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Abstract: Individuals with lower-limb amputation often have gait deficits and diminished mobility
function. Biofeedback systems have the potential to improve gait rehabilitation outcomes. Research
on biofeedback has steadily increased in recent decades, representing the growing interest toward
this topic. This systematic review highlights the methodological designs, main technical and clinical
challenges, and evidence relating to the effectiveness of biofeedback systems for gait rehabilitation.
This review provides insights for developing an effective, robust, and user-friendly wearable
biofeedback system. The literature search was conducted on six databases and 31 full-text articles
were included in this review. Most studies found biofeedback to be effective in improving gait.
Biofeedback was most commonly concurrently provided and related to limb loading and symmetry
ratios for stance or step time. Visual feedback was the most used modality, followed by auditory
and haptic. Biofeedback must not be obtrusive and ideally provide a level of enjoyment to the user.
Biofeedback appears to be most effective during the early stages of rehabilitation but presents some
usability challenges when applied to the elderly. More research is needed on younger populations
and higher amputation levels, understanding retention as well as the relationship between training
intensity and performance.

Keywords: amputee; biofeedback; gait; locomotion; lower-limb amputation; prosthesis; real-time
feedback; sensory feedback; rehabilitation; wearable systems

1. Introduction

Lower-limb amputation (LLA) is associated with major rehabilitation challenges and lifelong
mobility limitations. Limb loss not only hinders aspects of motor control, but it also reduces the
sensory feedback information and proprioception that are associated with the peripheral nervous
system [1–4]. As a result, individuals with LLA often walk slower and expend more energy than
non-amputees [5]. They also exhibit atypical gait and loading patterns [5–7] that may be associated
with long-term secondary health issues including chronic back pain and joint problems [8]. Moreover,
poor balance and gait function in individuals with LLA can lead to the fear of falling and a greater
incidence of falls [9–12], with more than half of ambulating adults with LLA falling at least once per
year [11]. The consequences of these falls include injury and hospitalization [12,13], heightened fear of
falling leading to prosthesis disuse [14,15], and the subsequent social withdrawal reducing their ability
to recover from the trauma, both physically and psychologically [14,16].

Improving balance and gait is an important part of the rehabilitation process. Gait retraining,
which is typically provided by a physiotherapist or prosthetist, includes the observation of gait
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deviations or atypical movement patterns and the provision of verbal cuing to promote corrections.
However, these conventional methods have several limitations. The detection of gait deviations is
limited to a subjective assessment of gross movement patterns [17]. Further, gait training sessions
are limited in duration and frequency. Many health care systems are under-resourced despite the
need for rehabilitation, making it challenging for clinics and rehabilitation hospitals to give adequate
levels of therapy services [18]. Many patients face serious barriers (e.g., long travel times, school/work
absences, etc.) accessing services, and, at best, only undertake unsupervised lower limb exercises at
home [19–21].

Technology-driven approaches, such as virtual reality, therapy-focused videogames, and
biofeedback (BFB) systems, are promising modalities for augmenting rehabilitation in the clinical
facility and at home [22–25]. These technologies take advantage of motor learning and relearning
strategies to accelerate the gait rehabilitation learning process. A major benefit of BFB systems,
especially wearable systems, is the ability to provide real-time, continuous feedback to reinforce
physiotherapy/prosthetist (PT) goals and good gait habits [26–29]. BFB approaches in rehabilitation
consist of utilizing external sensors, such as inertial measurement units, goniometers, pressure sensors,
force plates, and motion capture systems, to measure specific parameters relating to postural balance,
gait kinetics, and kinematics [22,30–33]. Subsequently, real-time biomechanical information, which is
captured by the external sensors, is communicated to the BFB users to alter their performance through
some appropriate feedback modality (i.e., visual [34,35], auditory [36], haptic [25,26,37], or multimodal
feedback [38,39]).

BFB approaches in rehabilitation have been studied in a variety of patient populations
including stroke [37,40–42], Parkinson’s disease [43–45], cerebral palsy [46], vestibular deficits [47,48],
diabetes [49], and upper-limb [50,51] and lower-limb amputees [31,52,53]. As well as in a
variety of applications, including static and dynamic postural balance [54–56], walking [57–59],
stairs management [60], obstacle avoidance [61], floor conditions identification [62], and sensory
perception [31,53,63], to mention a few. In 2018, a mapping review [64] was published regarding the
use of BFB for gait retraining. The review covered a variety of patient populations across 173 reviewed
articles. The results showed that, during walking, the most common feedback modality, feedback gait
parameter, and external sensory configuration were visual feedback, kinematic gait parameters, and
pressure sensors fixed to the feet or on the feet insoles, respectively. In addition, it revealed that most
of the studies (approximately 90%), tested BFB in a laboratory setting, and more than a half (i.e., 53%)
of all studies performed a single intervention session. The relevance and extent of applicability to
individuals with LLA remains uncertain despite these valuable new insights into BFB systems, since
LLA was the subject of only eight of the 173 reviewed articles.

Similarly, earlier reviews relating to BFB have not directly focused on individuals with LLA,
but more generally on a range of diagnoses. A 2010 systematic review [65] investigated the application
of BFB in older adults with balance and mobility disorders [65]. Most of the reviewed articles involved
post-stroke participants or community-dwelling elderly subjects. The three articles dealing with LLA
showed that participants were able to adjust their weight on the injured leg during walking [66,67]
and to improve sway and weight distribution during standing [68] when auditory feedback was
provided about weight-bearing. Another systematic review [22] published in 2010 investigated the
effectiveness of BFB systems for gait retraining of several related pathologies (e.g., cerebrovascular
accident, hip fracture, etc.), including only one study on LLA. This review showed the potential of BFB
systems to produce moderate to large short-term treatment effects and improvements as compared to
conventional therapies when providing biomechanical information to BFB users [22]. It was further
concluded that kinematic and spatiotemporal feedback gait parameters were the most targeted training
interventions amongst stroke patients, while the kinetic feedback parameters were of primary interest
for LLA [22].

While substantial research has been conducted toward the establishment of prosthetic BFB, to the
authors’ knowledge, no study has attempted to consolidate this information to provide a comprehensive
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assessment of the state of the science, and the potential role of BFB in the treatment of LLA. In this
regard, the main aim of the systematic review was to provide insights and recommendations towards
the development of an effective, robust, and user-friendly wearable BFB system that can be integrated
into existing prosthetic systems to assist individuals with LLA during the gait rehabilitation process.
Specifically, this systematic review aimed to identify: (1) targeted populations and demographics
within prosthetics, (2) targeted gait and biomechanical parameters, (3) the most common BFB system
designs, including the measured biomechanical signals and feedback modalities, (4) the main technical
and clinical limitations of current BFB systems, (5) main clinical evidence relating to BFB efficacy and
effectiveness, and (6) future directions and applications of BFB systems for individuals with LLA.

2. Methods

The systematic review was conducted following the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA), see Supplementary Materials. The review protocol is
register to PROSPERO, which is an international prospective register of systematic reviews (Ref:
CRD42020142222).

2.1. Search Strategy

A literature search was performed on October 2019 on the following databases: Medline
(1946–2019), Embase (1947–2019), PubMed (1971–2019), IEEE (1872–2019), Web of Science (1900–2019),
and Scopus (2004–2019). These six databases were chosen as they cover most of the literature in the
fields of engineering and medicine. Keywords “biofeedback”, “amputee”, and “gait” were matched
with MeSH (medical subject headings) terms and subheadings when relevant. Truncations and
wildcards were utilized to capture all forms of a root word. Table 1 shows an example of a search
strategy performed in one of the databases (i.e., Medline). Minor modifications of the keyword terms
were used in the different databases to expand the search results.

Table 1. Keyword search strategy employed in Medline database.

Biofeedback Gait Amputation

biofeedback.mp.
OR

feedback.kf,tw.
OR

(feedback adj3 sensory).mp.
OR

(wearable adj3 feedback).mp.
OR

(biomechanical adj3
feedback).mp.

OR
prosthesis design.tw,kf.

AND
gait.mp.

OR
walk*.mp.

