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Abstract: The monitoring of sea state conditions, either for weather forecasting or ship seakeeping
analysis, requires the reliable assessment of the sea spectra encountered by the ship, either as a final
result or intermediate step for the measurement of the relevant wave-motion parameters. In current
analyses, different spectrum estimation methods, namely the Welch, Thomson and ARMA models,
have been applied and compared based on a set of random wave signals, with different durations,
representative of several sea state conditions. Subsequently, two sea spectrum reconstruction
techniques were described and applied in order to detect the main sea state parameters, namely
the significant wave height, the mean wave period and the spectrum peak enhancement factor.
The performances of both spectral analysis and sea state reconstruction methods are discussed in
order to provide some preliminary guidelines for practical application purposes. In this respect,
based on current results, the Welch and Thomson methods seem to be the most promising techniques,
combined with the nonlinear least-square reconstruction technique.

Keywords: sea state parameters; welch method; Thomson method; parametric estimation method;
Sea state reconstruction iterative procedure; non-linear least square method

1. Introduction

Nowadays ships are equipped with a variety of sensors useful to obtain information about relevant
motions and accelerations in a seaway and to increase, by means of proper active weather routing
techniques, both the level of onboard comfort experienced by passengers [1] and crew safety during
routine working operations. In this respect, the correct estimate of ship motion spectra is a basic issue
to provide reliable information to the active weather routing decision system and increase the onboard
comfort level and the safety of ship and navigation.

Before assessing the main parameters of the ship motion spectra in a seaway, the basic problems of
sea spectrum reconstruction from wave time history needs to be investigated, concerning: (i) the proper
selection of the most reliable technique that allows for efficiently reconstructing the wave spectrum;
(ii) the minimum duration of the wave time record, required to obtain a robust estimate of the wave
spectrum parameters; (iii) the amplitude of the window embodied in the Short-Time Fourier transform
(STFT) when evolving sea states need to be investigated. These basic issues are essential for the optimal
fitting of wave spectra to measured sea states, as widely discussed, e.g., by Mansard and Funke [2].

Therefore, a study has been undertaken in order to compare the performances of some key
spectrum estimation methods, whose preliminary results were anticipated in the 2019 International

Sensors 2020, 20, 1416; doi:10.3390/s20051416 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-1140-4516
http://www.mdpi.com/1424-8220/20/5/1416?type=check_update&version=1
http://dx.doi.org/10.3390/s20051416
http://www.mdpi.com/journal/sensors


Sensors 2020, 20, 1416 2 of 15

Workshop on Metrology for the Sea IMEKO TC 19, held in Genoa, Italy, in 2019 [3]. In this study,
signals describing four significant sea states were generated, according to the Joint North Sea Wave
Project (JONSWAP) spectrum model, of both long (one hour) and short (ten minutes) durations.
They were processed through three different spectrum estimators, both non-parametrical (Welch’s
and Thomson’s methods) and parametrical—the latter based on an Auto-Regressive Moving Average
(ARMA) model—and results were compared with respect to their capability of reconstructing the
theoretical spectrum-model that originated the signals.

Then, the estimation of three main sea state parameters—namely the wave peak frequency, the
peak enhancement factor and the significant wave—from such spectra was considered. In terms of the
estimation of the wave peak frequency, different peak frequency estimators are available in literature [2].
The peak enhancement factor is generally assessed using a bivariate Rayleigh probability density
function, while the significant wave height is generally estimated using the truncated zero-order
spectral moment [4]. All these methods have been considered and tested and, in addition to them,
the estimation of such parameters based on a non-linear fitting of the spectral model to the estimated
spectra has been applied and results have been compared. Guidelines for the application of both
spectrum estimation and parameter estimation methods are finally provided.

2. Monitoring of Sea State Parameters

Sea state parameters are key factors for assuring the safety of a ship and navigation, and relevant
monitoring is a basic issue in monitoring the ship’s motions in a seaway and, eventually, selecting
the optimal route based on adaptive weather routing criteria. Besides, it is well-known that real sea
state conditions are characterized by random waves; generally described by Pierson–Moskowitz (PM)
or JONSWAP spectra—generally applied for fully and partly developed seas. Fully developed seas
occur when the wind blows for a long period over a wide area of sufficient fetch length, while partly
developed seas occur in fetch-limited conditions. Hence, in current analyses, the JONSWAP spectrum
SJ is applied according to the following equation format [5]:

SJ( f ) = AγSPM( f )γ
exp(−0.5(

f− fp
σ fp

)
2
)

(1)

having denoted by: f the wave frequency, Aγ = 1− 0.287lnγ the normalizing factor, σ the spectral
width parameter, equal to 0.07 if f ≤ fp and 0.09 otherwise, fp the peak frequency, γ the peak
enhancement factor and SPM the Pierson–Moskowitz spectrum:

SPM( f ) =
5
16

H2
s f 4

p f−5exp

−5
4

(
f
fp

)−4 (2)

Hence, the PM spectrum for fully developed seas (γ = 1) is a special case of the JONSWAP one.

