
sensors

Article

A Formal and Quantifiable Log Analysis Framework
for Test Driving of Autonomous Vehicles

Kyungbok Sung 1, Kyoung-Wook Min 1, Jeongdan Choi 1 and Byung-Cheol Kim 2,*
1 Autonomous Driving Intelligence Research Section, Artificial Intelligence Research Laboratory,

Electronics and Telecommunications Research Institute, Daejeon 34129, Korea; kbsung@etri.re.kr (K.S.);
kwmin92@etri.re.kr (K.-W.M.); jdchoi@etri.re.kr (J.C.)

2 School of Software Engineering, Joongbu University-Goyang, Goyang 10279, Korea
* Correspondence: ciel@jbm.ac.kr; Tel.: +82-31-8075-1608

Received: 30 December 2019; Accepted: 12 February 2020; Published: 2 March 2020
����������
�������

Abstract: We propose a log analysis framework for test driving of autonomous vehicles. The
log of a vehicle is a fundamental source to detect and analyze events during driving. A set of
dumped logs are, however, usually mixed and fragmented since they are generated concurrently
by a number of modules such as sensors, actuators and programs. This makes it hard to analyze
them to discover latent errors that could occur due to complex chain reactions among those modules.
Our framework provides a logging architecture based on formal specifications, which hierarchically
organizes them to find out a priori relationships between them. Then, algorithmic or implementation
errors can be detected by examining a posteriori relationships. However, a test in a situation of certain
parameters, so called an oracle test, does not necessarily trigger latent violations of the relationships.
In our framework, this is remedied by adopting metamorphic testing to quantitatively verify the
formal specification. As a working proof, we define three metamorphic relations critical for testing
autonomous vehicles and verify them in a quantitative manner based on our logging system.

Keywords: autonomous vehicle testing; log analysis framework; failure detection; formal methods;
metamorphic testing

1. Introduction

The autonomous vehicle (AV) industry is growing fast thanks to the improvement of artificial
intelligence (AI) technologies based on sensing devices [1–3]. By now, many AVs from tens of companies
are being driven in real road environments for safety and performance tests [4–6]. Some of them have
been driven tens of million of miles, and even billions in simulations. There are also statistical analyses
on how many miles are needed to examine the safety level of AVs [7]. However, the approaches have
mainly focused on the number of miles driven, not on how those miles are examined.

Extended miles need long, continuous, and/or repetitive engagement of human observers who get
easily tired of such routine tasks. They would often lose concentration on critical details, which is the
objective to be sought after, and cannot prevent a fatal accident even though they are in the driver’s
seat [8]. Thus, inspectable automation tests are needed, and this requires logging to automatically
collect all the necessary information to be examined.

How can we test for latent errors in the formidable heap of log data? The conundrum in examining
intelligent machines basically comes from the property of its software. As the software engineering
field had already elucidated its fundamental difficulty, it is an interpolation problem that one cannot
conclude the interval is as good as the ends only from end-point tests. For instance, if a motor works
properly at 100 revolutions per minute (RPM) and 10,000 RPM, then we can expect it will also work
well from 100 to 10,000 RPM. A software program, however, does not allow this kind of interpolation

Sensors 2020, 20, 1356; doi:10.3390/s20051356 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s20051356
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/5/1356?type=check_update&version=2

Sensors 2020, 20, 1356 2 of 29

in testing. Trivially, one ‘if’ statement could ruin the interpolation. Thus, we should test them not only
at each gate condition but also in the parameter span as exhaustively as possible.

Since this needs infinite tests, theoretically, various logical approaches have been suggested [9,10]
to find out the optimal set of tests of reasonable size. The formal method, for example, hierarchically
decomposes the parameter space into subcategories of manageable size in a top-down manner (i.e.,
formal specification) and extract meaningful combinations of them for testing (i.e., formal verification).
However, tests of these combinations with specific parameter values are variants of the oracle test,
which is, in turn, a sophisticated version of end-point tests. We still do not know what will happen
outside the designated values of parameters in the test case.

To alleviate the oracle test problem, a mathematical approach, so-called metamorphic testing
(MT), has been suggested [11,12]. It converts metamorphic relations (MRs), mathematically definable
relationships that separate sets of data into quantifiable data and arithmetically checks the values to
examine whether there are violations of the relationships. Recent applications of MT to AV testing
have shown promising results and have discovered unknown errors in the AV modules [13].