AND

amput*.mp.
OR

prosthe*.tw,kf.
OR

(lower adj3 limb*).mp.
OR

(artificial adj3 limb*).mp.
OR

(artificial adj3 leg*).mp.
OR

(prosthe* adj3 leg*).mp.
OR

(prosthe* adj3 limb*).mp.
OR

knee prosthe*.mp.
OR

(prosthe* adj3 joint*).mp.
OR

(artificial adj3 joint*).mp.
OR

(lower adj3 extrtemit*).tw,kf.
OR

amputation/or disarticulation/or
hemipelvectomy/

OR
disarticulation.mp.

OR
hemipelvectomy.mp.

OR
(partial* adj3 amput*).mp.

kf: keyword heading word; tw: text word; mp: multi-purpose field search (Title, Original Title, Abstract, and Subject
Heading, among others depending on the database).
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2.2. Inclusion and Exclusion Criteria

The article inclusion/exclusion criteria were divided into three main sections: (i) study population,
(ii) biofeedback application, and (iii) publication type (Table 2).

Table 2. Framework for Inclusion/Exclusion of Eligible Studies.

Section
Criteria

Inclusion Exclusion

Study Population
• Individuals with

lower-limb amputation
• Able-bodied subjects with explicit

future application to lower-limb
amputation population

• Individuals with upper-limb amputation
• Other populations

Biofeedback application
• Gait or walking applications • BFB applied to any activity different from

walking (e.g., balance, running, golfing)
• BFB applied for robotic assistance (e.g.,

exoskeletons) or computer simulations (e.g.,
virtual human models or virtual prostheses)

• BFB used exclusively to assess user sensory
perception of participants without targeting a
gait parameter while walking

• BFB designs not clinically tested or mainly used
for gait event detection or system validation

• BFB does not explicitly inform the user of errors
that they are exhibiting (e.g., mirror therapy
studies, studies where users observe videos of
their own gait patterns without having
deviations pointed out to the them)

Publication Type
• Peer reviewed journal articles
• Peer review conference proceedings
• Studies published in English
• Full-text articles

• Literature reviews
• Survey studies

2.3. Screening and Data Extraction

After the duplicates were removed, two independent reviewers screened the titles and abstracts
of retrieved studies for relevance using the predefined eligibility criteria (Table 2) (R.E. & A.M.).
The remaining studies received full-text assessments. Articles with titles and abstracts that did
not provide enough information for the article screening process were fully reviewed. The data
were extracted based on the study aims. Accordingly, the following aspects for data extraction
were considered: (i) year of publication; (ii) BFB objective and application; (iii) characteristics of the
sample population; (iv) BFB design (BFB modality, BFB device, feedback strategy, sensors/transducers);
(v) testing conditions (clinical/laboratory settings or field-based studies and treadmill or overground
walking); (vi) outcome measures (targeted gait parameters, physical, physiological, or any other
parameters, including questionnaires); (vii) experimental protocol (information related to subject’s
testing, such as number of sessions, duration, frequency, number of trials, follow-up interventions);
and, (viii) key findings that were related to the efficacy and effectiveness of current BFB systems as
gait rehabilitation tools for individuals with LLA. A third reviewer (J.A.) resolved the ambiguities or
disagreements in the independent reviews of the articles (reviewers R.E. & A.M.). Additionally, the
references of all included articles were scanned to identify other relevant studies that were missed in
the original search.

2.4. Risk of Bias (Quality) Assessment

Most of the inclusions were peer-reviewed journal articles thus maintaining the quality of this
systematic review and reducing the risk of publication bias. Two independent reviewers assessed
all articles that met the inclusion criteria (R.E. & A.M.). In addition, a quality assessment was
performed using a customized data extraction formula (Table 3). The approach was based on previous
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standardized methods [69–71] and reviews, and allows for data extraction that is relevant to the topic
of interest [72,73]. For instance, Peters et al. [72] assessed 20 reviewed articles by using 19 appraisal
questions as quality indicators. The appraisal questions were designed to collect information regarding
the main research aims. Similarly, Ku et al. [73] utilized 14 appraisal questions to evaluate 23 articles
that were related to balance control of individuals with LLA during quiet standing. The evaluation
process in the current systematic review was adapted from these previously established appraisal
criteria (Table 3) [69–73]. Accordingly, the score of each article provided a standardized measure for
assessing the quality of research among the articles. Reviewers R.E. & A.M. independently applied the
ratings and reviewer J.A. resolved disagreement.

Table 3. Criteria for Quality Assessment **.

Question

1. Were the research objectives of the study clearly stated?
2. Was the study design clearly described?
3. Were the subject’s characteristics and details clearly provided?
4. Was biofeedback modality (e.g., visual, auditory, haptic) and application clearly stated?
5. Was equipment design and setup clearly described?
6. Was the experimental protocol/subject intervention clearly defined?
7. Were the methods for statistical analysis clearly described?
8. Were the main outcomes measures clearly stated?
9. Were key findings supported by the results?
10. Were limitations of the study clearly described?
11. Were key findings supported by other literature?
12. Were conclusions drawn from the study clearly stated?

** Questions were scored as follows: 2 = Yes; 1 = Limited detail; 0 = No.

3. Results

3.1. Search Results

The initial search yielded 2456 studies (i.e., Medline 440, PubMed 426, Embase 550, IEEE 221,
Web of Science 281 and Scopus 538). After the duplicates were removed, the title and abstract of
1419 articles were screened for potential relevance. Seventy-two (n=72) full-text articles were assessed
for eligibility. Following the application of the eligibility criteria, thirty-one (n = 31) full-text studies
were included in this systematic review. The flow diagram summarizes the overall review process
(Figure 1). The most common reasons for the exclusion of articles during full-text assessment included:
(1) BFB systems not being tested on individuals with LLA, (2) mainly used for gait event detection,
and (3) used to assess user’s sensory perception (i.e., reaction time and subject’s accuracy in response
to stimulation).
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Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow
diagram of the screening and data extraction process.

3.2. Quality of Reviewed Articles

Table 4 depicts the results of the criteria applied to assess the quality of the reviewed articles.
Most articles were high quality and included complete information about the research objectives,
study design, participants characteristics, BFB modality and application, BFB components, primary
gait outcome measures, key findings supported by results, and conclusions. However, some articles
presented limited information about experimental protocol and study limitations. Whereas, other
studies presented limited or null information about statistical analyses and key findings supported by
other literature. The results showed that 16 out of the 31 studies satisfied at least 85% of the criteria.
Nine studies ranged from 70% to 85%, and six studies scored less than 70%.

It should be noted that Lee et al. published five articles with similar methodology, data sets, and
outcomes between the years of 2007–2013 [56,74–77].

3.3. Key Data Extracted from Reviewed Articles

BFB systems applied as a gait rehabilitation tool for prosthetic users has gained popularity over
recent years, with most articles published from 2007 to 2019 (n = 21, 68%). The participants with
transtibial amputation were most studied (n = 17, 55%) and the included studies had a median sample
size of seven participants. Only two studies [34,66] compared BFB performance versus a control group
of healthy subjects. Most of the studies included middle-aged (aged 30–59 years) and elderly (above
59 years) prosthetic users. Study participants had prosthetic experience ranging from one month to
53 years.

Only six studies presented detailed characteristics about the prosthetic components (i.e., prosthetic
joint, foot, and socket) utilized to evaluate BFB [34,59,78–81]. During BFB testing, most of the
participants wore their prescribed prosthesis (i.e., passive mechanical or microprocessor-controlled
knee prostheses). In terms of BFB effectiveness and prosthetic components, the results showed that
BFB systems were capable of improving the gait performance of individuals with LLA, regardless of
the type of prosthetic components (i.e., passive mechanical knee or microprocessor-controlled knee or
powered knee prostheses) [35,59,79–82].



Sensors 2020, 20, 1628 7 of 26

Table 4. Quality analysis results from reviewed articles.