3. Spectrum Estimation Methods

3.1. Outline of Some of the Main Spectrum Estimation Methods

Spectrum measurement is a key tool for the monitoring of dynamic phenomena. To perform such
a measurement, signals have firstly to be acquired, through a measurement system with adequate
dynamic characteristics (frequency response), and processed in order to obtain an estimate of the
spectrum. Several estimation methods have been proposed since the appearance of the Fast Fourier
Transform (FFT), in the late 1960s, which made their implementation as digital procedures possible.
They may be parsed in two main groups—namely non parametrical and parametrical [6,7]. The seminal
idea under the first group was the “periodogram”, that is the square of the Fourier Transform (FT) of
the series of observations, normalized in respect of the observation duration, T0. The periodogram,
first proposed by Schuster [8] as a way for identifying hidden periodicities in a highly noisy signal,
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constitutes a rough estimate of the power spectral density (PSD), since it is both biased, for a limited
observation time, and it shows a high variance, which does not decrease by increasing the observation
time. In fact, a longer observation time allows better spectral resolution, since the frequency spacing in
the measured spectrum is ∆ f = T−1

0 , but the variance remains the same. The basic periodogram can,
and should, be improved to reduce bias, which is accomplished typically by tapering or pre-whitening
procedures, and to reduce variance, by averaging or smoothing. An important method that moves along
these lines, is the one proposed by Welch in 1967 [9], which has been considered in the present work.

Another important method was proposed by Thomson [10], still in the area of the non-parametrical
approach. The basic idea was to taper the data with different tapers to highlight different features of
the signal, hence the denomination of multi-taper method (MTM).

An approach alternative to the non-parametrical is called parametrical and has been developed
since the 1970s. It basically consists of considering parametrical models of the observed time series,
such as the auto-regressive moving-average (ARMA) model, and obtaining estimates for the parameters
involved. Once such estimates are available, the PSD of the signal may be approximated by that of the
output of the model when driven by a white noise input. Methods differ in the type of model (AR, MA,
or ARMA) and in the way the parameters are estimated.

3.2. Welch Method

The method consists in parsing the data record, corresponding to an (overall) observation duration
T, in smaller segments of duration T0, with partial overlap, typically from 20% to 50%. Each segment
is pre-treated by tapering with a smooth window, to reduce the bias due to spectral leakage, then the
(modified) periodogram is calculated for each of them. The spectrum is obtained by averaging over
such periodograms. In this way, bias is reduced by tapering and variance is reduced by averaging.

Let us then denote the series of measurements by xi = x(i∆t), where ∆t is the sampling interval,
and i = 1, . . .N, with T = N∆t, and T0 = N0∆t. Let w1, . . . , wN0 be a data taper, then the modified
periodogram for the l-th segment is:

Ŝl( f ) = ∆t

∣∣∣∣∣∣∣
N0∑
i=1

wixi+l−1e− j2π f i∆t

∣∣∣∣∣∣∣
2

(3)

where j is the imaginary unit. The spectral estimator is then:

Ŝ( f ) =
1
n

n−1∑
k=0

Ŝkm+1( f ) (4)

where n is the number of segments and m is an integer-valued shift factor, satisfying 0 < m ≤ N0 and
m(n− 1) = N −N0.

