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Abstract: Racquet sports can provide positive benefits for human healthcare. A reliable detection
device that can effectively distinguish movement with similar sub-features is therefore needed. In
this paper, a racquet sports recognition wristband system and a multilayer hybrid clustering model
are proposed to achieve reliable activity recognition and perform number counting. Additionally,
a Bluetooth mesh network enables communication between a phone and wristband, and sets-up
the connection between multiple devices. This allows users to track their exercise through the
phone and share information with other players and referees. Considering the complexity of the
classification algorithm and the user-friendliness of the measurement system, the improved multi-layer
hybrid clustering model applies three-level K-means clustering to optimize feature extraction and
segmentation and then uses the density-based spatial clustering of applications with noise (DBSCAN)
algorithm to determine the feature center of different movements. The model can identify unlabeled
and noisy data without data calibration and is suitable for smartwatches to recognize multiple racquet
sports. The proposed system shows better recognition results and is verified in practical experiments.

Keywords: internet of things (IoT); physical activity recognition (PAR); machine learning (ML);
wearable sensors

1. Introduction

Medical research shows that physical exercise can provide positive benefits for human healthcare,
including reduced risks of cardiovascular disease, obesity, stroke, and cancer [1], improved
musculoskeletal health and stress regulation [2], and reduced psychological health burden and
mental disease [3]. Physical activity recognition (PAR), which uses information acquired from a variety
of sensors to automatically detect and analyze physical activities [4], has broad applications such
as behavior correction and medical detection. PAR can quantify activity levels, improve exercise
quality, and reduce healthcare costs. It has been regarded as an important research direction in
human–computer interaction. Oja et al. [5] found that racquet sports seem to be the best forms of
exercise for reducing the risk of death. Therefore, from the perspective of health and recording exercise
effects, it is necessary to provide a reliable racquet sports detection device.

Vision-based PAR mainly uses red-green-blue (RGB) images [6–8], optical flow [9], 2D depth
maps [10], and 3D skeletons [11,12]. Traditional images are susceptible to illumination variations and
camera view angles. Due to inevitable annotation errors, the video dataset is complex for classification.
The method based on depth maps and 3D skeletons can provide fine motion recognition, but these
methods require expensive special facilities for offline calculations and have a large computational load.
Acoustics, vibration, and other environment-based sensors are mostly installed in fixed locations and
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are not suitable for outdoor activities [13]. The deviceless human activity recognition system mainly
uses wireless sensing technology [14]. Researchers use Wi-Fi to obtain channel status information
(CSI) or receive signal strength indicators (RSSIs) to classify different activities [15]. This method has
limited application scenarios and all prototypes are still in the laboratory test stage [16]. Powerful
microcontrollers and energy-efficient wireless data transmission have facilitated the development of
wearable technology, which have provided PAR with a less invasive and lower-cost alternative. In a
sports science context, inertial sensor data based on accelerometer and gyroscope signals are the most
important source of movement analysis [17]. As the most commonly used sensor for acquiring human
activity signals, inertial measurement units (IMUs) are widely used in sports recognition [18–21].
Liu et al. [22] used a body sensor network (BSN) to collect motion data, and a support vector machine
(SVM) was used to identify table tennis movements offline. Conaire et al. [23] used a camera and BSN
to obtain the contour features and acceleration data of the tennis serve movement. The K-nearest
neighbor classifier (KNN) and SVM were used to classify the fused features. Multi-hybrid sensors can
improve the accuracy of activity recognition; however, the configuration of multi-hybrid sensors is
prone to cause the marker crossover phenomenon and interferes with the user’s normal activities [24].
Racquet sports mainly involve movement of the arm. Although acceleration signals on the trunk can
provide better features for basic physical recognition, identifying activities involving the upper limbs
is challenging [25]. Considering the user’s acceptance of sensor position and number, it is expected
that the movements of racquet sports can be recognized by only a wearable sensor on the wrist.