Study, Author Year
Question

Total Score Overall Percentage
1 2 3 4 5 6 7 8 9 10 11 12

[59] Petrini et al. 2019 1 2 2 2 2 2 2 2 2 2 2 1 22/24 92
[57] Fiedler et al. 2019 2 2 2 2 2 2 0 1 2 2 1 2 23/24 96
[80] Petrini et al. 2019 2 2 1 2 2 2 2 2 2 2 2 1 22/24 92
[35] Brandt et al. 2019 2 2 2 2 2 1 2 2 2 2 2 2 23/24 96
[86] Dietrich et al. 2018 2 2 2 2 2 1 2 2 2 2 2 2 23/24 96
[34] Esposito et al. 2017 2 2 1 2 2 2 2 2 2 2 2 2 23/24 96
[87] Maldonado et al. 2017 2 2 1 2 2 2 1 2 2 1 0 2 19/24 79
[58] Crea et al. 2017 2 2 1 2 2 2 2 2 2 2 2 2 23/24 96
[28] Plauche et al. 2016 2 2 2 2 2 2 0 2 2 2 2 1 21/24 88
[84] Pagel et al. 2016 2 2 2 2 2 1 2 2 2 2 2 2 23/24 96
[82] Huang et al. 2016 2 2 2 2 2 2 2 2 2 2 1 2 23/24 96
[30] Crea et al. 2015 2 2 1 2 2 2 2 2 2 2 2 2 23/24 96
[77] Lee et al. 2013 2 2 2 2 2 1 0 2 1 1 1 2 18/24 75
[88] Redd et al. 2012 2 2 1 2 2 2 2 2 2 2 2 2 23/24 96
[36] Yang et al. 2012 2 2 2 2 2 1 1 2 2 2 0 2 20/24 83
[81] Darter et al. 2011 2 2 2 2 2 2 0 2 2 2 2 2 22/24 92
[76] Lee et al. 2010 2 2 2 2 2 1 0 2 1 1 1 2 18/24 75
[75] Lee et al. 2009 2 2 2 2 2 1 0 2 1 1 1 2 18/24 75
[74] Lee et al. 2008 2 2 2 2 2 1 0 2 1 1 1 2 18/24 75
[56] Lee et al. 2007 2 2 2 2 2 1 0 2 1 1 1 2 18/24 75
[66] Isakov et al. 2007 2 2 2 1 2 2 2 2 2 0 0 2 19/24 79
[89] Davis et al. 2004 2 2 2 1 1 2 2 2 2 2 2 2 22/24 92
[90] Chow et al. 2000 2 2 2 2 2 2 2 2 2 1 1 2 22/24 92
[91] Dingwell et al. 1996 2 2 1 2 2 2 2 2 2 2 2 2 23/24 96
[83] Sabolich et al. 1994 2 2 2 2 2 2 1 2 2 1 0 2 20/24 83
[17] Flowers et al. 1986 2 1 1 2 2 0 0 1 2 2 0 2 15/24 63
[92] Clippinger et al. 1982 1 1 2 2 2 2 0 1 1 0 1 1 14/24 58
[93] Gapsis et al. 1982 2 1 2 2 2 1 1 1 1 1 1 1 16/24 67
[85] Fernie et al. 1978 1 1 1 1 1 1 0 1 1 1 0 1 10/24 42
[94] Zimnicki et al. 1976 1 1 1 2 2 2 0 1 1 1 0 1 13/24 54
[95] Warren et al. 1975 2 1 1 1 1 2 0 1 1 1 1 1 13/24 54

Questions were scored as follows: 2 = Yes; 1 = Limited detail; 0 = No. Questions were related to the description or
justification of (1) Objectives; (2) Study Design; (3) Participant characteristics; (4 and 5) BFB system; (6) Experimental
protocol; (7) Statistics; (8) Main Outcome Measures; (9 & 11) Key Findings; (10) Limitations; and, (12) Conclusions.

FSRs (force sensitive resistors) sensors that were attached to the plantar surface of the prosthetic
foot were the most frequently used transducer for measuring the targeted gait parameters. The most
commonly targeted gait parameters were related to limb loading, ground reaction forces, and symmetry
ratios for stance or step time. Visual feedback was the most used modality, followed by auditory
and haptic. Haptic feedback has been most frequently used in recent studies. For instance, 10 out
of 15 studies published from 2012 to 2019 utilized some type of haptic feedback (i.e., vibrotactile,
electrotactile, electrocutaneous, or intraneural stimulation) when compared to two out of 16 studies
during years 1975 to 2011.

Most studies assessed the performance of the BFB systems under laboratory conditions either
walking on a treadmill or over ground. Most studies (above 50%) also performed only one gait
training session in which BFB was delivered to the participants. Most studies compared subject’s gait
performance with and without wearing the BFB system, walking at self-selected speed. Most of the
studies did not report any follow-up sessions with the BFB system to test for retention. In addition,
few studies evaluated changes on metabolic consumption [34,59], physical fatigue [59], and cognitive
load or mental effort [58,59]. Most studies presented positive gait outcomes that were related to one or
more physical and physiological parameters. However, six (n = 6) studies [34,36,57,83–85] reported
mixed results, showing gait improvements for some participants and not others after BFB. None of the
studies reported negative effects BFB on gait. Only two studies [84,85] reported non-persistent lasting
effects and/or periods of retention after training. Table 5 details the key information that was retrieved
from each article.
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Table 5. Key data extracted from the reviewed articles (n = 31).

Study
Characteristics

Participant’s
Characteristics

Biofeedback (BFB)
Design

Testing Conditions

Outcome Measures
Intervention

Protocol Summary
Key Findings

Gait Parameters
Physical,

Physiological and
Other Parameters

Questionnaire

[59]
Petrini et al. 2019
Real-time intraneural
stimulation to restore
sensory feedback of
transfemoral
amputees

2 TF
Cause: trauma
Age: 49 yrs, 35 yrs
PE: N/D
TSA: 3 yrs, 12 yrs

FM: Intraneural
stimulation (touch,
pressure, or vibration)
FD: Surgical
implanted electrodes
FS: Concurrent
S/T: Insole pressure
sensors, knee encoder

Lab & Field,
Treadmill &
Overground

Heel-strike, flat foot,
toe-off, knee angle,
walking speed

Metabolic
consumption (VO2),
mental effort,
phantom limb pain

Neuropathic Pain
Symptom Inventory
(NPSI), Visual Analog
Scale (VAS)

Walking speed and
mental effort:
6 min outdoor (sand)
walking x 2 sessions
per condition
(with/without
feedback + dual task),
Metabolic cost:
Indoors: (i) 15 min
treadmill walking
with increasing speed,
(ii) outdoors (grass): 3
min baseline x 6 min
walking at SS speed

Walking speed and
self-reported
confidence increased.
Mental and physical
fatigue decreased,
including reduced
phantom limb pain
with feedback

[57]
Fiedler et al. 2019
Mobile visual
feedback system for
gait rehabilitation in
everyday-life
environment

1 TT
Cause: N/D
Age: 61 yrs
PE: 12 yrs
TSA: N/D

FM: Visual
FD: Smart glasses
FS: Concurrent
S/T: Load cell

Lab,
Overground

Stance/step ratio, gait
symmetry index N/A N/A

30 m walking
(repeatedly) at SS
speed within 1-hr

A strong correlation
found between
stance/step ratio (the
feedback variable)
and gait symmetry
index

[80]
Petrini et al. 2019
Real-time tactile and
proprioceptive
feedback to increase
prosthesis
embodiment and to
improve mobility of
transfemoral
amputees

3 TF
Cause: trauma
Age: N/D
PE: N/D
TSA: 3 yrs, 7 yrs, 12 yrs

FM: Intraneural
stimulation (touch,
pressure, or vibration)
FD: Surgical
implanted electrodes
FS: Concurrent
S/T: Insole pressure
sensors, knee encoder

Lab,
Overground

Heel-strike, flat foot,
toe-off, knee angle,
walking speed

Error walking on a
line (walking agility),
proprioceptive
displacement,
cognitive load
(dual-task paradigm)

Embodiment
questionnaire

Nine 5 m walking
trials with/without
feedback over a
straight line (one foot
after the other
without stepping
outside the line)

Improved mobility,
ease of cognitive
effort, and increased
embodiment of
prosthesis with
feedback

[35]
Brandt et al. 2019
Visual feedback to
increase stance time
on the prosthetic limb.
Compare powered
versus passive knee
prostheses

5 TF or knee disarticulation
Cause:
trauma/cancer/congenital
Age: 19–59 yrs
PE: 6 mos.–6 yrs
TSA: 4–47 yrs

FM: Visual
FD: Computer
monitor
FS: Concurrent
S/T: Instrumented
treadmill (dual belt)
with force plates,
motion capture
system

Lab,
Treadmill

Stance time, swing
time, stance time
asymmetry, peak
anterior-posterior
ground reaction
forces, peak anterior
propulsive
asymmetry

N/A Likert scale
(perceived difficulty)

Twelve 1.5 min
walking trials at SS
speed with 2 min of
rest between trials
over 3 sessions of 3 h
each. Fitting and
training provided
during prior sessions.

