of liquor,
samples came from three production lots. For each kind and each lot, 30 samples were considered for
experimentation. Five samples were tested every two months; that is, 45 samples from all samples
were tested every two months. The experiments lasted for one year (12 months) and 270 samples in
total were measured. In other words, the same kind and lot of samples had been stored for different
numbers of days when they were tested. As we know, Chinese liquor is produced by the blending of
basic liquor, and the concentrations of the liquor vary from different production lots [32]. More notably,
even for the same kind and lot of liquor, the alcohol content is slightly different due to technical or
measurement error, and the alcohol content slowly decreases as the storage time increases. In order to
fully verify the MICF-IFLD method we proposed, our goal is to distinguish between the three different
kinds of the liquors, regardless of their lots, and to overcome data drift. Only the data tested in the first
two months was used to train the classification model, and the subsequent measured data was used
for testing separately.

Table 4. The details of Chinese liquors in the experiment.

No. Chinese
Liquors Flavors Proof Date of Production Place of Origin Price/Bottle ($)

A Yao Qing Nong Jiang 101.6
Lot 1,2017.9,
Lot 2,2018.1,
Lot 3,2018,3,

Shaoyang, Hunan,
China 205

B
Kai
Kouxiao-Jiu
Nian

Strong 101.6
Lot 1,2017.9,
Lot 2,2018.1,
Lot 3,2018,3,

Shaoyang, Hunan,
China 28

C
Xiang
Jiao-Hong
Zuan

Nong Jiang 101.6
Lot 1,2017.9,
Lot 2,2018.1,
Lot 3,2018,3,

Shaoyang, Hunan,
China 115

We used the same PEN3 E-nose that was mentioned in Section 4.1 for our experiments. The size
of the raw dataset for the E-nose was 3 (kinds) × 3 (lots) × 5 (samples) × 6 (two months) which equaled
270 samples. The measured data for each of the two months was named chronologically as Batch 1,
. . . , Batch 6, respectively. All experiments were conducted in the authors’ laboratory (temperature:
25 ± 1 °C, relative humidity: 50 ± 2%).

4.3.2. Experimental Results Based on MICF and MICF-IFLD

The 45 samples in Batch 1 were analyzed by PCA, as shown in Figure 8a, and the scatters clearly
displayed the distribution difference over kinds and lots. From the plot, it was found that while
different kinds of samples were clustered in different regions, the distribution of samples with different
lots in the same category were still slightly different. For manufacturers and consumers, the difference
between different lots should be ignored. By extracting new features that are independent of lots using
the MICF, it was obvious that the distributions of the different kinds of samples tended to be separable,
and the distributions of the different lots tended to be uniform, which was shown in Figure 8b.
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and (b) new features that are independent of lots extracted from original measurements by the MICF.

By showing each batch data changing over time, we compared all batches of sample data (six
batches in a year) distributions before and after implementing by the MICF, which were shown in
Figure 9. The three subgraphs (9a,b,c) represent the original data distributions of the three types of
liquors, respectively. The Figure 9d,e,f represent the data distributions after the MICF transforming.
It was found that the proposed MICF model can also effectively suppress cross-domain drift.
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Figure 9. Projections of the two first primary components of the PCA computed for original data
and new data which were transformed by the MICF: (a) original Yaoqing samples data, (b) original
Kaikouxiao samples data, (c) original Xiangjiao samples data, (d) new Yaoqing samples data, (e) new
Kaikouxiao samples data, and (f) new Xiangjiao samples data.

We tried to identify the three kinds of liquors as accurately as possible, while suppressing the
data drift caused by the different production lots and the passage of time. The drift suppression
experiments were performed in the gas classification task based on the MICF-IFLD method that we
proposed. Additionally, the samples in Batch 1 were labeled and used for training, while those in
Batches 2–6 were testing samples without labeling.
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Table 5 shows the experimental results, in which the number indicates the number of correctly
classified samples in the 45 testing samples of each batch. We found that the MICF-IFLD model achieves
the highest average accuracy among all the methods. Compared with several other popular methods
(BPNN, SVM, RF) without transfer learning, the MICF-IFLD performed significantly better overall.
Although the performance of the four methods listed in Table 5 degrades over time, the proposed
method can improve performance and decrease the recalibration rate, which provides theoretical
guidance for solving the drift problem of similar instruments in long-term online applications.

Table 5. Accuracy of classification obtained by BPNN, SVM, RF, and MICF-IFLD (number of correctly
classified samples and accuracy).

Batch 2 Batch 3 Batch 4 Batch 5 Batch 6 Average

BPNN 40(88.89%) 36(80.00%) 30(66.67%) 27(60.00%) 25(55.56%) 31.6(70.22%)
SVM 39(86.67%) 34(75.56%) 32(71.11%) 26(57.78%) 25(55.56%) 31.2(69.33%)
RF 37(82.22%) 34(75.56%) 33(73.33%) 29(64.44%) 23(51.11%) 31.2(69.33%)
MICF-IFLD 41(91.11%) 38(84.44%) 34(75.56%) 33(66.67%) 29(64.44%) 35(77.78%)

The contribution rate of each sensor in the E-nose in the classification task is shown in Figure 10,
from which we can see that the fifth MOS sensor has the largest contribution for distinguishing those
three types of liquors.
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5. Conclusions

In this paper, we demonstrate the negative effect of concentration features in gas classification
tasks. The method maps a subspace that has the maximum independence of the concentration features
based on the HSIC criterion, which reduces the inter-concentration discrepancy among the distributions.
Our experiments show that MICF effectively improves the performance of the gas classification task.

To reduce the drift caused by the sensor itself or by the environment, the IFLD was used to further
extract the signal features by reducing divergence within each class and increasing divergence among
classes, which helps to prevent inconsistent ratios of different types of samples among the domains.
Combined with the IFLD, the accuracy of the classification was further improved. It was found that
the MICF-IFLD method was simple and effective, and that this method achieved the best accuracy
(76.17%) as compared with the existing methods based on the Gas Sensor Drift Dataset. Because of the
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simplicity and effectiveness of the MICF-IFLD, this method could reduce interference caused by the
sample itself while dealing with the tasks of transfer classification.

The MICF-IFLD suppression method of concentration background noise is proposed in this
study. It improves the robustness of the prediction model for interference suppression when using the
MOS-based E-Nose.
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