Similar movements exist in racquet sports, such as service and drive. How to effectively distinguish
these movements is a problem. Wang et al. [26] used a two-layer Hidden Markov Model (HMM)
to identify 14 types of badminton movements. Fu et al. [27] used convolutional neural network
models to identify and analyze the ping-pong movements based on inertial sensing data. However,
the above methods cannot provide timely feedback information to users. Wang et al. [28] proposed
an intelligent badminton movements recognition system consisting of Bluetooth low energy (BLE)
technology, a microelectromechanical systems (MEMS) IMU, cloud technology, and machine learning
algorithms. The system only supports access to the recognition results with client Wi-Fi. Despite
intensive research, all current devices have their own limitations, mainly classifying the movement of
a single-type racket sport, and research on multiple racquet sports movement recognition is lacking in
general [29]. A technology that allows instantaneous analysis and data sharing on wearable devices
is desired.

The focus of this paper is on an automated stroke detection and classification system of multiple
racquet sports. This paper extends existing sensor-based movement measuring methods with
a multilayer hybrid clustering model. The proposed model shows good recognition for similar
movements in different racquet sports. Meanwhile, a cheap, real-time, and ultra-portable racket sports
recognition wristband system is designed to collect data and verify the feasibility of the proposed model.

This paper is organized as follows. Section 2 describes the proposed method, including the
wristband system and the multilayer hybrid clustering model. Section 3 validates the system and
discusses the experimental results, and the conclusions are presented in Section 4.

2. Proposed System

The proposed system includes racquet sports recognition wristbands and smartphones. The
architecture of the proposed system framework is presented in Figure 1. Wrist accelerometer and
gyroscope signals are collected through the IMU and transmitted to a microprocessor (MCU) by an
inter-integrated circuit (I2C) bus. In the training stage, the MCU transmits data to a personal computer
(PC) to create datasets, which are used to verify the model designed in this paper. In the exercise,
the MCU uses a complementary filter for data preprocessing, extracting features, and analysis based
on the multilayer hybrid clustering model, identifies the current movement, performs the number
counting, and then displays the information on an organic light-emitting diode (OLED) screen. Data
interaction is through a Bluetooth mesh network. The whole process works in real-time.
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The IMU chosen is the MPU6050, integrating a 3-axis gyroscope and 3-axis accelerometer, and 
using three 16-bit analog-to-digital converters (ADCs) to convert the measured analog signals into 
digital signals. The full-scale range of the IMU is programmable, the accelerometer is set to ±4 g, the 
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movement feature collection [30]. 
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500 mAh) has been used. The USB charging circuit chooses the linear Li-ion battery charger TP4056, 
which uses the P-metal-oxide-semiconductor field-effect transistor (PMOSFET) structure inside and 
sets an anti-reverse charging circuit to ensure no overcharge. 

Figure 1. Proposed system architecture. In the training stage, the wristband collects datasets and the
model feasibility is verified on a personal computer (PC). In the recognition stage, data are acquired
and identified in the wristband, and the system communicates via Bluetooth.

This section introduces the wristband system in terms of hardware, model, and software.
The model, the most important part of this system, is composed of three parts: Data collection,
data processing, and a classification algorithm.

2.1. Hardware Platform

A new integrated wearable sensor platform has been designed to achieve a miniaturized system
(Figure 2). The sensor is equipped with an IMU, MCU, Bluetooth, OLED screen, and battery charge
management chip. The size of the sensor is 38 mm × 34 mm × 20 mm. The parameters of the wristband
are shown in Table 1. Code is written through a universal serial bus (USB).

Table 1. The parameters of the wristband.

Size Voltage Level Screen Resolution Gyro Sensitivity Accel Sensitivity

38 mm × 34 mm ×
20 mm 3.3 V 128 × 64 pixels 16.4 LSB/◦/s 8192 LSB/g

The IMU chosen is the MPU6050, integrating a 3-axis gyroscope and 3-axis accelerometer, and
using three 16-bit analog-to-digital converters (ADCs) to convert the measured analog signals into
digital signals. The full-scale range of the IMU is programmable, the accelerometer is set to ±4 g,
the gyroscope is set to ±2000◦/s, and the sampling rate is configured at 50 Hz, which is enough for
movement feature collection [30].