Stance time symmetry
and peak propulsion
symmetry
significantly
improved with both
prosthesis by
increasing prosthetic
stance time via
feedback



Sensors 2020, 20, 1628 9 of 26

Table 5. Cont.

Study
Characteristics

Participant’s
Characteristics

Biofeedback (BFB)
Design

Testing Conditions

Outcome Measures
Intervention

Protocol Summary
Key Findings

Gait Parameters
Physical,

Physiological and
Other Parameters

Questionnaire

[86]
Dietrich et al. 2018
Assess whether
prostheses with
somatosensory
feedback can reduce
phantom limb pain
and increase
ambulation

14 TT
Cause: trauma/embolism
Age: 27–76 yrs
(56.3 ± 11.6 yrs)
PE: N/D
TSA: 1–54 yrs

FM: Electrocutaneous
FD: Electrodes
FS: Concurrent
S/T: Insole pressure
sensors

Field,
Overground Stance time

Walking distance,
walking speed,
phantom limb pain

Likert scale
(discrimination
performance),
Houghton Score
Questionnaire (HSQ),
Locomotor Capability
Index (LCI), Trinity
Amputation and
Experience Scales
(TAPES), Amputee
Body Image Scale
(ABIS), Pain
questionnaires, and
pain daily reports

10 days of training
(walking at level
ground and uneven
terrains) over 2
weeks, 2 sessions per
day, 2 h per session
with 30–60 min of rest
between daily
sessions.

Reduction of
phantom limb pain,
larger walking
distances, stable
walking and better
posture control on
uneven ground with
feedback

[34]
Esposito et al. 2017
Assess whether visual
feedback can reduce
center of mass sway
and metabolic
consumption during
gait retraining

Study group:
8 TT
Cause: trauma
Age: 32.9 ± 5.7 yrs
PE: 29 ± 38 mos.
TSA: N/D
Control group:
8 H
Cause: N/A
Age: 29.4 ± 3.8 yrs
PE: N/A
TSA: N/A

FM: Visual (virtual
reality)
FD: CAREN
(Computer Assisted
Rehabilitation
Environment)
FS: Concurrent
S/T: Bipolar surface
electrodes, motion
capture system

Lab,
Treadmill Center of mass sway

Metabolic rate (VO2),
heart rate, thigh
muscle activation
magnitudes and
duration, quadriceps
and hamstrings
muscle activity

N/A

Baseline: 10 min in
seated position (VO2
baseline).
Acclimation: 4 min
practice receiving
visual feedback and
verbal cues (PT).
Data collection: 8 min
walking
(with/without visual
feedback) at
standardized speed

Visual feedback
decreased center of
mass sway and
quadriceps activity.
Thigh muscle
co-contraction indices
unchanged.
Metabolic rate was
not significantly
affected by feedback

[87]
Maldonado et al.
2017
BFB system
developed as a
training tool to sense
perturbations to
perform corrective
actions to avoid falls

2 TT
Cause: N/D
Age: 49 yrs, 67 yrs
PE: N/D
TSA: N/D

FM: Vibrotactile
FD: Vibrating motors,
solenoid
FS: Concurrent
S/T:
Electrogoniometer

Lab,
Overground Knee angle

Reaction times,
subject’s response to
stimulus

N/A

Six 1 h to 2 h training
sessions over 3 weeks,
receiving only
vibrotactile feedback.
One 2 h session,
vibrotactile and
solenoid feedback
(retention and
transfer test)

Subjects performed
the corrective
movement in
response to feedback.
No conclusive results
for retention and
transfer tests.
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[58]
Crea et al. 2017
BFB system
developed to improve
temporal gait
symmetry of elderly
transfemoral
amputees

3 TF
Cause: N/D
Age: > 60 yrs
PE: N/D
TSA: > 1 year

FM: Vibrotactile,
Visual
FD: Vibrating motors,
display screen
FS: Concurrent
S/T:
Pressure-sensitive
insoles

Lab,
Treadmill

Stance time,
symmetry index,
cadence

Heart rate, breathing
rate, skin
temperature, skin
conductance,
cognitive load

National Aeronautics
and Space
Administration Task
Load Index
(NASA-TLX34),
System Usability
Scale (SUS)

Within a week: Pre-
and Post-training, 1
session each (only
vibrotactile). 3
sessions training
(vibrotactile + visual
feedback). Follow-up
a week after (only
vibrotactile)

Feedback improved
symmetry index and
lower cadence
promoting longer
strides. Cognitive
load did not increase
with feedback.
No signs of negative
psychophysiological
effects.

[28]
Plauche et al. 2016
Develop a BFB
system to asses gait
performance under
different vibrotactile
feedback strategies on
able-bodied subjects
walking with a
prosthetic adaptor

9 H (above-knee prosthetic
adaptor)
Cause: N/A
Age: 25.6 ± 2 yrs
PE: N/A
TSA: N/A

FM: Vibrotactile
FD: Vibrating motors
FS: Concurrent
S/T: Force sensing
resistors (FSRs)
sensors

Lab,
Treadmill

Stride length step
width, trunk sway,
including their
variabilities

N/A Likert scale (feedback
strategies)

Walking 30 s at SS
speed on a treadmill
(10 trials per
condition)
with/without
feedback and
with/without
prosthesis adaptor

Improved gait
stability as the
variability of stride
length, step width
and trunk sway
decreased.

[84]
Pagel et al. 2016
Develop a BFB
system to improve
gait symmetry by
providing feedback
from foot center of
pressure and knee
flexion angle

3 TF
Cause: trauma/cancer
Age: 21 yrs, 54 yrs, 73 yrs
PE: 1 yrs, 36 yrs, 53 yrs
TSA: 1 yrs, 52 yrs, 53 yrs

FM: Electrotactile
FD: Electrodes
FS: Concurrent
S/T: Force/moment
sensor,
goniometer-gyroscope
sensor

Lab,
Treadmill

Stance time, step
length, stance time
ratio, step length
ratio, ground reaction
forces, center of
pressure (CoP), knee
flexion angle

N/A
User’s feedback
experience
questionnaire

2 min walking per
condition (no
feedback, CoP
feedback, and knee
angle feedback), SS
speed

No persistent positive
effect but improved
step length for one
participant.
Subjects felt more
benefited from knee
angle feedback than
CoP feedback.

[82]
Huang et al. 2016
Utilize visual
feedback to alter
prosthetic ankle
performance while
using a powered
prosthesis with
myoelectric
controlled

5 TT
Cause: trauma/cancer
Age: 23–70 yrs (55.4 ± 18.6
yrs)
PE: N/D
TSA: 4–44 yrs (22.6 ± 19
yrs)

FM: Visual
FD: Computer
monitor
FS: Concurrent
S/T: Motion capture
system, force plates,
electromyography
(EMG) sensors

Lab,
Treadmill

Peak ankle power,
total ankle work,
positive ankle work,
negative ankle work

Residual limb muscle
activation patterns N/A

5 min to 10 min
walking trial with
prescribed and
powered prosthesis
with/without
feedback, speed 1.0
m/s.
An average of 3.5 h of
training in total over
2 months.