MRs that the state-of-the-art MT for AVs are based on are, however, defined case by case,
which might look like another version of oracles. Our observation is that MRs for AVs can be extracted
from logical relationships defined using formal specification. Then, if the logging architecture takes into
account both formal specifications and corresponding metamorphic relations, it could fundamentally
support inspectable automation testing. In addition, it should be able to be used interchangeably in
both real and simulated vehicles to make simulation tests as valuable as real tests, which are more
expensive, dangerous, and time-consuming.

Therefore, we propose a formal and quantifiable log analysis framework for test driving of AVs,
incorporating complementary virtues of each methodology mentioned above. Figure 1 shows a log
analysis framework. In the next subsections, we review the relevant topics in more detail.

Sensors 2019, 19, x FOR PEER REVIEW 2 of 31

will also work well from 100 to 10,000 RPM. A software program, however, does not allow this kind
of interpolation in testing. Trivially, one ‘if’ statement could ruin the interpolation. Thus, we should
test them not only at each gate condition but also in the parameter span as exhaustively as possible.

Since this needs infinite tests, theoretically, various logical approaches have been suggested [9,10]
to find out the optimal set of tests of reasonable size. The formal method, for example, hierarchically
decomposes the parameter space into subcategories of manageable size in a top-down manner (i.e.,
formal specification) and extract meaningful combinations of them for testing (i.e., formal
verification). However, tests of these combinations with specific parameter values are variants of the
oracle test, which is, in turn, a sophisticated version of end-point tests. We still do not know what
will happen outside the designated values of parameters in the test case.

To alleviate the oracle test problem, a mathematical approach, so-called metamorphic testing
(MT), has been suggested [11,12]. It converts metamorphic relations (MRs), mathematically definable
relationships that separate sets of data into quantifiable data and arithmetically checks the values to
examine whether there are violations of the relationships. Recent applications of MT to AV testing
have shown promising results and have discovered unknown errors in the AV modules [13].

MRs that the state-of-the-art MT for AVs are based on are, however, defined case by case, which
might look like another version of oracles. Our observation is that MRs for AVs can be extracted from
logical relationships defined using formal specification. Then, if the logging architecture takes into
account both formal specifications and corresponding metamorphic relations, it could fundamentally
support inspectable automation testing. In addition, it should be able to be used interchangeably in
both real and simulated vehicles to make simulation tests as valuable as real tests, which are more
expensive, dangerous, and time-consuming.

Therefore, we propose a formal and quantifiable log analysis framework for test driving of AVs,
incorporating complementary virtues of each methodology mentioned above. Figure 1 shows a log
analysis framework. In the next subsections, we review the relevant topics in more detail.

Figure 1. Overview of a formal and quantifiable log analysis framework.

1.1. Driving Data Recording

Efforts to record the state of vehicle driving have been made before. An event data recorder
(EDR) is a data recording device that has been installed in vehicles since the late 1990s to identify the
driving state and the cause of the accidents. Many institutions recommend data items that EDR
should record. The National Highway Traffic Safety Administration (NHTSA) proposes to record the

Figure 1. Overview of a formal and quantifiable log analysis framework.

1.1. Driving Data Recording

Efforts to record the state of vehicle driving have been made before. An event data recorder
(EDR) is a data recording device that has been installed in vehicles since the late 1990s to identify the
driving state and the cause of the accidents. Many institutions recommend data items that EDR should

Sensors 2020, 20, 1356 3 of 29

record. The National Highway Traffic Safety Administration (NHTSA) proposes to record the signals
of longitudinal acceleration, lateral acceleration, yaw rate, engine RPM, brake, and turns. Although
the items of the Society of Autonomous Engineers (SAE) are similar to the NHTSA’s, except the yaw
rate, it also suggests to record seatbelt use.

In some areas, experiments on public roads for autonomous driving research are authorized.
In addition, it is mandatory to install a data recorder that stores the information of the autonomous
vehicle. In the case of California, it is also required to install a separate data recorder based on the
California Code of Regulations [14]. In Korea, a data recorder is obligatory as a basic requirement to
obtain a temporary license for autonomous driving on public roads [15]. The data recorder must save
these items: the operation mode, brake and acceleration pedal use, steering wheel angle, and gear
position. In addition, speed, acceleration, front and rear video footage, and indoor video footage must
be stored too.