The MCU chosen is the STM32F103 series chip in the 48PIN package. This chip uses the ARM
Cortex-M3 microcontroller unit. The clock signal is provided by an internal 8 MHz RC oscillator,
and the operating frequency is set to 72 MHz, which can provide high-speed online calculations for
racket sports models. The MCU integrates timer, control area network (CAN), ADC, serial peripheral
interface (SPI), I2C, USB, and universal asynchronous receiver/transmitter (UART) interfaces, which is
beneficial to data interaction.
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complete different movements was different, and the time to complete one movement was between 
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Figure 2. (a) Circuit board of integrated wearable sensor platform. The organic light-emitting diode
(OLED) screen and Bluetooth are modular structures, plugged into the board. (b) Overall structure of
the wristband.
The CC2541 chip is a 2.4 GHz BLE solution and conforms to the Bluetooth v4.0 protocol stack.
The voltage level of the hardware platform is 3.3 V and the regulator chooses the low dropout

regulator (LDO) ME6206. To account for actual use scenarios, a low-capacity battery (Li-ion 3.7 V,
500 mAh) has been used. The USB charging circuit chooses the linear Li-ion battery charger TP4056,
which uses the P-metal-oxide-semiconductor field-effect transistor (PMOSFET) structure inside and
sets an anti-reverse charging circuit to ensure no overcharge.

2.2. Data Collection

A total of 5 healthy subjects (3 males, 2 females; age: 25 ± 5) took part in the data collection
process. Among them, one subject had received 2 years of professional training in badminton, and one
subject had received 4 years of professional training in table tennis. The others were untrained people.
All participants provided written informed consent before participation. Subjects were asked to wear
the racquet sports recognition wristband on their dominant wrist. Subjects were all right-handed. The
datasets were collected in a real training environment (gym).

In the experiment, each subject performed nine kinds of movements: Four types of table tennis
(service, stroke, spin, and picking up), four types of badminton (service, drive, smash, and picking up),
and walking. Each subject performed 20 tests for each movement. For a subject, the time to complete
different movements was different, and the time to complete one movement was between 1 and 1.2 s.
The action in the same movement set was collected continuously, and different movement sets were
collected separately. Then, 100 instances were collected for each movement set, and a total of 900
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instances were collected. During the experiment, the number of actions in each movements set was
manually recorded to label the data set at a later stage.

2.3. Data Processing

Preprocessing and feature extraction are needed for the raw data to construct the features that can
effectively distinguish racquet sports.

2.3.1. Preprocessing

Median filtering is used to process the noisy raw signals output by MPU6050. The signals of the
accelerometer and gyroscope are fused to obtain the angle. As common filtering algorithms, Unscented
Kalman Filtering (UKF) [31] and Nonlinear Complementary Filtering (HBL) [14] are considered in
the model. Gravitational acceleration (g = 9.8) is the benchmark for evaluating filtering algorithms.
Combining the acceleration, formulas of HBL (1) and UKF (2) are obtained. The data obtained by the
wristband in the static state after filtering with HBL and UKF are compared. The output results are
shown in Table 2.

ACCHBL = αACCa + (1− α)ACCgyro. (1)

Table 2. Mean and standard deviation of acceleration in different filters.

Filter Mean Standard Deviation

HBL 9.489730 0.013882
UKF 8.921552 0.010730

ACCHBL is the gravitational acceleration through HBL, where ACCa is the value of the
accelerometer, ACCgyro is the value of the gyroscope, and α is the weight coefficient.{

ACCk = ACCk−1 cos(θk) cos(θk) + wk
zk = ACCk + vk

. (2)

ACCk is the gravitational acceleration through UKF at time k, where θk is the rotation angle at
time k, wk is the process noise at time k, and vk is the measurement noise at time k.

The data obtained by HBL are closer to the theoretical value of gravitational acceleration, and the
standard deviation is slightly larger than UFK. Considering the program portability and computing
power of the MCU, HBL is used for noise reduction.

Figure 3 shows the triaxial signals of the badminton drive. Each movement has its own properties,
so the values of the three-axis signals are very different. Movements repeat during the acquisition time,
so signals change periodically.
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2.3.2. Feature Extraction

Feature extraction is an important task for racquet sports recognition. To obtain optimized
classification performance, the extracted features should be able to clearly represent the unique
properties of movements and reduce redundancy [32]. Combining raw data, the adopted feature sets
include the (1) acceleration signal magnitude vector (ASMV); (2) velocity signal magnitude vector
(VSMV); (3) displacement signal magnitude vector (DSMV); (4) angle signal magnitude vector (θSMV).