Adapted muscle
activation patterns
due to visual
feedback. Increased
peak ankle power and
positive ankle work.
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[30]
Crea et al. 2015
BFB system to
provide vibrotactile
feedback during
gait-phase transitions

10 H
Cause: N/A
Age: 27 ± 1.8 yrs
PE: N/A
TSA: N/A

FM: Vibrotactile
FD: Vibrating motors
FS: Concurrent
S/T:
Pressure-sensitive
insoles

Lab,
Treadmill

Stance time, swing
time, step cadence,
vertical ground
reaction force, center
of pressure

N/A
Self-assessment
questionnaire
(cognitive effort)

6 min walking per
condition (missing
stimuli, delay stimuli:
200 s & 500 s, and
wrong stimuli).

Accuracy in stimuli
detection decreased if
delay increased.
Good usability,
feedback is readily
perceived by
participants.

[77]
Lee et al. 2013
Evaluate a BFB
system using
subsensory
stimulation and
visual-auditory
feedback to improve
postural sway and
dynamic weight
shifting stability

7 TT
Cause: N/D
Age: 24–60 yrs (38.8 ±
14.08 yrs)
PE: > 2 yrs (8.5 ± 6.12 yrs)
TSA: N/D

FM: Auditory, Visual
FD: PC speaker,
computer monitor
FS: Concurrent
S/T: Force sensing
resistors (FSRs)
sensors

Lab,
Treadmill

Double support time
symmetry index,
constant time step
number index, single
support time
symmetry index, gait
phase time ratio index

Heart rate N/A

20 min each test
session (5 min warm
up, 10 min training
and 5 min cool down).
Walking speed
increased each
minute as tolerated
(starting at SS speed)

Improvement in
weight shifting
stability indices.
Most subjects easily
adapted to auditory
rather than visual
biofeedback.

[88]
Redd et al. 2012
Assess the ability of a
BFB system to alter
gait symmetry under
visual, auditory and
vibrotactile feedback

12 H
Cause: N/A
Age: N/D
PE: N/A
TSA: N/A

FM: Auditory,
Vibrotactile, Visual
FD: Smartphone
FS: Concurrent
S/T: Force sensing
resistors (FSRs)
sensors

Lab,
Overground

Stance time symmetry
ratio N/A Usability survey

Six 200 ft walking
trials (one trial per
feedback modality
and 3 trials with the
preferred feedback
modality)

BFB altered gait of
user without
supervision from a
specialist.
Visual was the
preferred feedback
modality.

[36]
Yang et al. 2012
Evaluate the
performance of a BFB
device to improve
gait symmetry of
prosthetic users

3 TT
Cause: infection/embolism
Age: 22–65 yrs (49.7 ± 19.6
yrs)
PE: N/D
TSA: 7 mos.–5.5 yrs

FM: Auditory
FD: BFB buzzer
FS: Concurrent
S/T: Force sensing
resistors (FSRs)
sensors, motion
capture system, force
plates

Lab,
N/D

Stance time,
symmetry ratio, trunk
sway

N/A N/A

Pre-test 1 week before,
six 30 min training,
post-test 1 week after.
PT set trial duration
(avg. 30s–240s) and
feedback thresholds.

2 of 3 subjects
improved symmetry
ratio and trunk sway

[81]
Darter et al. 2011
Assess biomechanical
and physiological
effects of gait training
using virtual reality

1 TF
Cause: trauma
Age: 24 yrs
PE: 2 yrs
TSA: N/D

FM: Visual (virtual
reality)
FD: CAREN
(Computer Assisted
Rehabilitation
Environment)
FS: Concurrent,
verbal cues (PT)
S/T: Motion capture
system, force plates

Lab, Treadmill &
Overground

Frontal-plane trunk
motion, frontal plane
hip, pelvis and trunk
angles, walking
speed, step length,
stance time, step
width

VO2 consumption N/A

Twelve 30 min
walking sessions
within 3 weeks.
Follow-up: 3 weeks
after training.
PT involved during
first BFB sessions

Training effective in
improving frontal
plane hip, pelvis and
trunk motion, with
decreases in oxygen
consumption during
overground walking.
Retention found at 3
weeks after training
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[76]
Lee et al. 2010
Asses a BFB system
using subsensory
stimulation and
visual-auditory
feedback to improve
postural sway and
dynamic weight
shifting stability

7 TT
Cause: N/D
Age: 24–60 yrs (38.8 ±
14.08 yrs)
PE > 2 yrs (8.5 ± 6.12 yrs)
TSA: N/D

FM: Auditory, Visual
FD: PC speaker,
computer monitor
FS: Concurrent
S/T: Force sensing
resistors (FSRs)
sensors

Lab,
Treadmill

Double support time
symmetry index,
constant time step
number index, single
support time
symmetry index, gait
phase time ratio index

Heart rate N/A

20 min each test
session (5 min warm
up, 10 min training
and 5 min cool down).
Walking speed
increased each
minute as tolerated
(starting at SS speed)

Improvement in
weight shifting
stability indices.
Most subjects easily
adapted to auditory
rather than visual
feedback

[75]
Lee et al. 2009
Assess a BFB system
using subsensory
stimulation and
visual-auditory
feedback to improve
postural sway and
dynamic weight
shifting stability

7 TT
Cause: N/D
Age: 24–60 yrs
(38.8 ± 14.08 yrs)
PE: > 2 yrs (8.5 ± 6.12 yrs)
TSA: N/D

FM: Auditory, Visual
FD: PC speaker,
computer monitor
FS: Concurrent
S/T: Force sensing
resistors (FSRs)
sensors

Lab,
Treadmill

Double support time
symmetry index,
constant time step
number index, single
support time
symmetry index, gait
phase time ratio index

Heart rate N/A

20 min each test
session (5 min warm
up, 10 min training
and 5 min cool
down).Walking speed
increased each
minute as tolerated
(starting at SS speed)

Improvement in
weight shifting
stability indices.
Most subjects easily
adapted to auditory
rather than visual
feedback

[74]
Lee et al. 2008
Evaluate a
computerized foot
pressure BFB system
using subsensory
electrical stimulation
and visual-auditory
feedback to improve
gait and balance of
transtibial amputees

5 TT
Cause: N/D
Age: 24–48 yrs (37.4 ± 11.57
yrs)
PE: >2 yrs
TSA: N/D

FM: Auditory, Visual
FD: PC speaker,
computer monitor
FS: Concurrent
S/T: Force sensing
resistors (FSRs)
sensors

Lab,
Treadmill

Double support time
index, constant time
cadence index, single
support time index,
stance/swing phase
index

Heart rate N/A

20 min each test
session (5 min warm
up, 10 min training
and 5 min cool down).
Walking speed
increased each
minute as tolerated
(starting at SS speed)

Improvement in all
dynamic gait
performance indices.
Most subjects easily
adapted to auditory
rather than visual
feedback

[56]
Lee et al. 2007
Assess a
computerized foot
pressure BFB system
using low-level
electrical stimulation
and visual-auditory
feedback to improve
gait and balance

7 TT
Cause: N/D
Age: 24–60 yrs (38.8 ±
14.08 yrs)
PE: > 2 yrs (8.5 ± 6.12 yrs)
TSA: N/D

FM: Auditory, Visual
FD: PC speaker,
computer monitor
FS: Concurrent
S/T: Force sensing
resistors (FSRs)
sensors

Lab,
Treadmill

Double support
period, constant time
cadence, single
support period,
stance/swing ratio

N/A N/A

20 min each test
session (5 min warm
up, 10 min training
and 5 min cool down).
Walking speed
increased each
minute as tolerated
(starting at SS speed)

Improvement in all
dynamic gait
performance
measures.
Most subjects easily
adapted to auditory
rather than visual
feedback
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[66]
Isakov et al. 2007
Evaluate the
effectiveness of a BFB
system compare to
traditional training
(control group) to
improve full
weight-bearing of
lower-limb amputees

42 LLA
(TF, TT, hip and knee
replacement, femoral neck
fracture),
(n = 22 study, n = 20 control
group)
Cause: N/D
Age: avg. 62 yrs (study), 66
yrs (control)
PE: N/D
TSA: N/D

FM: Auditory (study),
Verbal cues (control)
FD: SmartSte™
(audio)
FS: Concurrent
(study),
Physiotherapy
(control)
S/T: Pressure sensors
(study)

N/D,
N/D

Prosthetic
weight-bearing N/A N/A

Both groups: 10 m
walking at SS speed.
Four 30 min sessions
within 14 days.

