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Abstract: Four state-of-the-art metaheuristic algorithms including the genetic algorithm (GA), particle
swarm optimization (PSO), differential evolutionary (DE), and ant colony optimization (ACO) are
applied to an adaptive neuro-fuzzy inference system (ANFIS) for spatial prediction of landslide
susceptibility in Qazvin Province (Iran). To this end, the landslide inventory map, composed of 199
identified landslides, is divided into training and testing landslides with a 70:30 ratio. To create
the spatial database, thirteen landslide conditioning factors are considered within the geographic
information system (GIS). Notably, the spatial interaction between the landslides and mentioned
conditioning factors is analyzed by means of frequency ratio (FR) theory. After the optimization
process, it was shown that the DE-based model reaches the best response more quickly than other
ensembles. The landslide susceptibility maps were developed, and the accuracy of the models
was evaluated by a ranking system, based on the calculated area under the receiving operating
characteristic curve (AUROC), mean absolute error, and mean square error (MSE) accuracy indices.
According to the results, the GA-ANFIS with a total ranking score (TRS) = 24 presented the most
accurate prediction, followed by PSO-ANFIS (TRS = 17), DE-ANFIS (TRS = 13), and ACO-ANFIS
(TRS = 6). Due to the excellent results of this research, the developed landslide susceptibility maps
can be applied for future planning and decision making of the related area.

Keywords: landslide susceptibility; GIS; remote sensing; ANFIS; metaheuristic optimization

1. Introduction

Slope failures are ubiquitous major disasters causing many financial and physical damages
worldwide every year. Varnes and Radbruch-Hall [1] presented a definition of a landslide as any
downward mass movement caused by gravity on slopes (e.g., artificial deposits, soil, and natural cliffs).
Global reports state that developing countries have witnessed the majority (more than 90%) of the
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landslide events that have occurred around the world. Additionally, landslides are responsible for
more than 17% of the reported fatalities [2]. Due to the large number of landslides that have occurred
in recent decades, Iran is recognized as a landslide-prone area. It is noteworthy that the largest debris
flow in the world, the Seimareh landslide, occurred in western Iran [3]. In another event, slope cutting
and removal of the toe buttress triggered the Manjil landslide in 2013. It occurred on the Qazvin–Rasht
freeway and led to blockage of the freeway [4].

As is known, landslide susceptibility mapping is an essential prerequisite for landslide risk
management [5,6]. A proper landslide risk assessment entails determining the effective landslide
parameters for discovering the spatial relationship between them and occurred landslides. Up to now,
plenty of theories have been utilized for this purpose in many specific areas. Some of them are based on
statistical rules, which aim to determine the importance of each independent landslide factor through
assigning weights. Novel intelligent models are also proposed for approximating the susceptibility of
an area through learning the mathematical relationship between a landslide and its related factors [7,8].

Many scholars have employed statistical-based methods for landslide susceptibility assessment [9–11].
Fayez, et al. [12] successfully implemented the FR model for landslide susceptibility assessment in
India. In a comparative study, Chen, et al. [13] used frequency ratio (FR), weights-of-evidence (WoE),
and statistical index (SI) methods for producing the landslide susceptibility map of Qianyang County
(China). Considering 13 landslide-related factors, they achieved the proposed maps with 78.53%, 79.35%,
and 79.40% prediction accuracies, respectively for WoE, SI, and FR models. Analytical hierarchy
process (AHP) is another popular method employed in landslide susceptibility mapping [14,15].
Yan, et al. [16] used the integration of AHP with normalized FR with the cloud model for landslide
susceptibility assessment. Moreover, Yang, et al. [17] investigated the landslide susceptibility modelling
in Sichuan Province (China) using a spatial logistic regression (SLR) approach. They also developed
a GeoDetector-based method for the proper selection of the landslide-conditioning parameters.
Their findings showed that the estimation precision of the proposed model was about 11.9% higher
than typical logistic regression (LR). Liu and Duan [18] conducted a comparison among the WoE, SI,
and Index of Entropy (IoE) for quantitative assessment of landslide susceptibility in Shangnan County
(China). According to the results, the WoE (with around 76 and 75% accuracy rate for the training and
testing data, respectively) outperformed two other models. A new integrated statistical method, called
B-GeoSVC, was proposed by Yang, et al. [19] as a reliable evaluative approach for both regional and
local scales.

Moreover, various intelligent predictive models like the artificial neural network (ANN), adaptive
neuro-fuzzy inference system (ANFIS), and support vector machine (SVM) have been promisingly
employed for forecasting the landslide susceptibility risk [20–22]. Aditian, et al. [23] showed the
superiority of the ANN (success rate = 0.734) for landslide susceptibility evaluation in Indonesia,
in comparison with FR (success rate = 0.688), and LR (success rate = 0.687). Polykretis, et al. [24]
examined the capability of different models of ANFIS. Based on the calculated prediction accuracies
(i.e., between 0.7 to 0.90), all implemented models are reliable enough to be used for the mentioned
purpose. Likewise, Chen, et al. [25] evaluated the capability of three state-of-the-art predictive models
of ANFIS combined with FR (ANFIS-FR), generalized additive model (GAM), and SVM in landslide
susceptibility assessment in Hanyuan County (China). This study showed that SVM presents the most
accurate prediction (accuracy = 87.5%), followed by ANFIS-Fr (accuracy = 85.1%) and GAM (accuracy
= 84.6%). Pham, et al. [26] proposed a hybrid predictive model named rotation forest-based radial basis
function neural network for landslide susceptibility zonation of the Himalayan area, India. They found
that the proposed model could be a good alternative for this aim, due to the better performance than
LR, multi-layer perceptron neural network, the hybrid of rotation forest and decision trees (RFDT),
and naïve Bayes (NB).

