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Abstract: In this paper, the errors of the displacement measurement interferometer with multi-mode
fiber-coupled delivery are analyzed when the fibers are disturbed. Simulation results show that
the characteristic frequency of the measurement error is consistent with that of disturbance, and
the error has higher order frequency components. The experiments are designed for the effect of
fringe contrast on the measurement error. The experimental results show that the measurement error
is rather sensitive to the interference angle between the measurement arm and the reference arm in
the multi-mode fibers, but not to the irradiance ratio of the measurement arm and the reference arm.
In an interferometer with multimode fiber, the interference angle between the measurement arm and
the reference arm needs to be restricted. This conclusion provides a theoretical basis for designing
an interferometer measurement system with interference angle that is adaptive to wider application.
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1. Introduction

In order to achieve a higher measurement accuracy and wider application, optical fiber
is used for the delivery of beams in the displacement measurement interferometer [1,2]. In
the interferometer system with polarization-maintaining fibers (PMFs), the PMFs are used for
the delivery of single-frequency polarized beams, the purpose of which is to isolate the laser source
from the interferometer, so as to prevent the error caused by laser heating. Moreover, PMFs-coupled
delivery can realize the spatial separation of measurement beam and reference beam, effectively
eliminating periodic nonlinearity (PNL) [3]. Even if the error caused by perturbation of the single-mode
fiber is large, it can be compensated for by means of biaxial measurement or a compensation axis [4].
There are also displacement measurement interferometer systems with PMFs and multimode fibers
(MMFs), in which the MMFs are used to deliver the measurement arm and the reference arm for
the purpose of separating the board card from the interferometer and reducing the noise [5,6]. Therefore,
the displacement measurement interferometer with the fibers will have a smaller size and a wider
range of applications [7].

There have been many advances in the research of MMFs and the sensor based on MMFs [8–11].
The theory of how the beam propagates in MMFs has also been improved. The beams propagate in
MMFs with multiple modes, each of which has an effective refractive index (ERI) [12–15]. Similar
to PMFs, MMFs will generate stress and deformation when disturbed. Due to the optic-stress
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effects, the refractive index of the fiber will change [16–18]. There are many interferometers, and
the measurement arms and the reference arms of these interferometers cannot be guaranteed to be
parallel and coincident in use [19–24]. In some applications of interferometers with MMFs such
as the relative displacement measurement of the dual wafer stage, the interferometers inevitably
move with one stage [25]. In this case, MMFs are disturbed by the motion of the interferometers.
The measurement errors caused by disturbed MMFs needs to be studied to achieve higher measurement
accuracy, which is beneficial for designing an interferometer measurement system with an interference
angle that can be adapted to wider application.

In this paper, for the displacement measurement interferometer with multi-mode fiber-coupled
delivery, we analyze the errors caused by disturbed MMFs and obtain the analytical expression of
it. Then, simulation models are established for the solution of the errors. The variation of the ERI of
the MMF under disturbance is obtained in the COMSOL simulation, and the measurement error is
obtained in the ZEMAX simulation. It is verified that the characteristic frequency of the measurement
error is consistent with the frequency of the disturbance. Finally, experiments are designed to verify
the simulation results, and the effect of fringe contrast on the errors caused by disturbed MMFs
is further studied. Fringe contrast can be express as the ratio of AC signal to DC signal (IAC/IDC),
where the AC signal is IAC and the DC signal is IDC [26]. It is concluded that the irradiance ratio of
the measurement arm and the reference arm has less influence on the errors, while the interference
angle between the measurement arm and the reference arm has great influence on the errors. The larger
the interference angle, the larger the errors, and the greater the rate of change of the measurement
errors with IAC/IDC.

2. Principle

2.1. Errors Caused by Disturbed MMFs

As shown in Figure 1, in the interferometer measurement system with fiber-coupled delivery,
the single-frequency polarized beams generated by the laser are delivered to the fiber couplers (FCs) by
the PMFs, and then into the optical lens assembly (OLA) to form the reference arms and the measurement
arms. The measurement arms carry the Doppler phase shift of the target. The reference arms and
the measurement arms are coupled to the MMFs by FCs after passing through the OLA, and are finally
delivered to the control board (CB), where photoelectric conversion and phase discrimination are
completed. The irradiance signal received by the photodetector (PD) in the CB is the sum of each mode
component of the measurement arm and reference arm.