ASMV is the L2 norm of the total acceleration vectors, where ax, ay, and az denote the filtered
accelerations along the x-axis, y-axis, and z-axis, respectively. This feature is independent of sensor
orientation and measures the instantaneous intensity of human movements.

ASMV =
√

ax2 + ay2 + az2. (3)

VSMV is the L2 norm of the velocity vectors by integrating acceleration vectors, and DSMV is
obtained by integrating velocity vectors in the same way.

VSMV =

√
(

∫
axdt)

2
+ (

∫
aydt)

2
+ (

∫
azdt)

2
. (4)

θSMV is the L2 norm of the total angle vectors. The angle obtained by the gyroscope is used as
the optimum in a short time, and the average value of the angle obtained by acceleration is used to
correct the angle periodically.

θx|t
θy|t
θz|t

 = α


θx|t−1 + GYROx × T
θy|t−1 + GYROy × T
θz|t−1 + GYROz × T

+ (1− α)


ax|t
ay|t
az|t

, (5)

θSVM =
√
θx2 + θy2 + θz2. (6)

2.4. Proposed Algorithm

The K-means algorithm uses Euclidean distance as the evaluation index of similarity and takes the
compact and independent cluster as the final target. The datasets are described as T = {T1, T2, . . . , Tn},
the K cluster centers are given randomly initially, clusters can be denoted as Ci = {C1, C2, . . . , Ck}, and
µi is the mean vector of the cluster Ci.

µi =
1
|Ci|

∑
x∈Ci

x (7)

The objective function of K-means clustering is the sum of squared errors (SSE).

SSE =
k∑

i=1

∑
x∈Ci

‖x− µi‖

2

. (8)

The Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm divides
data with sufficient density into clusters, which can realize arbitrary shape clustering in noise-containing
datasets. It can effectively solve the problem of misclassification caused by similar sub-features.

Both badminton and table tennis movements are combined by a variety of sub-actions. For
example, a badminton drive can be decomposed into detailed actions of swinging arm and turning
wrist. Therefore, manually calibrating these similar movement data is very difficult and may cause
human error. The designed hybrid clustering model selects the most important macro features for
different movements through a four-layer structure. The first three layers use the K-means clustering
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algorithm to classify and encode different movements features, decompose sub-features, and find the
best clustering center for movements to distinguish them. The fourth layer uses DBSCAN to eliminate
the influence of the same sub-features in different movements and determine the unique sub-features
of each movement to effectively identify each movement in racquet sports. The proposed multilayer
hybrid clustering model is presented in Figure 4. The output of each layer is shown in Figure 5.
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Figure 4. The proposed multilayer hybrid clustering model framework.

The input feature vector of the first layer model is the maximum feature of the extracted feature
sets after sliding sampling. The sliding window unit is the sampling point, and the sampling period of
the data is 20 ms. A window with a length of 10 and a step size of 5 is used to segment the extracted
feature sets to segment the movements. The dimension of the input feature vector is 120. Principal
component analysis (PCA) is used to reduce the feature vector to one dimension to eliminate redundant
features and reduce calculations. K-means is used to cluster feature maxima to normalize all unlabeled
feature sets. The extracted features are then sorted by magnitude to label movements.

The second layer model clusters the first layer output using K-means to obtain the sub-features
decomposed in movements. The sub-features are then sorted according to frequency, which facilitates
the later distinguishing of common sub-features from individual sub-features. The output of the
first two-layer model is shown in Figure 5a. The x-axis indicates the features number and the y-axis
indicates the movements sub-feature labels after classification and sorting.