Furthermore, many studies have focused on the development of hybrid metaheuristic algorithms
incorporated with typical models in order to achieve more powerful predictive tools [27–29].
Nguyen, et al. [30] used particle swarm optimization (PSO) and artificial bee colony (ABC) metaheuristic
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techniques to optimize the performance of the ANN for landslide susceptibility mapping at northern
Iran. The calculated area under the curve (AUC) values revealed that the prediction accuracy of the
MLP increased from nearly 77% to around 86% and 80%, respectively by applying the PSO and ABC
algorithms. Likewise, Chen, et al. [31] coupled three optimization techniques of PSO, genetic algorithm
(GA), and differential evolution (DE) with the ANFIS for spatial hazard assessment of landslide in
Hanyuan County (China). The AUC of all three ensembles obtained higher than 0.75. In addition, the
ANFIS-DE (AUC = 0.844) emerged as the most promising ensemble technique, followed by ANFIS-GA
(AUC = 0.821), and ANFIS-PSO (AUC = 0.780). Tien Bui, et al. [32] combined imperialist competitive
algorithm (ICA) and relevance vector machine (RVM) for landslide susceptibility modelling of Lang Son
City (Vietnam). At the same time, they considered the SVM and LR as benchmark models. They showed
that the suggested RVM-ICA outperformed SVM and LR with respective AUCs of 0.92, 0.91, and
0.87, respectively.

As mentioned above, various studies have successfully used the ANFIS for landslide susceptibility
assessment [33,34]. However, hybrid ensembles of this model have been broadly used for similar
applications like flood [35] and forest fire susceptibility [36] assessment. To the best knowledge of the
authors, optimizing this model with metaheuristic algorithms for landslide susceptibility mapping
has been rarely explored [37]. Hence, the essential novelty of this research lies in synthesizing four
wise evolutionary algorithms, namely GA, PSO, DE, and ant colony optimization (ACO) with ANFIS
to remedy its computational shortcomings like local minimum [38] and dimension dangers [31] in
spatial modelling of the landslide. Besides, the study area (i.e., Qazvin County, Iran) is a relatively
landslide-prone area that has not been sufficiently investigated in prior studies. In this regard, followed
by providing the required spatial database, the FR index is calculated to measure the importance of each
sub-class of the considered conditioning factors. Then, the landslide susceptibility maps are generated by
each model, and the results are validated by the area under the receiving operating characteristic curve
(AUROC), mean square error (MSE), and mean absolute error (MAE) accuracy criteria. The proposed
models, however, may be applicable to other areas with similar environmental conditions.

2. Materials and Methods

2.1. Study Area

The study area is Qazvin County, located in Qazvin Province, one of the 31 provinces of Iran, in
the north-western part of the country. Figure 1 illustrates the exact location of Qazvin County. It covers
roughly 4992 km2 and lies within the longitude 48◦58′ to 50◦51′ E and latitude 36◦08′ to 36◦48′ N.
In the northern watersheds of Qazvin, the Shahrood river flows, which is the result of joining Taleghan
and Alamut rivers [39]. Due to the presence of the Alborz mountains, this area is known to have a
mountainous climate [40], and approximately half of the area is covered by mountainous pastures.
The altitude ranges from 239 to 4093 m above the sea level, and it is higher than 1200 m in the major
part of the area [4]. The average temperature of the hot and cold seasons is reported as approximately
28 ◦C and 1 ◦C, respectively. Also, the annual precipitation in most parts of the county is higher than
500.5 mm [40]. The slope ranges from 0◦ to 45◦, where more than 70% of the area contains gentle slopes
(i.e., slope lower than 15◦). According to the Geology Survey of Iran (GSI), Qazvin County lies on a bed
with 25 geology units. Among them, two groups of Dacitic andesitic volcanic tuff and sandy limestone,
Marl, calcareous sandstone, and minor conglomerate are the most common rocks, covering 19.45% and
16.20% of the county, respectively. Also, the soil map shows that approximately 60% of the study area
is categorized as Rock Outcrops/Entisols soil.
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the target variable. All layers are produced and processed in the geographic information system (GIS) 
with a pixel size of 10 × 10 m [42−44]. Figure 2 illustrates a map of the mentioned landslide-related 
factors. 

Providing a valid landslide inventory map is an essential step in the susceptibility analysis of 
this natural hazard [45]. In the study area, a total of 199 landslides were marked using previous 
records from the national geoscience database of Iran (NGDIR), as well as satellite imagery (IRS: LISS-
III) and interpreting the aerial photos (in 1 : 25000 scale) covering the past 20 years (i.e., 1995 – 2015) 
[46]. It should be noted that the identified landslides are mostly translational and rotational slope 
failures are rarely observed. Some field photographs of landslides that occurred in Qazvin Province 
can be found in a research by Arjmandzadeh, et al. [47]. Out of the marked landslides, 139 events (i.e., 
70% of the whole dataset) are randomly selected and used for the training phase, and the remaining 
60 events (i.e., 30% of the whole dataset) are allocated to the validation phase. Besides, 199 non-
landslide points are randomly produced over the areas devoid of landslides and divided into the 
training and testing parts with the same proportions. 