Weight-bearing on
the prosthetic limb
was statistically
significant increased
while using BFB

[89]
Davis et al. 2004
Evaluate whether a
BFB system is capable
to reduce oxygen
consumption by
improving gait
symmetry of
lower-limb amputees

11 TF/TT
Cause: trauma/diabetes
Age: 36–58 yrs
PE: N/D
TSA: N/D

FM: Visual
FD: Computer
monitor
FS: Concurrent
S/T: Instrumented
treadmill with force
plates

Lab,
Treadmill

Stance/swing ratios,
foot propulsive forces,
shear foot forces

Heart rate, VO2
consumption, tidal
volume

N/A

Five 4 min tests
with/without
feedback per each
target gait parameter
(stance/swing ratio,
foot propulsive forces,
and shear foot forces)

Real-time visual
feedback results in
immediate symmetry
improvements.
Significant reductions
in heart rate and
oxygen consumption
with feedback

[90]
Chow et al. 2000
Evaluate the effects of
BFB on
weight-bearing
patterns of TT
amputees at early
postoperative period

6 TT
Cause: diabetes/peripheral
vascular disease
Age: 66–78 yrs
PE: N/D
TSA: N/D

FM: Auditory
FD: BFB buzzer
FS: Concurrent
S/T: Load-monitoring
device (pair of
single-axis strain
gauges)

Lab,
Overground

Prosthetic
weight-bearing N/A N/A

4 randomized
walking trials (5m
length) with/without
feedback over 5
sessions at SS speed

Feedback prevents
overloading of the
residual limb beyond
the pre-set load target

[91]
Dingwell et al. 1996
Reduce gait
asymmetries of TT
amputees via
real-time visual
feedback

6 H
Age: 33–54 yrs (avg. 42.7
yrs);
6 TT
Cause:
trauma/cancer/peripheral
vascular disease
Age: 31–69 yrs (avg. 41.7
yrs)
PE: 6 mos.–21 yrs (avg. 6
yrs)
TSA: N/D

FM: Visual
FD: Computer
monitor
FS: Concurrent
S/T: Instrumented
treadmill with force
plates

Lab,
Treadmill

Centre of pressure
(CoP), stance time
(%), push off forces,
symmetry index,
single support time

N/A N/A

4 min of acclimation
(no feedback), 5 min
of training with each
feedback parameter
(CoP, stance time
percentage, and
symmetry index), SS
speed

Asymmetrical gait
patterns were
significantly reduced
after providing visual
feedback
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[83]
Sabolich et al. 1994
Improve balance and
gait by restoring
sensory perception at
the residual
limb/socket interface
via transcutaneous
electrical neural
stimulation

12 TF, 12 TT
Cause:
trauma/cancer/dysvascular
disease/infection
Age: 21–68 yrs (39.5 ± 13.3
yrs)
PE: 3 mos.–31 yrs (8.1 ± 9.4
yrs)
TSA: N/D

FM: Electrical neural
stimulation
FD: Transcutaneous
electrodes
FS: Concurrent
S/T: Pressure
transducers

Lab,
N/D

Symmetry of weight
distribution, single
limb standing balance,
step length symmetry,
stance time symmetry

N/A N/A

5 h to 6 h walking
with/without
feedback (10 min
intervals per 20 min
rest)

Both populations
increased weight
distribution
symmetry, step length
symmetry.
Stance time symmetry
and standing balance
improved mainly for
TF amputees.

[17]
Flowers et al. 1986
Develop and evaluate
a BFB system to
improve prosthetic
weight-bearing and
hip extension

5 TF
Cause: N/D
Age: 19–68 yrs
PE: N/D
TSA: N/D

FM: Auditory
FD: Earphones or
BFB speakers
FS: Concurrent
S/T: Load cell (or
weight bearing
transducers),
goniometer

Lab,
Overground

Weight bearing, hip
extension angle, steps
count

N/A N/A

30 min to 1h sessions
over 4 months (BFB
device used during
PT sessions)

Subjects with
diminished
awareness of their
bodies and reduced
strength benefited
more from feedback.
BFB improved hip
extension and flexion
at the beginning of
stance phase

[92]
Clippinger et al.
1982
Enhance sensory
feedback after lower
limb amputation by
providing electrical
stimulation

13 LLA
(5 Hip disarticulation, 7 TF,
1 bilateral TT)
Cause: N/D
Age: N/D
PE: N/D
TSA: 3 days–4 yrs

FM: Afferent sensory
feedback
FD: Surgically
implanted electrodes
FS: Concurrent
S/T: Piezoelectric
crystal, strain gauges

N/D,
N/D Weight bearing N/A N/A

3 h to 12 h of daily
stimulation ranging
from 8 months to 6
years

Implanted electrodes
were tolerated by all
patients without
discomfort.
Postoperative pain
reduced and stump
healing improved by
stimulating the sciatic
nerve

[93]
Gapsis et al. 1982
Evaluate a limb load
monitor for
controlling weight
bearing of lower-limb
amputees

20 LLA
(n = 10 study, n = 10 control
group)
Cause: ND
Age: 47–78 yrs (avg. 62.5
yrs)
PE: N/D
TSA: N/D

FM: Auditory
FD: BFB buzzer
FS: Concurrent
S/T: Load sensitive
transducer

Lab,
Overground

Weight bearing
(prosthetic limb load) Total body weight N/A

5 min for acclimation
period, feedback
system used during
patient’s daily
ambulation therapy

Control and study
group reached goals.
Study group reached
goals twice as fast
with feedback
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[85]
Fernie et al. 1978
BFB device designed
to promote knee
extension at stance
phase

19 TF
Cause: ND
Age: 46–84 yrs (avg. 70 yrs)
PE: N/D
TSA: N/D

FM: Auditory
FD: BFB buzzer
FS: Concurrent
S/T: Foot and knee
switch

N/D,
N/D

Knee
flexion/extension
angle, steps count

Percentage of errors
(i.e., bending the knee
and loading the limb
simultaneously)

N/A
3 weeks of training.
PT involved at early
BFB stages.

Feedback system
encouraged knee
flexion than knee
extension.
Audio signal too
annoying to use.One
participant showed a
period of retention in
the 3rd week of
training

[94]
Zimnicki et al. 1976
BFB system
developed for
geriatric above-knee
amputees to achieve
an adequate knee
extension during
walking

13 TF
Cause: N/D
Age: 53–84 yrs (avg. 72 yrs)
PE: N/D
TSA: N/D

FM: Auditory
FD: BFB buzzer
FS: Concurrent
S/T: Pylon switch

N/D,
N/D

Knee
flexion/extension
angle, body weight
pressure

N/A N/A

5 progressive training
stages over 5 or more
sessions.
PT involved to
reinforce BFB training

BFB found to be more
helpful for
participants who had
difficulty in following
or concentrating on
verbal instructions
and for those one
who appeared to
understand but were
enabled to elicit the
appropriate motor
responses

[95]
Warren et al. 1975
Evaluate the
effectiveness of a BFB
system in comparison
to a Bathroom scale to
improve
weight-bearing

10 H
Cause: N/A
Age: 18–26 yrs
PE: N/A
TSA: N/A

FM: Auditory, Visual
FD: BFB alarm
FS: Concurrent
S/T: Force plates,
pressure sensitive
insoles

Lab,
Overground Weight-bearing N/A N/A

Bathroom scale: two
times - four steps on
monitored leg. Three
training levels
with/without
feedback (trying to
reproduce target
loading threshold)

BFB training was of
limited value due to
time lag between
feedback and motor
response

H: healthy subject; TT: transtibial (below-knee) amputation; TF: transfemoral (above-knee) amputation; PE: prosthetic experience; TSA: time since amputation; FM: feedback modality; FD:
feedback device; FS: feedback strategy; S/T: sensors/transducers; SS: self-selected; PT: physiotherapist; N/A: not applicable; N/D: not described.
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4. Discussion

The primary aim of this systematic review was to consolidate published evidence that was related
to the development and testing of BFB systems as a gait retraining tool for individuals with LLA.
The quality of the identified studies (n = 31) was generally high, particularly in more recent years (i.e.,
since 1990).