Let us briefly discuss the application of the method and the criteria for choosing the involved
parameters. Basically, two main “metrological” characteristics of the method must be considered,
namely the effective bandwidth and the variance (or, equivalently, the standard deviation). It should be
noted that the bandwidth of a spectral estimator is a measure of the minimum separation in frequency
between approximately uncorrelated spectral estimates [7]. Therefore, the wider such bandwidth is,
the worse spectral resolution is. Let us then briefly discuss the choice of the main parameters of the
method. The degree of overlap is strictly related the kind of taper adopted. Basically, the smoother the
taper is, the higher the degree of overlap can be adopted, which allows us to increase the number of
segments and to reduce the variance. On the other hand, the smoother the window is, the larger its
bandwidth is and, consequently, the worse its spectral resolution results. Welch suggested adopting a
50% overlap, and to apply a cosine (Hanning) window: we consider this a very good compromise and
thus we have adopted it in the present study. Concerning the effective bandwidth, for Welch’s method
it can be expressed as ∆ fe = αwT−1

0 where αw is a factor that depends upon the kind of the selected
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taper and on the way bandwidth is defined. In the case of the Hanning window and considering a
half-power bandwidth, we obtain αw = 1.44 [6]. Concerning the variance of the estimator, with a 50%
overlap, a relative standard uncertainty (standard deviation) uS( f )/S( f ) =

√
(11/18)N0N−1 can be

assumed, where S( f ) is the PSD and uS( f ) is the absolute standard uncertainty [10]. These results
are of great metrological import, since they allow us to keep the quality of the result under control.
Once the record duration T is fixed and the kind of taper and the degree of overlap have been decided,
the duration of the observation window, T0, remains the only design parameter to be optimised. Such
optimization can be done using a trial-and-error approach, with a trade-off between the need to have a
good spectral resolution, which demands for a large T0, and a small variance, which requires a small
T0. It is important to note that in each trial the associated effective bandwidth and variance can be
computed thanks to the above formulae, which are valid only for the Hanning window with a 50%
overlap. Details of the choice made in this study will be given in Section 5.

3.3. Thomson Method

This method generalizes the tapering issue by adopting multiple orthogonal tapers. The aim is to
recover the information that may be lost when using a single taper. The estimator is the average of K
direct spectral estimators, each acting on the whole data record (rather than on a signal segment, as
happens in Welch method) and applying a different taper. Each (partial) estimator is defined by:

Ŝk( f ) = ∆t

∣∣∣∣∣∣∣
N∑

i=1

hi,kxi+l−1e− j2π f i∆t

∣∣∣∣∣∣∣
2

(5)

where hi,k is the kth data taper, usually chosen as the kth discrete prolate spheroidal sequence with
parameter W, where 2W is the normalized bandwidth of the tapers, i.e., the bandwidth for ∆t = 1 s.
The final estimator is thus:

Ŝ( f ) =
1
K

K−1∑
k=0

Ŝk( f ) (6)

where K is typically chosen to be equal to 2NW − 1. The metrological characteristics of the procedure
can be kept under control by assuming an effective bandwidth ∆ fe = 2W/∆t (Hz) and considering that
the estimator is approximately equal in distribution to S( f )χ2

2K/2K, which yields a relative standard

uncertainty equal to K−
1
2 . Therefore, in respect to Welch method, there is here much less arbitrariness,

since, for a fixed observation time, T, the only parameter to be chosen is the half-bandwidth W,
which influences both spectral resolution and relative standard uncertainty. Detail on the choices made
in this study will be given in Section 5.2

3.4. Parametric Estimation Methods (ARMA)

An alternative class of methods, called parametrical, consider discrete parametrical time models
of the series of observations and look for estimators of the involved parameters. Once that estimates
are obtained for them, the spectrum can be calculated as a function of such parameters. For example,
in the special case of (zero-mean) auto-regressive moving-average (ARMA) models, the series of
measurements xi are modelled as:

xi = −a1xi−1 . . .− apxi−p + εi + b1εi−1 . . .+ bqεi−q (7)

where εi is a white noise process with zero mean and variance σ2, and ak and bk are the parameters of the
model. Their estimation involves solving a non-linear optimization problem, for which some methods
are available, none of which, to the authors’ knowledge, prevails over the others. Once estimated, âk
and b̂k, are available and σ2 has also been estimated as the mean squared error (MSE) of the optimization
process, the spectrum can be calculated as follows:
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S( f ) = σ̂2∆t

∣∣∣∣∣∣∣1 +
∑q

k=1 b̂ke− j2π f k∆t

1 +
∑p

k=1 âke− j2π f k∆t

∣∣∣∣∣∣∣
2

(8)