Figure 1. Location of the study area, and spatial distribution of landslides and non-landslide points.

The spatial distribution of the identified landslide, as well as the non-landslide points, is illustrated
in Figure 1 over the hill shade map of the study area. According to this figure, the majority of slope
failures have occurred in the right half of the Qazvin County, mostly along the territorial roads and
detected faults.

2.2. Data Preparation and Spatial Relation Between the Landslide and Related Factors

When it comes to implementing intelligent models, using a valid dataset is very important [41].
The dataset used in this study consists of thirteen landslide condition factors, including elevation,
slope aspect, climate, plan curvature, soil type, lithology, distance to the river, distance to the road,
distance to the fault, land cover, slope degree, stream power index (SPI), and topographic wetness
index (TWI) as the input variables, and landslide occurrence (0 = no landslide and 1 = landslide) as the
target variable. All layers are produced and processed in the geographic information system (GIS) with
a pixel size of 10 × 10 m [42–44]. Figure 2 illustrates a map of the mentioned landslide-related factors.

Providing a valid landslide inventory map is an essential step in the susceptibility analysis of this
natural hazard [45]. In the study area, a total of 199 landslides were marked using previous records
from the national geoscience database of Iran (NGDIR), as well as satellite imagery (IRS: LISS-III)
and interpreting the aerial photos (in 1:25000 scale) covering the past 20 years (i.e., 1995–2015) [46].
It should be noted that the identified landslides are mostly translational and rotational slope failures
are rarely observed. Some field photographs of landslides that occurred in Qazvin Province can be
found in a research by Arjmandzadeh, et al. [47]. Out of the marked landslides, 139 events (i.e., 70% of
the whole dataset) are randomly selected and used for the training phase, and the remaining 60 events
(i.e., 30% of the whole dataset) are allocated to the validation phase. Besides, 199 non-landslide points
are randomly produced over the areas devoid of landslides and divided into the training and testing
parts with the same proportions.
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The FR theory is also considered to measure the spatial correlation between the landslides and
conditioning factors. Each sub-class of the landslide conditioning layers receives an FR value. In this
sense, the higher the values of FR, the more significant of the proposed sub-class [48]. This index is
expressed as follows:

FR =
Nlandslide
Ndomain

(1)

where Nlandslide and Ndomain respectively denote the percentage of the landslide events located in the
proposed sub-class and the percentage of the domain covered by it. Figure 3 shows the results of the
FR analysis.
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  Figure 2. Landslide conditioning factor, percentage of the area for each sub-class, and the calculated FR

for: (a) elevation, (b) slope aspect, (c) climate, (d) plan curvature, (e) soil type, (f) lithology, (g) distance
to river, (h) distance to road, (i) distance to fault, (j) land cover, (k) slope degree, (l) SPI, and (m) TWI.
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A digital elevation model (DEM) of the Qazvin County with 10 m spatial resolution was created
from topographic data (contours and survey base points) at 1:25000 scale. This layer is subsequently
used for generating the GIS layer of some landslide conditioning factors including elevation, plan
curvature, slope aspect, and slope degree of the study area. The altitude varies in the range of 239−4093
m, and more than 70% of the area is above 700 m. The elevation layer was classified into six classes with
500 m intervals [49] and the highest FR is obtained for the elevations between 800 and 1300. Based on
the values in the range of [0–360◦], the slope aspect layer is classified into nine groups including North
(0–22.5◦), North-East (22.5–67.5◦), East (67.5–112.5◦), South-East (112.5–157.5◦), South (157.5–202.5◦),
South-West (202.5–247.5◦), West (247.5–292.5◦), North-West (292.5–337.5◦) and North (337.5–360◦).
The FR analysis shows that North (0–22.5◦), North-East, North-West, West, and North (337.5–360◦) have
this value larger than 1. Plan curvature was classified into three categories of Concave (<−0.001), Flat
(−0.001–0.001), and Convex (>0.001) [50], which the first group is more important due to the calculated
FR = 1.04. The slope of the study area ranges from 0 to 45◦, where the majority of them are gentle
slopes (i.e., lower than 15◦). The slope layer was classified into six groups with 5◦ intervals [51,52].
The obtained FR for three groups of (5–10◦), (10–15◦), and (15–20◦) are 1.22, 1.41, and 1.21, respectively,
which shows more correlation of these groups in comparison with (0–5◦), (20–25◦), and >25◦.

Five different climates are found for the proposed area labeled as semi-dry (intense), semi-humid,
humid, semi-dry (low), and semi-dry (moderate). Around 9% of the area is under the second climate
with FR = 2.21. Seven categories form the soil type map of Qazvin including Inceptisols, Rock
Outcrops/Entisols, Mollisols, Aridisols, Alfisols, Water Body, and Rock Outcrops/Inceptisols. Among
these, the first category emerges as the most significant one for landslide occurrence. Based on the
lithology map, provide from Geology Survey of Iran (GSI), twenty-five different rocks form the geology
of the area. The description of these units and the calculated FR are presented in Table 1. Note that,
the lithology units shown by TRJs and gb have shown the highest sensitivity to the FR analysis with
respective values of 5.80 and 5.54.