The third layer model uses a sliding window with a length of 4 and a step size of 2 to segment
the features obtained from the second layer, and takes maxima, minima, and averages of the features
as inputs of the third K-means. This sliding window unit is the sub-feature point. K-means is used
to divide the features in single datasets to obtain the sub-features centers of different movements.
The sub-feature centers in different movement sets are shown in Figure 5b. The x-axis indicates the
sub-feature labels and the y-axis indicates the sub-feature center labels. Different colors represent
different movement sets (black: Walking; blue: Table tennis service; purple: Table tennis stroke;
magenta: Table tennis spin; pink: Table tennis picking up; green: Badminton service; blue/black:
Badminton drive; yellow: Badminton smash; orange: Badminton picking up).
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Figure 5. Each layer output of the model. (a) All movements sub-features after classification and sorting;
(b) the sub-feature centers of nine movements are extracted separately and expressed in different colors;
(c) minimum sub-feature set obtained by greedy algorithm; (d) sub-feature centers obtained through
the density-based spatial clustering of applications with noise (DBSCAN).

The fourth layer model uses the DBSCAN algorithm to cluster the sub-feature centers obtained
in the third layer. The class centers are extracted as the common features of movements, and the
outliers are the exclusive features of different movements. From this, the feature center set of different
movements is obtained. The target action is identified based on the normalized value of the Euclidean
distance from the data output by the first three layers of clustering to the feature center, so the distance
obtained by unrelated actions will be filtered when it is outside the distance threshold. Considering
that the sub-feature centers obtained by clustering may overlap, a greedy algorithm is used to optimize
the feature sets for obtaining the smallest feature sets of movements. The search results of the greedy
algorithm are shown in Figure 5c. The x-axis indicates the number of iterations and the y-axis indicates
the subsets of movement features. The sub-feature centers obtained by searching can filter wrong
features, which is more accurate than the results of direct clustering. The final clustering result of the
DBSCAN algorithm is shown in Figure 5d, where the x-axis indicates the sub-feature center labels and
the I-axis indicates the predicted movement labels. The correspondence between color and movement
set is consistent with 5b.

2.5. Software Platform

Software involves the scheduling of the model and communication in embedded platforms and a
mobile phone application (App).
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2.5.1. Operating System

The Lite_OS operating system is ported on the hardware platform for the racquet sports recognition
wristband. Lite_OS’s task module provides multi-task functions to switch and communicate between
tasks. The system supports task preemptive scheduling based on priority levels and time slice rotation
scheduling for the same priority. The wristband collects data in real-time and optimizes the model
based on multitasking concurrent processing. The program flowchart is shown in Figure 6.
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Data sampling is set to the highest priority to collect movement data in real-time. When a
set of data is collected, the collection task is suspended, and the recognition task of the multilayer
hybrid clustering model starts to work and analyzes the type of movement data that has just been
collected. When recognition is completed, the task is suspended, and the result is then sent to the
OLED screen and App through the communication task for users to view at any time. Considering
that the movements of each user are slightly different, the previous movements data are stored and
learned when the system is idle to continuously optimize the features in the model. The more times
the user wears it, the higher the recognition accuracy of the wristband.

2.5.2. Communication Protocol

Based on the TI BLE-CC254x-1.4.0 protocol stack, the management mechanism of the operating
system abstraction layer (OSAL) is used to implement the Bluetooth one-master multi-slave network.
The Bluetooth network automatically scans at power-on, uses MAC address matching for device
screening and automatic binding, and then distinguishes the slave read–write mode according to the
handle. Limited by the chip, only a maximum of 3 devices can be connected at the same time.

2.5.3. App

A mobile App is designed to communicate with a wristband based on the iOS operating system.
App is programmed with Xcode and accepts wristband information via Bluetooth, which is convenient
for future statistics and analysis. The badminton interface is shown in Figure 7a and the table tennis
interface is shown in Figure 7b. It is worth noting that information is transmitted between the
wristbands via the Bluetooth network. In order to avoid breaking the current network connection
when the phone is connected to wristbands as the Bluetooth master mode, App is set to connect to one
wristband at the same time.
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3. Results and Discussion

The experimental session evaluated the model and verified the wristband in a real environment.

3.1. Model Evaluation

For the evaluation, three subjects’ data (60 instances) were used for training and the other two
subjects’ data (40 instances) were used to test classification performance. A fivefold cross-validation
guarantees that each sample point has only one chance to be classified into the training set or test set
during each iteration to verify the generalization ability of the proposed model. The average accuracy
of the five test results is regarded as the accuracy of the model, while the more reliable F1 score is used
to evaluate the precision and recall.