Deformation and strain occur in the core and cladding of MMFs when disturbed. The refractive
index of the core and cladding of the MMF changes due to the optic-stress effects when the stress exists
are inconsistent in the fiber, including the birefringence effects. Moreover, when the MMF deforms,
the propagation path of the internal beams will change. These two points cause the ERI of each mode
of the MMF to change.
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Figure 1. The schematic diagram of the interferometer measurement system with fiber-coupled delivery.
The red beams are the measurement arms and the green beams are the reference arms.

We analyzed the errors in the case of heterodyne interferometer. In MMFs, the electric field of
the measurement arm (Em,j) and the electric field of the reference arm (Er,j) can be expressed as:

Em, j = E1e2π f1t+ψ+Φ1+
2π
λ Lne f f ,m, j

Er, j = E2e2π f2t+Φ2+
2π
λ Lne f f ,r, j

(1)

where j is the modulus, neff,m,j is the j-th ERI of the measurement arm, neff,r,j is the j-th ERI of the reference
arm, L is the length of the MMF, λ is the vacuum wavelength of the laser, f 1 and Φ1 are the frequency
and initial phase of the measurement arm, respectively, f 2 and Φ2 is frequency and the initial phase of
the reference arm, respectively, and ψ is the Doppler-phase-shift of the target.

The effect of disturbance on the signals can be equivalent to the effect on the ERI of the MMF.
The irradiance signals detected by PD is of the form:

I =
∑

E2
m, j +

∑
E2

r, j +
∑
j,i

2
∣∣∣Er, j

∣∣∣∣∣∣Er,i
∣∣∣ cos(∆βr, j,i) +

∑
j,i

2
∣∣∣Em, j

∣∣∣∣∣∣Em,i
∣∣∣ cos(∆βm,, j,i)

+
∑∑

2
∣∣∣Em, j

∣∣∣∣∣∣Er,i
∣∣∣ cos(2π( f1 − f2)t +ψ+ (Φ1 −Φ2) + ∆ϕ j,i)

(2)

where ∆βr,j,i, ∆βm,j,i, and ∆ϕj,i can be expressed as follows:

∆βr, j,i =
2π
λ L(ne f f ,r, j − ne f f ,r,i)

∆βm, j,i =
2π
λ L(ne f f ,m, j − ne f f ,m,i)

∆ϕ j,i =
2π
λ L(ne f f ,m, j − ne f f ,r,i) =

2π
λ L∆ne f f , j,i

(3)

Because phase discrimination is mainly aimed at the high frequency part of Equation (2), ∆βr,j,i
and ∆βm,j,i are filtered by a high-pass filter. The filtered signal can be expressed as:

I f =
∑∑

2
∣∣∣Em, j

∣∣∣∣∣∣Er,i
∣∣∣ cos(2π( f1 − f2)t + φ+ (Φ1 −Φ2) + ∆ϕ j,i). (4)
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It can be deduced from Equations (3) and (4) that the errors caused by disturbed MMFs can be
expressed as,

α = arctan

∑∑
sin( 2π

λ L∆ne f f , j,i)∑∑
cos( 2π

λ L∆ne f f , j,i)
. (5)

According to Equation (5), α varies with ∆neff,j,i. However, ∆neff,j,i is mainly affected by two
factors: the refractive index of the MMF and the path of the beams. As for the influence emerging from
the refractive index of the MMF, when stress is generated inside the MMF, based on optic-stress effects,
its refractive index can be expressed as [17,18],

nx(t)
ny(t)
nz(t)

 =


n0

n0

n0

−


B1 B2 B2

B2 B1 B2

B2 B2 B1




Sx(t)
Sy(t)
Sz(t)

, (6)

where nx, ny, and nz are the diagonal elements of the refractive index tensor, n0 is the refractive index
of the amount of material in the stress-free state, B1 and B2 are optic-stress constants which dependent
on the material, and Sx, Sy, and Sz are the diagonal elements of the stress tensor. It should be noted
that the refractive index of the fiber material here adopts a diagonal model, ignoring the off-diagonal
elements of the refractive index tensor.