Historically, parametrical methods were developed mainly to overcome limitations in achievable
spectral resolution that are inherent in the non-parametrical approach, especially for short records.
Here, the main design parameter is the choice of the model order n, which is a somewhat critical
issue. In fact, the ARMA model basically refers to the response of a linear system to a broad-band,
flat-spectrum excitation, which may be an acceptable assumption, e.g., in vibration measurement,
in many cases. If the system under investigation may be modelled as linear, one could consider the
order of the assumed model. Yet even in this favorable case, there may be problems due, for example,
to minor modes in the real system not predicted by the model, of by a not flat spectrum excitation—both
circumstances requiring additional degrees of freedom for being properly described, which implies a
higher model order. Furthermore, when the above assumption is not justified, as in the case of the
JONSWAP spectrum, the ARMA model can only be regarded as a flexible mathematical device capable
of approximating a wide range of situations. Therefore, criteria have been proposed for helping model
order selection, based on purely statistical/informational criteria. One the most popular in Akaike’s
final prediction error (FPE) criterion [6]. In this study, we have searched, for each test case, the best
order both by comparing the estimated and the theoretical spectrum through visual inspection, and by
considering the FPE also. Results will be discussed in Section 5.2.

4. Assessment of Sea State Parameters

4.1. Iterative Procedure

The iterative procedure proposed by Mansard and Funke [2,4] is mainly based on three steps,
devoted to the assessment of the spectrum peak frequency, peak enhancement factor and significant
wave height, respectively, according to the flow chart shown in Figure 1. In order to assess the peak
frequency at the first step of the iterative procedure, a tentative value equal to 1.385 is assumed for the
peak enhancement factor, as detailed in the following.
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4.1.1. Estimation of the Peak Frequency

The assessment of the spectrum peak frequency fp can be performed based on different algorithms,
as discussed by Mansard and Funke [2,4]. The detection of the peak period based on the largest
value of the reconstructed wave spectrum could lead to a large variability of the peak frequency and
should be avoided for practical purposes. In this respect, Mansard and Funke concluded that the best
estimate of the peak frequency can be obtained by applying the method proposed by Read [11], and
mainly based on the 5th order spectral moment of the reconstructed wave spectrum. Furthermore, they
introduced in the formula provided by Read a bias corrective factor C f depending on the spectrum
peak enhancement factor γ, according to the following equation:

fp =
1

C f

∫
∞

0
f S5( f )d f /

∫
∞

0
S5( f )d f (9)
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where C f is defined as follows:

C f = 1.005 + 1/[50.746(γ− 0.2397)2] (10)

The corrective factor provided by Equation (10) can be determined once the peak enhancement
factor is known, which implies that an iterative procedure is required. Hence, Mansard and Funke [2,4]
suggest assuming it equal to 1.02, namely γ = 1.385, at the first step of the iterative procedure to
compute the peak enhancement factor γ at the subsequent step.

4.1.2. Estimation of the Peak Enhancement Factor

The peak enhancement factor can be determined after assessing the shape parameter k f of the
bivariate Rayleigh distribution provided by Battjes and van Vledder [12]:

k2
f m2

0 =

∫ 2.5 fp

0.5 fp
S( f )cos(2π fτ)d f

2

+

∫ 2.5 fp

0.5 fp
S( f )sin(2π fτ)d f

2

(11)

where τ =
√

m0/m2 depends on the zeroth and second order spectral moments of the reconstructed
wave spectrum, determined based on a lower and upper bounds of the wave frequency equal to 0.5 fp
and 2.5 fp, respectively. After assessing the shape parameter k f , the tentative peak enhancement factor
γ0 is assessed by the following equation:

γ0 =

 50.69− 404.97k f + 1211.2k2
f − 1599.6k3

f + 817.26k4
f i f k f ≥ 0.4

1 otherwise
(12)

After determining γ0, the peak enhancement factor is determined by the following formula
provided by Mansard and Funke [2,4]:

γ =

{
−0.835 + 1.797γ0 − 0.2011γ2

0 i f γ0 < 0.4
γ0 − 0.10 otherwise

(13)

This corrective term was provided to reduce the bias in the assessment of γ, based on random
generation of sea state elevations starting from theoretical JONSWAP spectra. Figure 2 provides
the plot of the peak enhancement factor γ versus the shape parameter k f of the bivariate Rayleigh
distribution that generally ranges from 0.4 up to 0.7 for practical purposes. Hence, after assuming in
Equation (10) a tentative value of the peak enhancement factor equal to 1.385, the peak frequency fp is
determined by Equation (9) and the γ value is updated by Equation (13). The procedure is iteratively
performed until the relative variation of the peak enhancement factor between two subsequent steps is
lower than a given threshold that can be assumed equal to 1% for practical purposes.