There are no true labels of movements in the training dataset, so ordinary accuracy cannot be
used to measure the effectiveness of the proposed model. The number of movements included in each
movement instance is known, so the accuracy of the model can be evaluated by comparing the ratio
of predicted movement points to the total number of points with the actual movement points to the
total number of points in the dataset. Although it cannot fully characterize the accuracy of sports
recognition, it can be used as a criterion for model parameter search. Combining it with the top-down
greedy algorithm, it can filter the wrong features to obtain the smallest feature subset. The search
results are shown in Figure 5c.

The detection results of nine movements are shown in Figure 8. The x-axis of each graph in
Figure 8 indicates the features number. The upper part of each graph is the processed acceleration
amplitude vector, and the lower part is the sub-feature labels obtained through the model. It can be
seen from Figure 8 that each movement corresponds to a different sub-feature set after classification by
the multilayer hybrid clustering model, so the model can clearly identify different movements.
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Figure 8. The movements and corresponding detection effect. (a) walking; (b) table tennis service;
(c) table tennis stoke; (d) table tennis spin; (e) table tennis picking up; (f) badminton service; (g)
badminton drive; (h) badminton smash; (i) badminton picking up.

Table 3 shows the classification effect of the multilayer hybrid clustering model on nine movements.
The predicted proportion is the result of model classification, and the expected proportion is estimated
by the number of movements and the duration of movements. Table 3 confirms the conclusion of
Figure 8. The model has a higher precision for serving and picking-up movements, while the recognition
precision of different hitting movements is not high, due to the small difference between them.

Table 3. The classification effect of the multilayer hybrid clustering model on 9 movements.

Category Expected Proportion Forecast Proportion

Walking 0.76471 0.71649
Table Tennis Service 0.19161 0.19161
Table Tennis Stroke 0.23232 0.17676
Table Tennis Spin 0.17241 0.22413

Table Tennis Picking Up 0.20623 0.24098
Badminton Service 0.21038 0.21818
Badminton Drive 0.21379 0.15862
Badminton Smash 0.20712 0.20388

Badminton Picking Up 0.23529 0.20941

The normalized confusion matrix (Figure 9) shows the average evaluation results in terms of
different movements.

The average accuracy in prediction is 86.32%, with an F1 score of 82.98%. Figure 9 shows that for
each of these nine movements, most movements are labeled with the correct type, and the precision
of some movements is more than 90%. By looking at the results in more detail, most errors can be
explained. For instance, the model makes mistakes in discriminating between the different types
of stroke or drive. For MCU and human observers, there are similar movements in the badminton
drive and table tennis stroke. Badminton picking up and table tennis picking up also have similar
movements, while badminton smash has a large amplitude in sports, which is obviously different from
other movements and has a high precision. Based on the above reasons, different movements of the
same kind of racquet sports are classified.

The classification results of a single racquet sport are shown in Figure 10. The accuracy of table
tennis in prediction is 92.51%, with an F1 score of 92.73%. The accuracy of badminton in prediction is
94.69%, with an F1 score of 94.53%. Figure 10 shows that in the case of single racquet sport recognition,
the prediction of each movement is improved. For reference only, the model in this paper was compared
to similar techniques. Martin et al. [6] proposed a Siamese spatiotemporal convolution (SSTC) method
based on the RGB image sequence and its calculated optical flow to classify table tennis strokes. The
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accuracy of this method was 91.4%. The model proposed in this paper has a competitive accuracy in
table tennis movement recognition. Meanwhile, compared to video recognition based on large data
streams, the method based on motion sensors has more advantages in computing time and storage
costs. Wang et al. [28] used a SVM to recognize the information collected by the motion sensor and were
able to recognize three different badminton strokes. The accuracy of the system based on SVM was 94%,
and the accuracy of the system based on PCA + SVM was 97%. The accuracy of the model proposed in
this paper is slightly lower than that of the above model in badminton movement recognition. The
advantage of this proposed system is that movement can be recognized on the wristband in real-time.
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of badminton.