The effect of the linear phenomena including the distance from the river, road, and fault is taken
into consideration by calculating the Euclidean distance [20] from them. Consequently, three GIS
layers of distance to the river, distance to the road, and distance to the fault are generated and classified
into five categories with 100 m intervals [53,54]. Accordingly, the most significant of them are (0–100)
m (FR = 1.17), (100–200) m (FR = 3.09), and (300–400) m (1.23), respectively. Based on the land use map,
five utilizations of land are found for the study area including “Agriculture”, Pasture, Mountainous
Pasture, Forest (mainly oak), and Agriculture (Dry farming). Among these, the largest FR = 1.44 is
obtained for the second label.
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(d) plan curvature, (e) soil type, (f) distance to river, (g) distance to road, (h) distance to fault, (i) land
cover, (j) slope degree, (k) SPI, and (l) TWI.

Table 1. The description of the lithology units.

Name Symbol Description Geological Age Age Era FR

A Qft1 Vally terrace deposits and high level piedmont fan Quaternary Cenozoic 0.1342

B Mm,s,l Calcareous sandstone, Marl, sandy limestone, and minor
conglomerate Miocene Cenozoic 1.8086

C Ek Well bedded green tuff and tuffaceous shale (KARAJ FM) Eocene Cenozoic 1.8527

D Ebv Basaltic volcanic rocks Middle. Eocene Cenozoic 1.4191

E Ek.a Calcareous shale with subordinate tuff (Asara Shale) Middle. Eocene Cenozoic 0.0000

F Pr Dark grey medium-bedded to massive limestone
(RUTEH LIMESTONE) Permian Paleozoic 0.9016

G TRJs Dark grey shale and sandstone (SHEMSHAK FM.) Triassic-Jurassic Mesozoic 5.8083

H Eksh Greenish-black shale and partly tuffaceous with
intercalations of tuff (Lower Shale Member) Middle. Eocene Cenozoic 0.0000

I Qft2 Low level piedment fan and vally terrace deposits Quaternary Cenozoic 0.9509

G Edavt Dacitic andesitic volcanic tuff
Middle-Late.

Eocene Cenozoic 0.1144

K Pgkc Light-red coarse grained, and polygenic conglomerate
with sandstone intercalations Paleocene-Eocene Cenozoic 1.0196

L Ogr-di Granite to diorite Oligocene Cenozoic 0.0000

M Eav Andesitic volcanics Middle. Eocene Cenozoic 0.8304

N Kbv Basaltic volcanic Early. Cretaceous Mesozoic 0.0000

O Ktzl Thick bedded to massive, and white to pinkish
orbitolina bearing limestone (TIZKUH FM) Early. Cretaceous Mesozoic 0.0000

P TRe

Thick bedded grey o’olitic limestone, thin-platy, yellow
to pinkish shaly limestone with worm tracks and well to

thick-bedded dolomite and dolomitic limestone
(ELIKAH FM.)

Early-Middle.
Triassic Mesozoic 0.0111

Q gb Gabbro Eocene Cenozoic 5.5427

R Edav Dacitic to Andesitic volcanic Eocene Cenozoic 0.4563

S Cb Limestone, alternation of dolomite, and verigated shale
(BARUT FM) Cambrian Paleozoic 0.0000

T Jl Light grey, and thin-bedded to massive limestone (LAR
FM) Jurassic-Cretaceous Mesozoic 3.5884

U Edt Rhyolitic to rhyodacitic tuff Eocene Cenozoic 2.6755

V Qabv Andesite to basaltic volcanics Quaternary Cenozoic 0.2398

W Odi Diorite Oligocene Cenozoic 0.7280

X Ekgy Gypsum Late. Eocene Cenozoic 0.0000

Y Ebt Basaltic tuff Eocene Cenozoic 0.0000
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Finally, for applying the geo-morphometric impacts, two secondary factors of SPI and TWI are
calculated based on Equations (2) and (3) [55,56]. This is noteworthy that these factors represent the
erosion power of streams and the amount of accumulated water in a place, respectively.

SPI = α × tan β, (2)

TWI = ln (α/tan β), (3)

in which α and β are the specific catchment and gradient, respectively.

2.3. Methodology

Figure 4 shows an overall view of the steps were taken to achieve the goal of the study. Briefly,
after providing a proper spatial database, the existing GIS rasters were converted into ASCII format.
The proposed GA, PSO, DE, and ACO metaheuristic algorithms were designed and coupled with
ANFIS in the programming language of MATLAB 2014. Each model performed to estimate the
landslide susceptibility index. Then, the landslide susceptibility map of each model is produced in the
GIS environment, using the produced values. Finally, three accuracy criteria including the AUROC,
MSE, and MAE are defined to evaluate the efficiency of the implemented techniques. A score-based
ranking system is also developed to compare the efficacy of the models. Equations (4) and (5) express
the formulation of the MSE and MAE error criteria:

MSE =
1
N

N∑
i=1

(Yiobserved −Yipredicted )
2, (4)