Through Equation (6), the refractive index n(t,x,y,z) of the MMF at different positions can be
obtained. In the MMF, the path of the beams is p(x,y,z). The ERI is the integral of the refractive index
gradient along p, so the ERI can be expressed as [13]:

ne f f (t) =
1
L

∫
p(x,y,z)

n(t, x, y, z)ds. (7)

When the MMF is disturbed, not only does the internal stress affect the ERI, but also the path P
changes. So ∆neff in Equation (3) can be expressed as,

∆ne f f (t) =
1
L
(

∫
pm(t,x,y,z)

n(t, x, y, z)ds−
∫

pr(t,x,y,z)

n(t, x, y, z)ds) (8)

By substituting Equation (8) into Equation (5), the errors caused by disturbed MMFs varying with
time can be obtained:

α(t) = arctan

∑∑
sin( 2π

λ (
∫

pm(t,x,y,z)
n(t, x, y, z)ds−

∫
pr(t,x,y,z)

n(t, x, y, z)ds))

∑∑
cos( 2π

λ (
∫

pm(t,x,y,z)
n(t, x, y, z)ds−

∫
pr(t,x,y,z)

n(t, x, y, z)ds))
. (9)

In the frequency domain, when the frequency of the disturbance on MMFs is f, the stress tensor
and refractive index tensor in Equation (6) have the characteristic frequency f, and the path of the beams
in MMFs also has the characteristic frequency f. Therefore, the errors caused by disturbed MMFs
include the frequency component f, as well. By obtaining their mean, the spectrum of experimental
results can be used to analyze the influence of different conditions on the error.

In Equation (9), if the interference angle between the measurement arm and the reference arm is
zero, thenα(t) is also zero and there are no errors caused by disturbed MMFs in the system. If interference
angle exists, then pm(t,x,y,z) is different from pr(t,x,y,z), which results in the error. The interference
angle between the measurement arm and the reference arm should be within the allowable range to
ensure good quality of interference.

Equation (9) can calculate the sum of the error of each mode. Although Equation (9) gives
an analytical model of the error caused by disturbed MMFs, it is difficult to calculate the error only
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by using this formula because the specific stress distribution of the MMF and propagation path of
the beams are difficult to determine. The following simulation combines COMSOL and ZEMAX to
solve the error and to study the characteristics of the error.

2.2. Simulations

Through simulations, we verified that the disturbance of MMFs can introduce measurement error.
We also determined that the characteristic frequency of the errors obtained by simulations is consistent
with the frequency of disturbance. The simulations are divided into two parts. At first, the ERI of
the MMF is obtained by COMSOL simulation, and then the results are substituted into the model in
ZEMAX simulation to obtain the measurement error after signal processing.

In the COMSOL model, the simulation is divided into two steps. Firstly, the stress distribution
and deformation distribution of the MMF under periodic load are calculated by using the interface of
‘solid mechanics’. Secondly, the obtained stress distribution is substituted into Equation (6) to calculate
the refractive index of each part of the fiber after strain. The ERI of the fiber is calculated by using
the ‘mode analysis’ module in the ‘wave optics’ interface.

The specification of the MMF is referred to the product of THROLABS, and the parameters in
the simulations are shown in Table 1. Considering the size of the simulation grid and the amount of
calculation, the length of the MMF is 1 mm. The outer diameter of the cladding of the MMF is 425 µm,
and the diameter of the core is 400 µm. The Young’s modulus, Poisson’s ratio, density, and stress
optical coefficients of the fiber refer to the parameters of silica.

Table 1. The parameters in simulation.

Parameters Value Description

λ 633 nm Free space wavelength
n1 1.3982 Refractive index of the cladding
n2 1.4584 Refractive index of the core
d1 425 µm Outer diameter of the cladding
d1 400 µm Diameter of the core
L 1 mm Length of MMF
E 78 GPa Young’s modulus
ρ 2203 kg/m3 Density
µ 0.17 Poisson’s ratio
B1 0.65 × 10−12 m2/N First stress optical coefficient
B2 4.2 × 10−12 m2/N Second stress optical coefficient

Disturbance on the MMF is shown in Figure 2a. The applied load is the uniform pressure P, and
its expression is P = 100sin(2πfLt) Pa. The frequency of the load is fL = 50 Hz. The sampling time is
1 second and the sampling frequency is 5 kHz. Figure 2b shows the deformation and stress distribution
of the fiber at t = 2 ms, t = 10 ms, and t = 12 ms, respectively. The stress distribution is substituted
into Equation (6) to calculate the refractive index distribution, and then the ERI is obtained by mode
analysis. In order to study the characteristics of the error in the frequency domain, we mainly focused
on the ERI of the fundamental mode because the error in the fundamental mode is larger than that
in the higher-order mode. The ERI of the fundamental mode is shown in Figure 2c. For the sake of
getting a more intuitive conclusion, the amplitude spectral density (ASD) of the ERI was analyzed,
which is shown in Figure 2d. It can be seen that the first order frequency of the ERI is 50 Hz, which is
consistent with the frequency of the applied load. Meanwhile, in the black box in Figure 2d, the ERI
also has the higher-order frequencies, which are multiples of the first-order frequency.
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Figure 2. (a) The COMSOL model of multimode fibers (MMFs) with load P applied to the upper surface
of the cladding; (b) The figures of the MMF’s deformation and stress distributions under the load at
t = 2 ms, t = 10 ms, and t = 12 ms; (c) The graph of the effective refractive index (ERI) of the fundamental
mode; (d) The graph of the amplitude spectral density of the ERI.