3.1.1. Comparison of Different Cluster Numbers

The model ranks the features of the first two layers of output, so features are highly consistent
after multi-layer clustering, and the model accuracy is not affected by the randomness of the K-means
algorithm. The first layer determines the number of sub-features, so the accuracy is mainly affected by
the number of clusters in the first layer. Table 4 shows the different K values and their corresponding
accuracy. The best classification effect is obtained when the number of clusters is 70. A smaller number
of clusters will cause feature overlap, which will increase the difficulty of subsequent sub-feature
discrimination. A larger number of clusters will increase noise, so the cluster numbers need to be
adjusted to appropriate parameters.

Table 4. Precision of different cluster numbers.

Cluster Numbers Precision

20 0.45
50 0.77
70 0.86

100 0.62

3.1.2. Comparison of Different Classifiers

We compared the linear discriminant function (LDF), random forest, SVM, and multilayer hybrid
clustering model proposed in this paper, as shown in Table 5. The time in Table 5 is the training time
of each classifier, and it can clearly reflect the computational cost. The model proposed in this paper
achieves the best performance in terms of recognition accuracy and training time.

Table 5. Average recognition accuracy and time of different classification algorithms.

Classification Algorithm Accuracy Time(s)

Linear Discriminant Function (LDF) 0.69 6.38
Random Forests 0.74 18.25

SVM 0.76 145.54
Proposed Model 0.86 27.73
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3.2. Wristband Verification

A tester was randomly selected to wear the wristband for badminton and table tennis sports
tests. The recognition time of the wristband includes the data collection time, algorithm recognition
time, and transmission time to the OLED screen. The recognition time for different movements is
different. The average recognition time of the wristband is about 1 s. The Bluetooth transmission rate
is 115,200 bps, and the communication time for the wristband to the mobile phone is about 0.5 s. The
time from wristband recognition to displaying the result on the mobile phone is about 1.5 s. Basically,
the recognition result can be obtained on the wristband after completing one movement. The proposed
wristband realizes real-time recognition of the racquet sports. The recognition results of the wristband
on badminton and table tennis are shown in Figure 11a,b respectively. The test accuracy is shown in
Table 6. Experiments have verified the feasibility of the racquet sports recognition wristband, and the
average accuracy is above 77%.
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Table 6. The wristband recognition accuracy.

Category Accuracy

Walking 0.91
Table Tennis Service 0.79
Table Tennis Stroke 0.68
Table Tennis Spin 0.71

Table Tennis Picking Up 0.77
Badminton Service 0.82
Badminton Drive 0.63
Badminton Smash 0.89

Badminton Picking Up 0.75

4. Conclusions

This paper presents a racquet sports recognition system to effectively sense movement parameters.
The system consists of an IMU, BLE technology, mobile application, and multi-layer hybrid clustering
model. The wristband uses the integrated IMU to obtain movement data, and then runs the recognition
model and performs the number counting in the MCU. The communication between phone and
wristband and the networking of multiple devices are realized through the Bluetooth mesh network,
which is convenient for users to track their exercise through the App and provides information-sharing
functions for players and referees to improve the fairness of the game.

A multilayer hybrid clustering model similar to neural networks (NN) is proposed to improve
recognition accuracy. The multi-layer K-means clustering algorithm is used for feature extraction and
segmentation, and the DBSCAN is used to further classify features with the same sub-features. The
model can identify unlabeled and noisy data without data calibration, which enables the sensor system
to achieve greater calculation and lower energy.
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The experimental results confirm that the racquet sports recognition wristband designed in this
paper can obtain various effective movements features from the wrist and classify badminton and
table tennis. The accuracy of the model decreases slightly in practice, but the wristband recognition
results are basically consistent with actual movements. Compared to the machine vision-based
methods, wristbands have great advantages in terms of privacy protection and tolerance to external
environments. The wristband provides a reference solution for the commercial application of racquet
sports recognition.

The dataset in this paper is mainly composed of target movements, so limiting the use of the
wristband to racquet sports will have higher accuracy. In wider usage scenarios, such as daily activities,
misidentification may be caused because some non-target movements have the same sub-features as
target movements. In the next stage, more types of movement data will be collected to improve the
accuracy of the model and evaluate more movement details.
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