MAE =
1
N

N∑
i=1

(Yiobserved −Yipredicted ), (5)

in which N shows the number of involved instances, and Yiobserved and Yipredicted stand for the desired and
estimated values of landslide susceptibility index, respectively.
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In the following section, a description of the ANFIS, GA, PSO, DE, and ACO models is presented.
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2.3.1. Adaptive Neuro-Fuzzy Inference System

The name adaptive neuro-fuzzy inference system (ANFIS) [57] denotes a combination of ANN
and fuzzy-based system to capture the benefits of both of them. In other words, the ANN is employed
to optimize the implemented fuzzy theory for more flexibility of approximation [58]. Utilizing if-then
rules [59] enables ANFIS to present a reliable prediction from various complex problems. It synthesizes
two learning methods of back-propagation gradient descent and least-squares for discerning the
mathematical relationship between sets of input-output data. The performance of the ANFIS can be
expressed in five steps: In the first layer, the membership function (MF) values of the input variables
are calculated. Next, the rule firing strength is calculated and normalized in the second and third
layers, respectively. The outputs of the consequent part are produced in Layer 4, and eventually, the
ANFIS releases the final output from fifth layer.

2.3.2. Genetic Algorithm

Genetic algorithm (GA) is heuristic search techniques first suggested by Holland [60].
This algorithm follows Darwin’s natural selection principles for finding the optimal solution to
a defined problem. Darwin’s survival evolution theory states that the living organism in the future
generation is more suitable than the former one. Generally, five major operators of GA are random
number creator, fitness assessment unit, the genetic operator (i.e., for reproduction), crossover operator,
and mutation operator. A mathematically-defined problem, containing some computational parameters
that need to be optimized, is the input of the GA algorithm. Firstly, a so-called input vector chromosome
is selected. A set of these vectors constructs the colony of GA. Based on biological evolution, the
developed created colony grows and evolves under certain conditions. A function is defined for each
chromosome to evaluate its fitness. Then, the more robustness of the chromosome, the more likelihood
of survive and reproduce. The new generation (i.e., children) is produced through the crossover and
mutation operations. In fact, a child is a result of combining the content of two existing chromosomes.
During a mutation process, a child may receive a new gene which is not from the side of his parents.
The same process is carried out for the new generation to achieve the optimal solution [61]. Note that,
the algorithm continues performing until one of the goals (e.g., the error or maximum iterations) is met.

2.3.3. Particle Swarm Optimization

The main idea of particle swarm optimization (PSO) method is extracted from the social behavior
of bird flocking or fish schooling in the real world. This stochastic method was first suggested by
Kennedy and Eberhart [62]. The PSO initialized with a set of random solutions and updates the
generation for achieving the optimal situation of the problem. Possible solutions, called particles, fly
through the problem space. In this movement, they follow their optimum colleagues. Similar to other
optimization techniques, the goodness of each particle is evaluated by a fitness function. Each particle
saves the track of its coordinates which gives the best fitness value under the name pbest. Another
so-called elite position gbest is defined indicating the best position obtained from all of the particles so
far. The PSO aims to change the velocity (Ri) of each particle toward the location of the discovered
pbest and gbest. Assuming Ni as the particle position, this process can be expressed as follows [63,64]:

N′i = w Ni + C1r1 (pbest −Ri) + C2r2 (gbest −Ri), (6)

R′i = Ri + N′i , (7)

in which C1 and C2 respectively indicate the cognitive and social scaling parameters. Also, w denotes
the inertia weight, and r1 and r2 symbolize the random numbers between 0 and 1.
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2.3.4. Differential Evolutionary Algorithm

Differential evolutionary (DE) is a recently developed hybrid evolution algorithm, which was first
presented by Storn and Price [65]. It has been widely employed to find the globally optimal solution
for an issue defined in continuous space [65,66]. Similar to other optimization methods, the DE gets
started by a random production process, for generating the initial population. Three major steps of
mutation, crossover, and selection are considered to achieve the optimal solution. In the mutation step,
each individual XG

i is employed to produce the mutant vector (i.e., donor vector) VG
i . [67,68]. During

the crossover step, the crossover operators produce a trial vector UG
ji . To do this, a number of relations

of the XG
i should be replaced with the mutant vector VG

i . Lastly, at the selection step, the goodness
value of the UG

i with XG
i are compared for introducing the best choice for the next generation [65].

2.3.5. Ant Colony Optimization

The primary version of ant colony optimization (ACO) method was known as the ant system
which was first designed for optimizing the travelling salesman problem [69]. In fact, the main effort
of this work is to find the shortest path to link the intended cities [70]. In the case of intelligent models,
like ANN and ANFIS, this algorithm aims to achieve the optimal computational parameters of these
networks. A presentable solution is made of some components which are added by ants in each
iteration. The ants consider a probability for selecting these components. Two determinant factors in
this process are the pheromone and the heuristic factors which respectively reflect the past experience
of the relations and the tendency for choosing a component regarding the defined objective function
(OF). In the ACO method, the shortest path is discovered by the artificial ants through leaving a
chemical pheromone trail along the crossed path. They do this for guiding other relations. As a result,
the most promising track is distinguished. Assuming ταi j and ηβi j as the pheromone value and heuristic
factors, respectively, Equation (8) formulates the mentioned probability:

Pq
i j(t) =

ταi j × η
β
i j∑

u∈Nq
i
ταiu × η

β
iu

, (8)

in which Ni defines a neighborhood of the node i.