Recently, due to the development of deep learning technology, there has arisen an effort to record
all the data of a vehicle. Datasets such as the KITTI dataset [16], Cityscape dataset [17], etc., include all
sensor data and vehicle driving information and can be used for deep learning. These data sets include
not only the location, speed, acceleration of the vehicle but also image information obtained from the
camera, a Light Detection and Ranging (LiDAR) sensor, and GPS. This information is very detailed
and includes not only the ego-vehicle but also the information of the environment surrounding the
vehicle, which is very useful to analyze autonomous driving problems. However, these data are so
large that they take up a lot of storage and are difficult to analyze. As a result, there are difficulties in
testing various environments.

1.2. Formal Methods

Formal methods include logical methodology and tools for specifying and verifying the complex
systems. Adoption of formal methods does not give us a guarantee of a priori correctness, but they do
increase the comprehensive understanding of a given system by disclosing inconsistencies, ambiguities,
and incompleteness that might be undetected in other methods. The reason for using formal methods
is to prevent all possible design and developer errors in the required analysis, and to develop the same
system as the initially designed and analyzed system. As autonomous driving systems also need
to operate in complex and unstructured environments, formal methods can be used to describe the
system’s requirements and validate the system.

Efforts to apply formal methods to traffic accidents and driving have been ongoing. One research
applied formal methods to a vehicle control system [18]. In addition, some research took advantage of
a formal verification method for platooning autonomous vehicles [19]. However, these efforts tried to
apply formal methods only to specific applications, and it was not enough to use for the description of
comprehensive driving situations.

We propose a method to describe ’driving’ more clearly using the specifications of the formal
method. The term ’driving’ is defined by using the extended Backus–Naur Form (E-BNF) method,
which is actively used to describe context-free grammar in the field of computer science. Instead of
formal verification, we adopt a metamorphic testing method to find out the problems and errors of the
autonomous driving system in advance.

1.3. Metamorphic Testing

It is very important to verify the correctness of software in software development. In software
testing, an oracle test is a procedure where the output is known and testers can decide whether the
output of the program under testing is correct or not. If you know the correct answer, you can judge
whether there is an error in the program through the oracle test. However, in certain situations,
oracles do not exist or they are too difficult to apply. This is known as the oracle problem [20].

There is a program in which the test oracle cannot exist. If an oracle does not exist, no one knows
the exact result of the program, and it is very difficult for you to calculate the result. For example,

Sensors 2020, 20, 1356 4 of 29

if you have a program that gets the sum of two or three numbers, even if the input value is a little
large, you can calculate the result. However, it is difficult for a person to check the sum of numbers
with 10 million digits.

As another example, if you have a program that correctly calculates the value of a trigonometric
function, sine, to 1000 digits below the decimal point, it is not easy to check the accuracy of the result.
In this case too, there is no test oracle to calculate the sine function. Instead of oracles, the human
tester becomes an oracle and can manually check the test results. However, manual prediction and
verification of the program’s results are usually very poor in efficiency and increase the cost of testing.

A test technique presented to solve these problems is the ’metamorphic testing’ technique.
Metamorphic testing uses the mathematical relations that exist within a given problem. The relationship
between the inputs and outputs is called the metamorphic relations. Metamorphic relations allow
you to create a partial oracle instead of full test oracle. The method is as follows. Using the special
metamorphic relationship between the input value and the output value, the input value I, which has
already been executed, and the observed output value O from that is converted to the new input value
I’ and the predictable output value O’. Although, it is not a perfect oracle because it cannot tell if the
output is correct or not for any input, but it can be a partial oracle because it can tell us if the relation
between outputs is kept.

For example, the sum of 10 million numbers must be constant regardless of the order in which they
are added. Since the anomaly is swappable, the method for testing the addition program is as follows.
First, you assign a serial number to each of the 10 million numbers, and then you enter the serial
numbers 1 to 10 million to obtain the sum. Say I is the input according to the series of numbers and O
is the result of input I. Then, re-enter the series of numbers in a random order. Say the random-order
input is I’, and the result is O’. If the program works correctly, O and O’ should be the same. If the
values of O and O’ are different, it becomes clear that the program has an error.