Since the change of the ERI is small and the actual length of the MMF is much longer than 1 mm
in the COMSOL model, we first amplify the refractive index change by using a certain factor, and then
assign the values to the optical fiber in ZEMAX simulation. As shown in Figure 3a, the measurement
arm and the reference arm are coupled to the MMF and finally reach the detector for processing. In this
simulation, we divide the fiber into three parts, and the middle part is disturbed. The ERI obtained
from COMSOL simulation is given to the MMF in the disturbed part, and the final error is obtained
by calculating the irradiance signals detected by PD. In the ZEMAX model, the frequency difference
between the measurement arm and the reference arm is 240 Hz, the sampling frequency is 5 kHz,
and the sampling time is 1 s. Figure 3b is the measurement errors from 0.35 s to 0.65 s. The ASD of
the measurement errors is analyzed in Figure 3c. It can be seen that the main frequency is 50 Hz, at
which the amplitude of the error is 0.00129 nm/

√
Hz. There is a second-order frequency of 100 Hz,

which is consistent with the ERI’s and the load’s frequencies. In the black box in Figure 3c, the ASD
of the error has the higher-order frequencies as well. The component at 240 Hz is the error of phase
discrimination process, which is consistent with the frequency difference.

Using theoretical analysis and simulations results, it was verified that when the MMF is disturbed,
the ERI change with time, which results in the measurement error. The frequency of the ERI
and the frequency of the error caused by disturbed MMFs are consistent with the frequency of
the disturbance, and there are the octave components of the disturbance.
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Figure 3. (a) The ZEMAX model of MMF; In (a), The disturbed part is the middle section of optical
fiber. (b) the graph of the measurement error and time when the MMF is disturbed; (c) the graph of
the amplitude spectral density of the measurement error.

3. Experiments

3.1. Experimental Principle

To explore the characteristics of the error caused by disturbed MMFs, the experiment is shown
in Figure 4a. To prevent experimental set-up (ESU) from being affected by the vibration, ESU was
installed on the first optical stage (OT1), and a segment of MMF was fixed on the second optical stage
(OT2). In Figure 4b, the laser (model: ZMI7702 Laser Head, ZYGO, Inc, Middlefield, CT, USA) is
the dual frequency laser which emits two beams that are linearly polarized in a coaxial direction. They
have different frequencies and have orthogonal polarization states. After the dual-frequency beams
passes through polarizing beamsplitter (PBS), it is divided into p-polarized beams and s-polarized
beams, and then takes a different death path to form the measurement arm and the reference arm. After
passing beamsplitter (BS1) and polarizing plate (P1), the measurement arm interferes with the reference
arm. The interference beams are divided into two beams through beamsplitter (BS2), and then pass
through fiber couplers (FCs) into MMFs, which are finally delivered to the control board (CB) (model:
ZMI4100TM Series Measurement Board, ZYGO, Inc, Middlefield, CT, USA) for processing. As shown
in Figure 4c, a segment of MMF is fixed on OT2, on which a cellphone is placed to vibrate at a fixed
frequency and amplitude.
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Figure 4. (a) The schematic diagram of the experiments. (b) The schematic diagram of experimental
set-up on OT1. PBS is a polarizing beamsplitter, BS1 and BS2 are beamsplitters, P1 and P2 are polarizing
plates, R1 and R2 are reflectors, and FC1 and FC2 are fiber couplers. (c) the MMFs are fixed on OT2 and
disturbed by the cellphone.