3. Results

This paper investigates the efficiency of four evolutionary ensembles of a fuzzy-based model,
namely GA-ANFIS, PSO-ANFIS, DE-ANFIS, and ACO-ANFIS for landslide susceptibility assessment.
Qazvin County in Iran is selected as the study area. In this work, considering the common ratio of
70:30, 139 landslides were specified to the training phase, and the remaining 60 landslide points were
used to measure the accuracy of the applied models. In the next step, four hybrid stochastic algorithms
of GA, PSO, DE, and ACO were synthesized with the ANFIS predictive model for fine-tuning the
ANFIS MFs [71]. In detail, when it comes to optimization algorithms, they need some computational
parameters. Regarding the used basic model, these computational parameters can vary (e.g., the
weights and biases in the ANNs). In the case of ANFIS, the mentioned optimization algorithms aim
to find the optimal values for the parameters of MFs. Notably, ANFIS is known as a capable model
due to having a combination of fuzzy inference system (FIS) expert knowledge and neural learning
ability [34]. It has been promisingly used for landslide hazard analysis in previous researches [58,72].
At the beginning of the ANFIS performance, it constructs a basic FIS. The computational units are
then extracted and updated by evolutionary algorithms. Eventually, they are applied to develop the
optimized model.

The number of repetitions for all models determined as 1000 to give enough opportunity for
decreasing the error. Meanwhile, the MSE between the actual and predicted landslide susceptibility
indices were defined as the cost function. Figure 5 depicts the convergence diagram of the GA-ANFIS,
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PSO-ANFIS, DE-ANFIS, and ACO-ANFIS. As is seen, the algorithms have shown different behaviors
for optimizing the ANFIS. The GA-ANFIS, as well as PSO-ANFIS, have started decreasing MSE after
100th iteration. The corresponding curves are on a continuously downward path. The GA-based
ensemble surpasses the PSO-ANFIS and reaches a lower MSE in the final (0.08333771 vs. 0.105558762).
Unlike these, the DE-ANFIS did not show any sensitivity to the number of iterations and remained
steady till the end. The MSE for this model obtained 0.107146933 which shows a very close value to
the cost function of the PSO-ANFIS. As for the ACO-ANFIS, it started with a relatively-high MSE
and reduced it to 0.153427807 within three steps. All in all, DE-ANFIS can be introduced as the
fastest ensemble.
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The results of the training and testing performance of the models are presented in Figure 6
in three parts: (i) A graphical comparison between the actual (targets) and estimated (response)
landslide susceptibility indices, (ii) A schematic view of the calculated error (i.e., the difference between
the targets and system responses), and (iii) A histogram chart showing the frequency of each error
value. To create the landslide susceptibility maps of the implemented models, the produced landslide
susceptibility indices were extracted and inserted to ArcGIS. Additionally, Natural break classification
method [73,74] was applied to classify the resulted maps into five susceptibility categories including
Very-low, Low, Moderate, High, and Very-high susceptible.
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Figure 7 shows the generated maps of the GA-ANFIS, PSO-ANFIS, DE-ANFIS, and ACO-ANFIS
predictions.
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(d) ACO-ANFIS.

As is seen, all four applied ensembles have rightly specified a high level of susceptibility to the
areas with a large aggregation of the landslide points (see the marked area in Figure 7). In addition,
they have fittingly classified the areas devoid of the landslide (mostly in the South and South-West of
the studied area) as low and very low susceptible.

The percentage of each susceptibility map is also calculated. Accordingly, around 28% (1418 km2),
33% (1639 km2), 31% (1568 km2), and 46% (2315 km2) of the studied area is recognized to be under the
high landslide occurrence risk (i.e., high and very high susceptibility classes), respectively from the side
of GA-ANFIS, PSO-ANFIS, DE-ANFIS, and ACO-ANFIS ensembles. Besides, the largest percentage
of the safe areas (very low and low categories) are obtained for the GA-ANFIS (15.48% and 30.82%
respectively). The percentage of the training and testing landslide points located in each susceptibility
class are also calculated and presented in Table 2. According to this table, 78.57%, 76.19%, 81.75%,
and 88.10% of the training landslides, as well as 80.00%, 80.00%, 81.67%, and 93.33% of the testing
landslides are rightly located in the landslide-prone areas by GA-ANFIS, PSO-ANFIS, DE-ANFIS, and
ACO-ANFIS, respectively. Considerably, these values are obtained < 3% in the areas labeled as very
low susceptibility.
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Table 2. The percentage of the training and testing landslides in each susceptibility classes.