4.1. Sample Size

The average sample size across studies was 13 ± 3 non-amputee subjects, 7 ± 2 individuals with
transtibial amputation, and 3 ± 1 individuals with transfemoral amputation. A few studies indicated
that statistical tests could not be accurately performed and the findings cannot be extrapolated to larger
populations due to their low sample size [56,58,96]. It was indicated that, although a small sample
limits generalization of findings, a case study could provide pilot data and allow for exploratory
research across a diverse population [97,98].

4.2. User Demographicss

The majority of lower limb amputees are over 50 years of age and most of the amputations are due
to complications that are associated with vascular diseases [99,100]. The age of participants with LLA
in this review ranged from young adults (as young as 19 years) to the elderly (aged 60 years and above).
None of the studies focused on children and youth; a population that might benefit most due to a
lifetime of prosthetic use and savviness for technology. There exist limitations that are associated
with the transferability of findings between young and older populations. One reason for this is the
differences in ambulation ability and the capacity to regain mobility function [100]. Elderly patients
may require longer practice time, yet they typically suffer from lower physical endurance [17]. Further,
with an older population come challenges with BFB usability. A recent study showed that, in contrast
to healthy young adults, elderly healthy subjects were unable to utilize BFB information to reduce
trunk sway while walking distracted [101]. Walking can be considered to be an unconscious (i.e., low
cognitive) activity for healthy subjects [102]. However, for prosthetic users, walking often increases
cognitive load and energy expenditure [103,104]. Prosthetic users usually depend on additional
information (i.e., visual, auditory, and somatosensory) to ambulate safety [10].

Phantom limb pain affects many individuals with lower-limb amputation. It is manifested as
sensations or pain from a body part that no longer exists [105]. Techniques, such as mirror therapy
and BFB, have demonstrated the potential to reduce phantom limb pain in prosthetic users [59,86,105].
An important benefit of BFB systems when compared to mirror therapy approaches is that, in addition
to reducing phantom pain, BFB systems can potentially improve the overall gait performance and
prosthetic function of individuals with LLA [59,86]. Accordingly, participant characteristics (i.e., age,
etiology, level of amputation, and prosthetic experience) should be considered in the development
an effective and user-friendly BFB system, as these may dictate the most suitable BFB modalities (i.e.,
visual, auditory, or haptic feedback) and BFB strategies (i.e., control algorithms utilized to convey
sensory feedback to BFB users).

4.3. Level of Amputation

Transfemoral amputees typically demonstrate more severe gait deviations than transtibial
amputees [106]. There is also increased energy cost, loss of mobility function and decrease in
walking efficiency with higher levels of amputation [97]. However, transfemoral amputees are
generally underrepresented in the BFB research. Additionally, the targeted gait parameters appear to
be dependent on the specific amputee demographic. For instance, gait symmetry ratios, stance times,
hip and knee flexion/extension angles, and trunk sway are more relevant for transfemoral than those
for transtibial amputees [6,107]. One study found it difficult to recruit transtibial amputees with
asymmetric gait and recommended recruiting transfemoral amputees [36]. On the other hand, the gait
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of transfemoral amputees and their ability to make gait adjustments is highly dependent on the
function of the prosthesis, and particularly the prosthetic knee joint [56]. In one study, for example,
because of the inability of the artificial knee-joint to actively adjust, the TF amputee could only vary
gait speed with the healthy limb [108]. Hence, improvements in gait may require gait retraining,
but also adjustments to the prosthetic setup, particularly with higher-level amputations. While this
might become less of an issue with self-adjusting microprocessor knee joints, it will be imperative that
the BFB and prosthetic control systems are designed to work symbiotically. It was also suggested that
future research should determine how different amputee populations can benefit from different BFB
modalities and different BFB strategies [28,56,88].

4.4. Prosthetic Experience and Time Since Amputation

The best practices in amputee rehabilitation encourage physiotherapy, prosthetic fitting,
and training to be provided as soon as possible post amputation. One study involving established
prosthetic users (>2 years post amputation) suggested that research should focus on how effective BFB is
in the early stages of rehabilitation [56]. Others suggest that the best results occur with novice users, but
that experiments should be done on expert prosthesis users to examine effectiveness [28]. To this point,
one study found that newer, less established amputees were better able to adapt their gait patterns [36].
While early rehabilitation using BFB has been suggested for other populations, such as stroke, this
approach presents certain challenges in amputee research and rehabilitation [109]. Issues, such as
prosthetic fit and residuum healing can complicate experimentation on new amputees [97]. Overloading
in the post-operation stage might result in tissue breakdown [90] and premature rehabilitation might
affect the incision and cause healing issues [110]. BFB systems have been developed to improve the
healing process in the early postoperative period by warning amputees applying excessive pressure on
the residual limb [90]. Several studies had confounded results, since the patients were being provided
conventional physiotherapy during the time of the BFB experiments; this is a potential issue when
testing with recent amputees receiving standard care [81,86,97]. Similarly, to limit the confounding
effects, one study withheld prosthetic alignment changes as the participants began to exhibit better gait
patterns. However, this goes against standard care and might have contributed to poorer results in the
study [81]. Based on these findings, BFB training should be provided as soon as the residuum is healed
and volume stabilized, a satisfactory and stable prosthetic setup, alignment and fit have been achieved,
and conventional physiotherapy treatments have concluded to exclusively assess the effectiveness of
the BFB systems.

4.5. BFB Intervention (Experimental Protocol)

None of the studies tested BFB under a randomized control trial (RCT). RCTs minimise the risk of
confounding factors that might alter the results. For this reason, RCT studies are the golden standard
for validating the effectiveness of an intervention. Over one-quarter of the studies reported using a
single gait training session. It is important to allow for the user to have adequate training with the BFB
system to enhance learning [64]. Training is important, as making errors drives motor learning [39].
Studies often do not report instructions given or training methods and research should be done to
determine the best method of conducting the training sessions [111]. The effects of training intensity
were mentioned in a few of the included papers and conclusions were mixed. One study concluded
that outcomes are better with more intensive training [56], while others suggest gradually setting
attainable targets [88]. Moreover, as in previous reviews, most studies did not report any follow-up
sessions with the BFB system to test for retention [22,64]. Finally, the literature is unclear as to how
BFB should be integrated into conventional physiotherapy. For example, systems, such as the one
described by Redd et al., can be used with little specialized training and without the supervision of
a physiotherapist/prosthetists [88]. It is likely that BFB might be most effective in combination with
existing physiotherapy and gait training practices [112].
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4.6. Treadmill vs. Overground Walking

Most studies used a treadmill during the experimental procedure. Nagano et al. has shown
that temporal gait parameters, such as double stance time and swing time differ when walking on a
treadmill compare than those walking overground [101]. Another study showed that walking on a
treadmill reduces dorsiflexor and knee extensor moments [102] and increases hip extensor moments in
the sagittal plane [102]. This suggests that BFB strategies utilized to alter gait symmetry might need to
be modified, depending on treadmill or overground walking. Further, it has been shown that difficulty
might arise when translating locomotor skills from treadmill training to overground walking [103].

4.7. BFB Parameter Measurements

Only some of the studies validated the BFB system’s accuracy in sensing the targeted gait
parameter(s). For example, Isakov et al. validated their pressure sensing insoles with a force plate [66]
and Yang et al. used a previously validated BFB system consisting of a force plate and motion analysis
system [36,113]. The inaccuracy of a goniometer for knee angle measurements was a limitation in
one study [87]. Another study noted a source of error in the algorithm to detect heel-strike and
toe-off [88]. The accurate and reliable measurement of gait deviations is crucial to the success of
wearable BFB systems, as erroneous feedback and false positives calling for corrections in gait can
confuse and frustrate BFB users. Few studies mentioned time delays in their BFB system [30,87,114].
For instance, Crea et al. [30] and Liu et al. [114] reported delays less than or equal to 200ms due to
wireless communication with the sensors embedded in the shoe-insoles. Consequently, delays were
produced in the detection of the feedback stimulus. Accordingly, effective BFB systems must have
low latency, especially when sensing and providing real-time feedback during dynamic activities,
such as walking.