4.1.3. Estimation of the Significant Wave Height

The significant wave height Hs is determined by the following formula:

Hs = 4
√

m0,c (14)

where m0,c is the corrected zeroth spectral moment [2,4]:

m0,c =

[
1.0015 +

1
19.9178(γ+ 2.6937)

]2

m0 (15)

The term provided in Equation (15) allows removing the bias in the significant wave
height assessment.
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4.2. Nonlinear Least-Square Method

The nonlinear least-square method (NLSM), proposed by Rossi et al. [3], is mainly based on the
preliminary assessment of the significant wave height based on zeroth order spectral moment of the
reconstructed wave spectrum, according to the following equation:

Hs = 4
√

m0 (16)

The spectrum peak frequency and enhancement factor are subsequently detected by curve fitting
of the theoretical JONSWAP spectrum based on the least-square method, which is based on the iterative
trust-region-reflective algorithm, according to the interior-reflective Newton method [13]. Each
iteration involves the approximate solution of a large linear system using the method of preconditioned
conjugate gradients.

5. Numerical Study of Selected Test Cases

5.1. Selection of Test Cases and Random Wave Generation

In the numerical study the test cases reported in Table 1 have been considered, as they cover
a wide range of sea state conditions, including both fully (γ = 1) and partly (γ > 1) developed sea
states and corresponding to grades 3, 4, 5 and 6 of the Douglas (DG) Scale that allows connecting the
significant wave height with roughness of sea for navigation. In Table 1 Hs denotes the significant
wave height, while Tm (Tp) is the mean (peak) wave period.

Table 1. Selected sea state conditions.

DG Sea State Condition
Hs Tm Tp γ

[m] [s] [s] [—]

3 Slight 1.00 4.00 4.82 3.00
4 Moderate 2.00 5.00 6.11 2.50
5 Rough 3.00 6.00 7.59 1.50
6 Very rough 5.00 9.00 11.64 1.00

For each sea state condition, two random wave time histories have been generated based on
600 (short) and 3600 s (long) time durations, starting from the theoretical JONSWAP spectra. Hence,
Figure 3 reports the input JONSWAP spectrum for the DG5 sea state condition, while Figure 4a,b
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report the short and long random wave time histories. In this respect, it must be pointed out that the
wave time history was determined based on the following equation:

ςa(t) =
n∑

i=1

√
2S( fi)d ficos[2π fit + ϕi] (17)

After partitioning the theoretical input spectrum into a discrete set of components. In Equation (17)
ςa denotes the wave amplitude, while fi is the i-th wave frequency component, with uniform random
phase ϕi in the interval [0,2π].
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5.2. Spectral Analysis

Spectral analysis of the time series generated as specified in the previous section was performed
according to the three methods described in Section 3, namely Welch, Thomson and ARMA. Results
for the DG5 sea state are provided, in graphical form, in Figures 5–7, whilst results from all test cases
with reference to the recovered sea state parameters are provided, in tabular form, in Tables 2–5, in
Section 5.3, where they are also discussed.
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Table 2. Reconstructed sea state parameters (DG3).

(a) Short Time Duration—600 s. (b) Long Time Duration—3600 s.

Method/Difference
Hs Tm γ

Method/Difference
Hs Tm γ

[m] [s] [—] [m] [s] [—]

Input data Input
JONSWAP 1.000 4.000 3.000 JONSWAP 1.000 4.000 3.000

Welch method Welch method
Iterative 0.995 4.110 2.927 Iterative 1.012 3.983 2.915
NLSM 0.985 4.055 2.794 NLSM 1.002 3.975 2.759

∆iter. (%) −0.495 2.743 −2.426 ∆iter. (%) 1.236 −0.421 −2.849
∆NLSM (%) −1.523 1.385 −6.883 ∆NLSM (%) 0.189 −0.637 −8.044

Thomson method Thomson method
Iterative 0.999 4.088 3.140 Iterative 1.011 3.994 2.999
NLSM 0.989 4.056 2.979 NLSM 1.001 3.988 2.904

∆iter. (%) −0.058 2.212 4.665 ∆iter. (%) 1.092 −0.143 −0.046
∆NLSM (%) −1.058 1.412 −0.702 ∆NLSM (%) 0.059 −0.289 −3.188

ARMA method ARMA method
Iterative 1.024 3.979 4.000 Iterative 0.783 3.788 1.517
NLSM 1.015 3.920 3.084 NLSM 0.773 3.995 4.303

∆iter. (%) 2.439 −0.520 33.339 ∆iter. (%) −21.696 −5.296 −49.446
∆NLSM (%) 1.526 −1.990 2.806 ∆NLSM (%) −22.733 −0.137 43.437

Table 3. Reconstructed sea state parameters (DG4).