Susceptibility
Class

GA-ANFIS PSO-ANFIS DE-ANFIS ACO-ANFIS

Train Test Train Test Train Test Train Test

Very low 1.51 0.00 0.91 0.00 0.00 0.00 1.16 0.00

Low 4.49 4.14 2.98 0.00 2.52 2.99 1.82 1.99

Moderate 11.85 10.43 7.40 0.50 11.43 7.52 10.10 4.06

High 14.03 9.97 13.67 1.31 22.37 19.79 32.92 33.36

Very high 68.13 75.46 75.04 98.19 63.67 69.71 54.00 60.58

For evaluating the accuracy of the generated landslide susceptibility maps, the ROC curve was
plotted. As is known, the area under the ROC curve is a good accuracy indicator for diagnostic
issues [75]. These value ranges from 0.5 to 1 so that the quality of the prediction is directly proportional
to the AUROC value. The ROC curves of the implemented models are shown in Figure 8a,b, respectively,
for the training and testing landslides.
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The obtained values of all three accuracy criteria (i.e., MSE, MAE, and AUROC) are summarized
in Table 3. A score-based ranking system is also developed within this table for better distinguish of
the most capable model. Each accuracy criterion is considered for both training and testing phases to
receive a ranking score varying between 1 to 4. In this regard, the more accuracy the index represents,
the higher score is assigned to it. As is seen, in the training phase, the obtained MSEs and MAEs
for GA-ANFIS (0.0833 and 0.1921), PSO-ANFIS (0.1055 and 0.2295), DE-ANFIS (0.1071 and 0.2476),
and ACO-ANFIS (0.1534 and 0.3335) indicate a lower prediction error for the GA- and PSO-based
ensembles. After those, the DE-based model outperformed the ACO-ANFIS. This claim can also be
supported by respective calculated AUROCs 0.951, 0.925, 0.934, and 0.868. However, the AUROC of
the DE-ANFIS is slightly higher than PSO-ANFIS.

The testing results show a good generalization power of all used models. Accordingly, the obtained
MSEs and MAEs for GA-ANFIS (0.1175 and 0.2438), PSO-ANFIS (0.1430 and 0.2724), DE-ANFIS (0.1579
and 0.3128), and ACO-ANFIS (0.1887 and 0.3755) reveal that the first model has predicted the landslide
hazard index more efficiently than other three models. Also, the PSO-ANFIS emerged as the second
accurate model, followed by DE-ANFIS and ACO-ANFIS. Besides, the values of the AUROC represent
91.6%, 89.9%, 86.8%, and 80.0%. Prediction capability for the GA-ANFIS, PSO-ANFIS, DE-ANFIS, and
ACO-ANFIS, respectively.
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Table 3. The ranking system based on the results of the spatial prediction of landslide susceptibility.

Ensemble Models
Network Results Ranking Score

Total Ranking
Score (TRS) RankTraining Phase Testing Phase Training Phase Testing Phase

MSE MAE AUROC MSE MAE AUROC MSE MAE AUROC MSE MAE AUROC

GA-ANFIS 0.0833 0.1921 0.951 0.1175 0.2438 0.916 4 4 4 4 4 4 24 1
PSO-ANFIS 0.1055 0.2295 0.925 0.1430 0.2724 0.899 3 3 2 3 3 3 17 2
DE-ANFIS 0.1071 0.2476 0.934 0.1579 0.3128 0.868 2 2 3 2 2 2 13 3

ACO-ANFIS 0.1534 0.3335 0.868 0.1887 0.3755 0.800 1 1 1 1 1 1 6 4
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All in all, considering a total ranking score (TRS) as the summation of the scores obtained based
on the mentioned indices, the GA-ANFIS (TRS = 24), emerged as the most promising model for spatial
prediction of landslide hazard in the Qazvin county. After that, the PSO-ANFIS (TRS = 17), DE-ANFIS
(TRS = 13), and ACO-ANFIS (TRS = 6) presented an acceptable prediction accuracy.

4. Discussion

Due to the devastating impacts of the landslides, susceptibility assessment of this natural hazard
has received increasing attention during the last decades [76]. This study addresses the applicability
evaluation of four hybrid integration techniques using the adaptive neuro-fuzzy inference system
coupled with a genetic algorithm, particle swarm optimization, differential evolution and ant colony
optimization for landslide susceptibility analysis in Qazvin Province (Iran). The prediction accuracy of
the designed models was evaluated and compared using the ROC diagram and the AUROC index.
As an advantage of the ANFIS, the basis of this predictive tool is a combination of neural learning
of the ANNs and expert knowledge of FIS [34]. Some researchers have promisingly employed this
model for landslide susceptibility mapping [34,77,78]. Oh and Pradhan [79] revealed that the ANFIS
acts very effectively for regional assessment of landslide susceptibility. They tested various MFs
embedded in this model for estimating the landslide susceptibility values in a prone district of Penang
Island (Malaysia). The findings of the mentioned research demonstrated that the accuracy of the
landslide susceptibility maps obtained from trapezoidal, triangular, polynomial and generalized bell
MFs (accuracy ≈ 84%) surpass the ones produced by four different Gaussian and sigmoidal MFs.

As stated above, the ANFIS has emerged as one of the most powerful machine learning approaches,
but some drawbacks associated with this tool (e.g., the non-adjutancy of membership) drive us to use
hybrid evolutionary algorithms for optimizing its performance. In this paper, four wise optimization
techniques of GA, PSO, DE, and ACO were applied to find the optimal values of the parameters of the
ANFIS. More clearly, these algorithms are stochastic search schemes which perform in a repetitive loop
to minimize a defined objective function. This process results in finding the most appropriate solution
amongst a huge number of candidates.