Air disturbance and temperature drift have a great influence on the measurement in the laser
interferometer. In order to eliminate the influence of these errors and obtain the error caused by
disturbed MMFs, the interference beams through BS2 are divided into two beams. The beams are
delivered by different MMF. Two measurement signals I1 and I2 can be expressed as:

I1 ∝ cos(2π∆ f t + ϕT + ϕD + ϕMMF1)

I2 ∝ cos(2π∆ f t + ϕT + ϕD + ϕMMF2)
(10)

where ϕT is the temperature drift error, ϕD is the dead range error, and ϕMMF1 and ϕMMF2 are the errors
caused by MMFs. The difference of the measurement signals only related to the error caused by
disturbed MMFs can be expressed as:

Error1 =
ϕT+ϕD+ϕMF1

2π λ

Error2 =
ϕT+ϕD+ϕMF2

2π λ

DE = Error1 − Error2 =
ϕMF1−ϕMF2

2π λ

. (11)

3.2. Results and Analysis

By comparing the difference between Error1 and Error2 (DE) before and after the disturbance,
the influence of the disturbance on the signals can be obtained. Measurement data in 30 s is recorded
in one experiment. The MMF is stationary for the first 10 s and disturbed by for the last 10 s.
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In Figure 5a,b, the MMFs are disturbed by the hands. The results of DE in the first 10 s and in the last
10 s are significantly different, which indicates that the error increases significantly when the MMFs are
disturbed. To get the influence factors of error more accurately, the results of cellphone disturbance
are investigated later. In Figure 5c, the MMFs are disturbed by the cellphone, and the frequency of
the disturbance is 150 Hz. As shown in Figure 5d, the ASD of the DE before and after the disturbance is
different, and it can be seen that these characteristic frequencies appear after the disturbance: 149.9 Hz,
300 Hz, 449.9 Hz, etc. These frequencies coincide with the first-order, second-order and third-order
vibration frequencies, which is consistent with the results of simulation. Meanwhile, it was verified
that the disturbance of MMFs causes measurement error, and the characteristic frequency of the error
matches the frequency of disturbance.Sensors 2020, 20, x FOR PEER REVIEW 9 of 15 
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Figure 5. (a,c) show that Error1 and Error2 vary with time, and the blue line is the difference value DE.
(b,d) show the ASD of the DE in (a,c), respectively. (a,b) are the results of the disturbance by the hands.
(c,d) are the results of the disturbance by the cellphone.

Fringe contrast is a measure of the interference quality, and a good fringe contrast is needed
to accurately get measurement results. Fringe contrast not only influences the signal-to-noise ratio,
but relates to the error caused by disturbed MMFs. Two factors affect IAC/IDC: the interference
angle and the irradiance ratio. The interference angle is the angle between the vector direction of
the reference arm and the vector direction of the measurement arm. The irradiance ratio is the ratio
of irradiance of the reference arm to irradiance of the measurement arm. The larger the interference
angle, the worse the fringe contrast. The greater the difference between the irradiance of the reference
arm and the irradiance of the measurement arm, the worse the fringe contrast [26]. The influence of
the factors on the errors is further studied below.

The influence of the interference angle on the error caused by disturbed MMFs is studied by
adjusting R1 or R2 in Figure 4b. The larger the interference angle, the smaller IAC/IDC. In the experiment,
the frequency and the amplitude of the vibration are kept unchanged, and only the angles of the mirrors
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are changed. Four sets of IAC/IDC are determined, and then multiple sets of data are measured repeatedly
under each set of IAC/IDC. As shown in Figure 6, the results are measured for IAC/IDC at 100%, 77%,
62%, and 53%, respectively. In the time domain, the 3σ of the DEs in four conditions are 0.1719 nm,
0.2279 nm, 0.372 nm, and 0.5115 nm, respectively. It can be seen that the worse IAC/IDC, the larger the 3σ
of the DE. In the frequency domain, the ASD of the DEs at the first-order characteristic frequency are
0.03612 nm/

√
Hz, 0.03866 nm/

√
Hz, 0.06369 nm/

√
Hz, and 0.11108 nm/

√
Hz, respectively. It can be seen

that the worse IAC/IDC, the larger the ASD of the DE.Sensors 2020, 20, x FOR PEER REVIEW 10 of 15 
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Figure 6. Cont.
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Figure 6. The errors curves for changing the interference angle, (a) IAC/IDC = 100%, (b) IAC/IDC = 77%,
(c) IAC/IDC = 62%, (d) IAC/IDC = 53%.