(a) Short Time Duration–600 s (b) Long Time Duration–3600 s

Method/Difference
Hs Tm γ

Method/Difference
Hs Tm γ

[m] [s] [—] [m] [s] [—]

Input data Input
JONSWAP 2.000 5.000 2.500 JONSWAP 2.000 5.000 2.500

Welch method Welch method
Iterative 1.876 4.684 1.491 Iterative 2.031 4.997 2.439
NLSM 1.851 4.789 1.262 NLSM 2.009 5.001 2.466

∆iter. (%) −6.207 −6.314 −40.364 ∆iter. (%) 1.569 −0.061 −2.420
∆NLSM (%) −7.456 −4.222 −49.535 ∆NLSM (%) 0.436 0.030 −1.359

Thomson method Thomson method
Iterative 1.863 4.766 1.370 Iterative 2.026 4.989 2.444
NLSM 1.837 4.799 1.268 NLSM 2.003 4.986 2.403

∆iter. (%) −6.865 −4.678 −45.214 ∆iter. (%) 1.298 −0.215 −2.241
∆NLSM (%) −8.138 −4.016 −49.269 ∆NLSM (%) 0.169 −0.271 −3.892

ARMA method ARMA method
Iterative 1.702 5.115 1.099 Iterative 1.887 4.872 3.006
NLSM 1.677 5.191 2.415 NLSM 1.868 4.808 2.078

∆iter. (%) −14.918 2.305 −56.050 ∆iter. (%) −5.653 −2.560 20.230
∆NLSM (%) −16.154 3.824 −3.407 ∆NLSM (%) −6.616 −3.836 −16.866

Table 4. Reconstructed sea state parameters (DG5).

(a) Short Time Duration—600 s (b) Long Time Duration—3600 s

Method/Difference
Hs Tm γ

Method/Difference
Hs Tm γ

[m] [s] [—] [m] [s] [—]

Input data Input
JONSWAP 3.000 6.000 1.500 JONSWAP 3.000 6.000 1.500

Welch method Welch method
Iterative 3.088 6.002 1.568 Iterative 3.018 5.920 1.309
NLSM 3.048 6.098 1.859 NLSM 2.976 5.940 1.391

∆iter. (%) 2.948 0.041 4.501 ∆iter. (%) 0.594 −1.335 −12.709
∆NLSM (%) 1.598 1.629 23.95 ∆NLSM (%) −0.799 −1.002 −7.280

Thomson method Thomson method
Iterative 3.058 6.005 1.251 Iterative 3.031 5.945 1.404
NLSM 3.015 6.082 1.618 NLSM 2.990 5.964 1.406

∆iter. (%) 1.938 0.078 −16.624 ∆iter. (%) 1.035 −0.916 −6.395
∆NLSM (%) 0.507 1.362 7.875 ∆NLSM (%) −0.335 −0.604 −6.253

ARMA method ARMA method
Iterative 2.313 6.377 1.836 Iterative 2.404 6.291 2.102
NLSM 2.284 6.461 2.606 NLSM 2.375 6.349 2.731

∆iter. (%) −22.902 6.279 22.370 ∆iter. (%) −19.872 4.858 40.153
∆NLSM (%) −23.860 7.680 73.754 ∆NLSM (%) −20.819 5.813 82.040
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As anticipated in Section 3.2, the Welch method was applied with the classical Hanning (cosine)
data window and with a 50% superposition of adjacent segments. For the long (T = 3600 s) time
series, a segment duration T0 = 120 s was adopted, which corresponds to an effective bandwidth
∆ fe = 0.012 Hz and to a relative standard uncertainty (standard deviation) uS( f )/S( f ) = 0.14. In the
case of short records, a higher (worse) estimator’s bandwidth was accepted, to limit the uncertainty of
the estimate. Therefore T0 = 80 s was adopted, which implies an effective bandwidth ∆ fe = 0.018 Hz
and yields a relative standard uncertainty (standard deviation) uS( f )/S( f ) = 0.29. These choices were
based on the previous experience gained in the preliminary study reported in Ref [3] and its validity
was checked and confirmed in the present investigation. Results from this method for sea state DG5,
are presented in Figure 4. The results are quite good, especially for the long record, whilst for the
shorter one the trade-off between resolution and statistical variability is more critical, as the quoted
figures clearly show. In fact, this analysis is quite demanding, since in addition to a limited variance a
good spectral resolution is required, to properly represent the narrow peak of the spectrum. In fact,
differences between the theoretical and the estimated spectrum are predicted even in a conservative
way by the relative uncertainty figures calculated for the method.
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Table 5. Reconstructed sea state parameters (DG6).