The results indicated that all used models perform with good accuracy for the mentioned purpose.
Having a look at the obtained accuracy criteria, as well as the spatial interaction between the landslide
points and the susceptibility classes, it can be concluded that the GA-ANFIS (TRS = 24) excelled other
designed ensembles. The PSO-ANFIS (TRS = 17) appeared to be the second accurate model, followed
by the DE-ANFIS (TRS = 13) and ACO-ANFIS (TRS = 6). However, in similar research by Chen, Panahi
and Pourghasemi [31], the superiority of the DE-based ensemble was stated (i.e., in comparison with
PSO- and GA-based models), the outcomes of the present study confirm that the GA outperforms PSO
for optimizing the parameters of the proposed fuzzy system. In fact, the discrete optimizing method of
the GA surpassed the constant method of the PSO. More specifically, the latter algorithm allocates
memory for maintaining every promising solution of all particles. This is while, prior knowledge of
the GA population is antiquated as the new population is involved. Notably, the results of our study
show more robustness in comparison with the mentioned reference.

Reaching the lowest training error (Figure 5) is, perhaps, the main reason for the excellent
generalization power of the GA-ANFIS (91.6% accuracy). We say perhaps because despite a slightly
smaller OF obtained for the PSO-ANFIS (0.1055) compared to DE-ANFIS (0.1071), it gave less training
accuracy (92.5% vs. 93.4%). Moreover, not surprisingly, the appreciable distinction between the
learning capability of the ACO-AFIS and other models (i.e., larger OF) led to weaker performance
for estimating the landslide susceptibility values of the testing points. Altogether, there was no
disagreement between the capability of learning a pattern and generalization power for all models
used in this study. In other words, each model that excelled in the training phase, was superior in the
testing phase, too.

Setting the performance of the applied algorithms aside, the number of iterations that each model
needed to reach the lowest OF was considered as the main factor for evaluating the convergence speed
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of that model (i.e., within 1000 repetitions and regardless the time). It was deduced that the DE-ANFIS
does not show any sensitivity to the number of repetitions, and the first try is the best one. It should be
noted about DE that, unlike other metaheuristic techniques, the vectors of the current generation in this
technique are created through random sampling and combining the vectors belonging to the former
generation. Also, the real-valued mutation and crossover factors cause the convergence of the search
action [80]. Similar to the ACO-ANFIS which Termeh, et al. [81] used for flood susceptibility modelling,
it minimized the OF after a few major fluctuations. As for the PSO- and GA-based ensembles, both
models continued decreasing the error until the end. Now, the main question is “which ensemble
can be introduced as the most suitable model, considering both accuracy and time-effectiveness”?
For answering this question, it should be mentioned that there is a nuance (0.0238 of MSE, 0.0555 of
MAE, and 0.017 of AUROC) between the learning quality of the controversial models of this study
(i.e., GA-ANFIS and DE-ANFIS). Hence, when the time comes out as a determinant factor, the DE-ANFIS
is a more appropriate ensemble for landslide susceptibility assessment. In contrast, in cases that accuracy
plays a more important role, utilizing the GA-ANFIS seems more reasonable.

The methodology proposed in this paper had some limitations too. Using the original
input configuration (i.e., thirteen landslide conditioning factors) resulted in the generation of
high-dimensionality networks which negatively influence the complexity and the computation time of
the models. This issue can be solved by optimizing the input factors by metaheuristic schemes [28].
Also, taking the effect of other environmental parameters (e.g., local drainage networks) into account
could be of interest for future studies. Moreover, referring to the convergence behavior of the elite
models (i.e., the GA and PSO) in Figure 5, they are able to achieve more accurate understanding from
the landslide pattern for further iterations. This is while this parameter was bound to 1000 in this study.

5. Conclusions

The importance of landslide susceptibility mapping for alleviating the damages triggered by this
natural hazard is obvious. Due to the complexity and non-linearity of such modellings, the application
of new intelligent tools like ANN and ANFIS has antiquated many traditional methods. Despite
various benefits of these models, some difficulties like dimension dangers and local minimum still exist.
Such problems have driven scholars to employ hybrid optimization algorithms for optimizing the
performance of typical models, especially for high-dimensional problems like landslide susceptibility
modelling. In the present study, firstly, the FR theory was used to assess the spatial interaction between
the landslides and considered conditioning factors. Then, four wise metaheuristic algorithms, namely
GA, PSO, DE, and ACO were employed to train the ANFIS, for proper landslide susceptibility analysis
in Qazvin County (Iran). In fact, the main duty of the mentioned algorithms is to find the most
appropriate computational parameters of the proposed fuzzy system, in order to decrease the impact
of dimension dangers and local minimum. As the first outcome, the DE-ANFIS model emerged as the
fastest ensemble for minimizing the OF. Eventually, the landside susceptibility maps were produced
and the AUROC criterion was used to evaluate the accuracy of them. Referring to the obtained
accuracies of 91.6%, 89.9%, 86.8%, and 80.0%, respectively for the GA-ANN, PSO-ANFIS, DE-ANFIS,
and ACO-ANFIS ensembles, it was concluded that the GA outperforms other implemented algorithms
in optimizing the performance of the ANFIS. The produced landslide susceptibility maps can be
applied for proper decision making and risk management of landslide in the studied area. However,
the results indicate that the designed models are accurate enough to be an alternative for the mentioned
purpose, the authors believe that more accuracy can be achieved by applying various ideas such as
simultaneous optimization of the input combination and the used predictive model, which seems a
good subject for future studies.
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