The influence of the irradiance ratio is studied mainly by adjusting P1 in Figure 4b. It needs to be
guaranteed that the frequency and the amplitude of the vibration are kept unchanged as well. After
each change in P1’s angle, IAC/IDC is measured. Four sets of IAC/IDC are determined, and then multiple
sets of data are measured repeatedly under each set of IAC/IDC. As shown in Figure 7, the results were
measured for IAC/IDC at 100%, 84%, 77%, and 54%, respectively. In the time domain, the 3σ of the DE
in four conditions are 0.1518 nm, 0.1539 nm, 0.166 nm and 0.2039 nm, respectively. In the frequency
domain, the ASD of the DEs at the first-order characteristic frequency are 0.00972 nm/

√
Hz, 0.01244

nm/
√

Hz, 0.0166 nm/
√

Hz and 0.02119 nm/
√

Hz, respectively. It can be seen that IAC/IDC has little effect
on the 3σ and the ASD of the DE.
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Figure 7. The errors curves for changing the irradiance ratio, (a) IAC/IDC = 100%, (b) IAC/IDC = 84%,
(c) IAC/IDC = 77%, (d) IAC/IDC = 54%.

As shown in Figure 8, the two factors that influence fringe contrast affect the error caused by
disturbed MMFs differently. In case 1, the interference angle between the measurement arm and
the reference arm changes, and in case 2, the ratio between the irradiance of the measurement arm
and the irradiance of the reference arm changes. In Figure 8a, when IAC/IDC changes from 50% to
100%, the 3σ of the DE in case 1 changes from 0.52 nm to 0.17 nm, and the change rate gradually
decreases. The 3σ of the DE in case 2 remains between 0.2 nm and 0.15 nm, and is under a small
degree of influence. In Figure 8b, when IAC/IDC changes from 50% to 100%, the ASD of the DE changes
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from 0.11 nm to 0.04 nm in case 1, and the change rate gradually decreases. In case 2, the ASD of
the DE remains between 0.02 nm and 0.009 nm, and is affected slightly. It can be concluded that
the larger the interference angle, the larger the error caused by disturbed MMFs. The influence of
the irradiance ratio on the disturbance error is small. Moreover, the greater the interference angle,
the greater the rate of change of the 3σ and ASD of the DE with IAC/IDC. The reason for this can be that
the greater the interference angle between the measurement arm and the reference arm, the greater
the difference between the path pm and pr in Equation (9). However, when the interference angle is
not changed, and only the irradiance of the beams is changed, pm and pr remain almost unchanged,
essentially indicating that α(t) is a constant.
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4. Conclusions

In this paper, the error caused by disturbed MMFs in the displacement measurement interferometer
system with multi-mode fiber-coupled delivery is analyzed. When the MMF is disturbed, stress and
deformation occur in it, which causes the ERI of the MMF changes. It is verified by simulation and
experiment that, in the frequency domain, the error caused by disturbed MMFs is consistent with
the frequency of disturbance, and the error has higher order frequency components. The effect of
fringe contrast on the error caused by disturbed MMFs is studied experimentally. The ratio between
the irradiance of the measurement arm and the irradiance of the reference arm and the interference
angle between the measurement arm and the reference arm have the same effect on the electronic
noise in the measurement results, but the effect on the error caused by disturbed MMFs is different.
The irradiance ratio has less influence on the disturbance error, but the interference angle has greater
influence on it. The larger the interference angle, the larger the disturbance error of the MMFs, and
the larger the interference angle, the greater the rate of change of the measurement error with IAC/IDC.

The study focuses on an interferometer with multi-mode fiber-coupled delivery, and the MMFs
are disturbed during the measurement. Because the perfect coincidence between the measurement
arm and the reference arm cannot be realized, the error caused by disturbed MMFs cannot be avoided
in the interferometer. It is worth mentioning that due to the influence of IAC/IDC on the error caused
by disturbed MMFs, it is necessary to take the interference angle of the measurement arm and
the reference arm as a design index when designing the displacement measurement interferometer
system with multi-mode fiber-coupled delivery. There are some ways to make the measurement arm
and the reference arm as close together as possible to achieve a tiny error, including by using flat
convex lenses or retroreflectors. For interferometers without calibration, the disturbance amplitude
and frequency are selected according to the operating conditions. Then, the interference angle range is
determined by experiments to ensure that the errors caused by disturbed MMFs are within the allowable
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range. As shown in Figure 8, to ensure that the 3σ of the error is less than 200 pm and the ASD of
the error is less than 40 pm, it is necessary to ensure that the interference angle is within a certain range
so that IAC/IDC is above 90%.
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