(a) Short Time Duration—600 s (b) Long Time Duration—3600 s

Method/Difference
Hs Tm γ

Method/Difference
Hs Tm γ

[m] [s] [—] [m] [s] [—]

Input data Input
JONSWAP 5.000 9.000 1.000 JONSWAP 5.000 9.000 1.000

Welch method Welch method
Iterative 4.785 8.019 1.000 Iterative 5.091 8.877 1.023
NLSM 4.712 8.711 1.000 NLSM 5.015 8.963 1.000

∆iter. (%) −4.297 −10.905 0.000 ∆iter. (%) 1.814 −1.363 2.320
∆NLSM (%) −5.755 −3.211 0.000 ∆NLSM (%) 0.309 −0.406 0.000

Thomson method Thomson method
Iterative 4.829 8.281 1.000 Iterative 5.094 8.995 1.000
NLSM 4.756 8.781 1.000 NLSM 5.017 8.995 1.000

∆iter. (%) −3.416 −7.993 0.000 ∆iter. (%) 1.876 −0.051 0.000
∆NLSM (%) −4.887 −2.429 0.000 ∆NLSM (%) 0.349 −0.058 0.000

ARMA method ARMA method
Iterative 3.206 9.560 1.574 Iterative 3.848 9.546 3.443
NLSM 3.164 9.720 2.535 NLSM 3.811 9.479 3.237

∆iter. (%) −35.882 6.223 57.404 ∆iter. (%) −23.046 6.065 244.252
∆NLSM (%) −36.721 7.997 153.467 ∆NLSM (%) −23.784 5.320 223.686

In the application of Thomson method, a similar trade-off was made for the choice of the leading
parameter for this analysis, that is the normalized half bandwidth of the taper W. In the case of
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the long duration signal, W = 0.0042 was assumed, which corresponds to an effective bandwidth
∆ fe = 0.017 Hz [14] and to relative standard uncertainty uS( f )/S( f ) = 0.13 [15]. In the case of the
short duration signal, W = 0.0063 was taken instead, yielding ∆ fe = 0.025 Hz and uS( f )/S( f ) = 0.27
respectively. Results from this analysis are shown in Figure 6. In spite of their quite “noisy” appearance,
which is somewhat typical of this method, originally conceived for dealing with short records, they are
reliable and comparable, if not even superior, to the ones provided by the Welch method, as concerns
their capability of restoring the shape of the main peak of the spectrum, which we consider the most
important goal, in this context. A deeper comparison will be possible in reference to the recovery of
sea state parameters, to be discussed in Section 5.3.

Concerning parametrical spectrum estimation, a preliminary investigation was reported in [3]
where Autoregressive (AR) models were considered [16], with two well established estimation methods,
namely Burg’s algorithm and the covariance approach [6]. Results were not fully satisfactory since for
low model orders (2–6) some bias in the localization of the spectrum peak was experienced, whilst
when increasing the order spurious artefact peaks emerged. Therefore, in the present study ARMA
models were considered instead, since they can usually provide comparable or superior approximation
in respect to AR models, with lower model orders [17]. In fact, the results were better, since peak
localization, with the proper model order, can now be achieved, although the resulting peak shape is
still not fully satisfactory. As mentioned in Section 3.4, the search of the best model order was done
both by comparing the estimated spectrum with the reference one, for various, progressively increasing
orders, and by calculating the corresponding Akaike’s FPE. A general pattern appeared: for low orders
a poor reconstruction of the main peak resulted; this improved to some extent but proceeding further
spurious peaks appeared. This behavior is similar to what happened with the AR estimator [3], but the
best results here were much better than in the AR approach. In most cases order 6 led to the best results,
yet in some case orders up to 10 had to be assumed. The FPE was also computed, which provided
results in agreement with the visual inspection in 40% of cases. Results for this approach as applied
to signal DG5 are shown in Figure 7a for a short time duration, and Figure 7b, for a long time one.
In both cases model order n = 6 yielded the best results.