4.8. BFB Modality

Visual feedback was the most common method provided to the participants, but there is some
debate on the most appropriate and effective feedback modality. In one study, visual feedback was
deemed the most intuitive modality that was based on user preference and usability [88]; however,
the authors suggested that more work should be done to improve the usability/ease of use of
vibrotactile and auditory feedback [88]. One study found that amputees and physiotherapists valued
auditory over visual feedback and the participants adapted more easily to auditory feedback [56].
These preferences appear to be related to BFB design, testing, and safety aspects. BFB users might
prefer or find more useful the BFB modality that provides more intuitive and relevant feedback
information according to the gait parameter and task performed. For example, visual feedback
is typically confined to specific locations (e.g., treadmill walking while watching a display under
laboratory conditions). Safety issues relating to falling can arise during activities of daily living, for
example, as prosthetic users walk and negotiate obstacles, such as curbs and stairs while watching
a display or a smartphone. For this reason, auditory and haptic (e.g., vibrotactile) feedback may
be more suitable for field or community-based systems [64]. A previous mapping review came to
similar conclusions. It noted that, while visual feedback was most commonly used and studied,
it might not be the most effective feedback modality for practical use [64]. Visual feedback is more
appropriate for the perception of spatial information [115], while auditory and haptic feedback are
better suited for the perception of temporal [115] and spatiotemporal information [39,115], respectively,
according to the literature in motor learning. Accordingly, BFB systems need to appropriately align
feedback modalities and strategies with measured gait parameters. For instance, in terms of vibrotactile
feedback, diverse feedback strategies (i.e., a combination of vibration patterns—vibration levels and
activation sequences—including different locations and number of vibrating motors) have been utilized
to improve gait performance [28,36,40,58,88,116]. However, a systematic comparison of the current
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implemented feedback strategies is missing to explore which strategy might produce greater positive
gait outcomes on individuals with LLA.

Of the reviewed studies, six (n = 6) provided multimodal feedback [58,74–76,88]. Some researchers
have suggested that multimodal feedback reduces cognitive load and can enhance motor learning [39,58,83].
For instance, Crea et al. evaluated the cognitive load of a visual-vibrotactile BFB system by adding
a secondary cognitive task (i.e., serial subtraction) during walking with vibrotactile feedback [58].
The results showed that gait symmetry was improved without significant increases on cognitive load in
the presence of feedback walking [58]. In another study, Pagel et al. showed that, when cognitive load
increases, the imbalance between intact and prosthetic limb becomes more pronounced [84]. Cognitive
impairment appears to be more common in individuals with LLA than in the general population—this
is linked to difficulties with regaining mobility and independence after amputation [117]. Thus, if the
feedback is too cognitively taxing, it might be counterproductive and more difficult for amputees to
process the information, potentially even resulting in worsened gait and mobility performance [112].
For instance, Fernie et al. [85] designed an auditory BFB system to maintain knee extension through
the stance phase; however, the BFB system was found to alter knee flexion instead. Chow et al. [90]
originally designed an auditory BFB to encourage participants to increase the loading of the residual
limb, but in fact the audio BFB prevented adequate loading of the residual limb.

4.9. Feedback Strategies

Feedback strategies mainly utilized baseline (no feedback) conditions to obtain an initial value of
the specific gait parameters. Most of the studies set a gait target threshold for participants prior to
BFB testing. Few studies set these thresholds based on the feedback provided by a physiotherapist,
who assessed the participant’s walking ability to personalize the BFB treatment or provided verbal cues
prior or during the early stages of BFB gait retraining [17,34,36,81,85,94]. Feedback can be provided in
real-time (concurrent feedback) or after the trial has finished (terminal feedback) [112]. All the studies
applied concurrent feedback, and none provided terminal feedback. A recent review [112] showed
that concurrent feedback produces the best short-term results, while terminal feedback produces the
best long-term results [112]. Therefore, an effective training strategy could be to provide concurrent
BFB and terminal feedback from the physiotherapist during training sessions.

4.10. Other BFB design and Application Considerations

When designing a BFB system, it is important that the BFB strategy is non-obtrusive and enjoyable
for the user. Program adherence has been linked to program enjoyment [97]. This will ensure that the
BFB systems will be used in the long-term. Motivation for walking is a predictive factor for successful
rehabilitation of amputees [118]. If a wearable daily use system is not the goal for the researcher, virtual
reality (VR) systems may be a good option to motivate and encourage program adherence, since users
might perceive to have more interaction with the system. For balance, the Wii-Fit has been shown
to improve the balance and gait in older adults [97], children and adolescents with amputation [119],
as well as individuals with Alzheimer’s and Parkinson’s disease [120]. Although the Wii-Fit is no
longer commercially available, other VR options have been used for rehabilitation purposes, including
the CAREN system and C-Mill (both from Motekforce Link, Amsterdam). The two included studies
used VR environments, specifically the CAREN system [34,81]. Virtual reality might be the best option
for BFB because program adherence is important [97]. Alternately, if BFB systems are envisioned as
wearable systems that are built into prostheses that provide as needed feedback during activities of
daily living, they must do so unobtrusively and seamlessly. However, to date, only two studies tested
their systems in the field [59,86]. Moreover, retention and fading, which are important considerations
for the continuous use of feedback systems, are not well understood and require further attention [64].
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4.11. Limitations of the Systematic Review

It was not possible to conduct a meta-analysis on the data due to the wide range of target gait
parameters, outcome measures, and methods used. Further, six databases as well as the references
from included studies were used to search for articles. Articles that were not written in English were
not included.

5. Conclusions

Although most individuals with amputation are older, there is a lack of research on technology-based
feedback for a younger or paediatric population. Further, the older population might have difficulty
with the usability and response times of BFB systems. Different amputation levels may benefit from
different feedback strategies and/or target parameters; therefore, it is important to investigate the
effect on gait of different feedback strategies to ensure that the target gait parameter and the sensory
information are appropriate for the target population. BFB training should be provided as soon as
possible in the rehabilitation stage, but the training should not start until the stabilization of the early
stages of the rehabilitation process. Auditory and vibrotactile feedback are more wearable and different
population ages may respond to feedback differently, and it is important to align feedback modality
and feedback strategies appropriately with the measured gait parameter(s). The relationship between
training intensity and performance is unknown and future work should be conducted to investigate a
possible correlation.

In terms of developing an effective, robust, and user-friendly wearable biofeedback system to
improve the gait of individuals with LLA, the following aspects should be considered: (1) target gait
parameters should be clinically relevant for the targeted population. For instance, gait symmetry ratios,
stance times, hip and knee flexion/extension angles, and trunk sway are more relevant for transfemoral
than those for transtibial amputees; (2) BFB modalities (i.e., visual, auditory, haptic, and multimodal
feedback) should take into consideration usage conditions (i.e., laboratory, clinical, or home-care
settings), including user’s age, level of amputation, and prosthetic experience; (3) feedback information
(i.e., BFB strategies) should be easy to perceive, discriminate, and utilize by BFB users, allowing for them
to transfer feedback information with low cognitive demand; (4) wearable sensors, such as pressure
sensors, load cells, electrogoniometers, etc. should be fully integrated into BFB systems to improve
wearability. In addition, accelerometers, gyroscopes, or inertial measurement units (IMU sensors) are
encouraged to be used for gait event detection, which might improve accuracy and portability of the
BFB systems; and, (5) program adherence and program enjoyment should be sought to ensure the
long-term use of BFB systems. Effective BFB systems might be achieved by designing a goal-oriented
experimental intervention and by considering the previously mentioned points regarding BFB design.
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