Furthermore, in Figure 7c,d, results for the short signal for n = 5 and for n = 7, respectively, are
shown. In this case, model order 6 was selected. It can be noted that for the lower order, there is an
evident mismatch in the localization of the main peak, whilst with the higher order, a spurious second
peak appears. In this case, for example, the FPE criterion rated order n = 7 better than order n = 6,
which is clearly not the case.

5.3. Sea State Reconstruction

Sea state reconstruction was performed based on the sea spectrum analysis carried out in Section 5.2.
Particularly, the significant wave height Hs, the mean wave period Tm, and the peak enhancement
factor γwere determined by the iterative and NLSM procedures, outlined in Section 4.1 and Section 4.2.
The reconstructed parameters, corresponding to the DG3 sea state, are reported in Table 2 for both the
short and long time durations, corresponding to 600 and 3600 s, respectively. Based on current results,
it can be seen that:

(i) The Welch and Thomson methods allow reconstructing the sea state parameters with relative
errors lower than 3% for the significant wave height and mean period and 8% for the peak
enhancement factor.

(ii) Higher errors arise if the ARMA method is applied, especially for the assessment of the spectrum
peak enhancement factor, with absolute percentage errors up to 50%.

(iii) The accuracy of the methods generally increases with the time duration, even if the reliability of
reconstructed parameters is sufficiently accurate for practical purposes, even if the short time
history, corresponding to 600 s, is embodied in the spectral analysis. Nevertheless, this trend is
not always clear, provided that a certain dependence on both the spectrum estimation method
and reconstruction technique is also recognized.
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Almost similar outcomes can be stressed by the analysis of the results reported in Tables 3–5,
corresponding to the DG4, DG5 and DG6 sea state conditions. In fact, in all cases it is confirmed that the
Welch and Thomson methods allow the efficient reconstruction of the sea state parameters, while some
issues arise when using the ARMA method. Concerning the selection of the most suitable sea state
reconstruction technique, no substantial differences arise between the iterative and NLSM methods.
In fact, the percentage errors are comparable—even if it seems that the latter technique is slightly more
accurate than the former and thus preferable, according to the results of the simulations. Starting from
the results listed in Tables 2–5, Figures 8–10 report a comparative analysis between the theoretical and
reconstructed JOSNWAP spectra for the DG5 sea state condition, with reference to both the short and
long time durations. The reference spectrum is plotted in a continuous line, while the square and circle
lines refer to the sea spectra reconstructed by the iterative and NLSM methods, respectively.
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The current results confirm the main outcomes already stressed by the analysis of the results
reported in Tables 2–5. In fact, it is not only confirmed that the Welch and Thomson methods allow
the efficient reconstruction of the theoretical sea spectrum—it is also verified that the ARMA method
fails to adequately predict the spectrum peak enhancement factor. Obviously, the reconstructed sea
spectrum, corresponding to the long time duration, matches the theoretical JONSWAP spectrum
slightly better, even if the results obtained based on the short time duration are not fully reliable for
practical purposes.

6. Conclusions

The paper focused on the application of three spectral analysis techniques, combined with two
sea state reconstruction methods, with the main aim of deriving the sea state parameters, namely the
significant wave height, the mean wave period and the spectrum peak enhancement factor, starting
from a random wave time history. In particular, two random sea surface elevations, corresponding to
600 and 3600 s, were generated, based on four theoretical JONSWAP spectra, representative of the
DG3, DG4, DG5 and DG6 sea state conditions.

The Welch, Thomson and ARMA methods were applied to derive the sea spectra from the wave
time histories, representative of the selected sea state conditions. In this experiment, it was possible to
identify optimal values for the key analysis parameters, that may constitute a useful indication for the
practical application of these methods. Subsequently, the sea state parameters of the reconstructed
JONSWAP spectra were determined by the iterative and NLSM methods, in order to detect the most
suitable combination of spectral analysis and sea state reconstruction techniques. Based on current
results, the Welch and Thomson methods seem to be the most promising techniques, combined with
the NLSM method, as they allow us to efficiently reconstruct the sea state parameters, even in the
short-time duration case. Contrastingly, it was verified that the ARMA method fails to adequately
predict the spectrum peak enhancement factor. Current outcomes are promising for further research
activities, devoted to investigating the effectiveness of the proposed techniques with reference to real
sea state conditions, often characterized by double-peaked wave spectra, obtained by combining wind
sea and swell waves coming from different directions. This topic will be the subject of future work.
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