1.4. Problem Statement

The log is a written chunk of data generated by a certain system in order to find out what has
happened in the run-time of the system. Then, by definition, it is a set of post-event data and is
fundamentally a posteriori, so that we can analyze it mostly in an inductive manner. However, this
often results in mere meaningless clues to what actually happened in a complex system since the
analysis on the log confronts the following two aspects.

The first is a hodgepodge state of generated logs. Each log is generated usually serially by a
single-tasking system but often in parallel by a multitasking system of various modules. The temporal
mixture of logs, however, does not matter even for the latter if its modules work independently. The
analyzer can trivially detect each separate set of logs by just tagging them. The problem arises when
they are highly interconnected in the perspective of a meaningful event. The temporal mixture makes
it hard for the analyzer to discern which log is relevant to each other for a single meaningful event.

This leads to the second aspect that the log is a set of fragmented information. A log is generated
by a specific module at a particular time; it is in itself partial and low-level, especially in a complex and
dynamic system. Thus, only an experienced engineer who comprehends the entire system could collect
and aggregate the data into a meaningful event based on speculation [21]. Some salient scenarios
imagined by the experienced can be tested, and they are so-called oracle tests. However, not all can be
done in that manner since no one can define all the problematic situations of every condition.

Our goal is to design a logging system with which we can obtain a thorough view of a situation,
shedding light on both expected and unexpected occurrences of various events. Our approach is to take
advantage of specifications of the formal method to deductively design a logging system specifically
for a complex and dynamic system such as autonomous vehicles. In formal verification, however, it is
difficult to avoid the pitfalls of the interpolation and oracle test problems mentioned above.

Instead, we adopt metamorphic testing to quantitatively verify the formal specifications by
drawing metamorphic relations needed for MT from the formal specifications. Note that our practical

Sensors 2020, 20, 1356 5 of 29

goal is to enable the logging system to operate interchangeably on both a real vehicle and its simulator,
since the latter can be used to detect unknown errors in hardware or software, or both, prior to testing
the former in an actual road environment. The experimental configurations are also set up to check
this capability.

Chapter 2 describes our logging architecture in detail based on formal specifications, and Chapter
3 explains our quantifiable verification method based on metamorphic testing. Chapter 4 illustrates
the experimental setup and presents the results, and Chapter 5 discusses the overall framework.

2. The Logging Architecture

2.1. Formal Specifications of the Driving Situation

According to A Framework for Automated Driving System Testable Cases and Scenarios, defined
by the NHTSA [22], a driving test is composed of four major behaviors or elements: Tactical Maneuver
Behaviors (TMBs), Operational Design Domain (ODD) elements, Object and Event Detection and
Response (OEDR) behaviors, and Failure Mode Behaviors. In this case, Failure Mode Behaviors are
a special group for autonomous driving. So, it can be excluded from the general driving situation.
As a result, general driving can be performed by constituting the above three types: TMB, ODD, and
OEDR. In more general terms, this can be interpreted as the maneuver a driver is going to control, the
environment in which you drive, and the events that occur while driving. In other words, driving is
performed in the environment while performing the maneuver, and it can be seen that the event is
encountered in the middle of the related processing. So, you can log data of these components to find
out the situation and analyze the problems.

The four components can be classified according to the superset–subset relation based on the
formal method. Figure 2 shows four components of driving. This classification is based on the NHTSA
classification with some modifications for intuitive usage.

Sensors 2019, 19, x FOR PEER REVIEW 5 of 31

prior to testing the former in an actual road environment. The experimental configurations are also
set up to check this capability.

Chapter 2 describes our logging architecture in detail based on formal specifications, and
Chapter 3 explains our quantifiable verification method based on metamorphic testing. Chapter 4
illustrates the experimental setup and presents the results, and Chapter 5 discusses the overall
framework.

2. The Logging Architecture

2.1. Formal Specifications of the Driving Situation

According to A Framework for Automated Driving System Testable Cases and Scenarios,
defined by the NHTSA [22], a driving test is composed of four major behaviors or elements: Tactical
Maneuver Behaviors (TMBs), Operational Design Domain (ODD) elements, Object and Event
Detection and Response (OEDR) behaviors, and Failure Mode Behaviors. In this case, Failure Mode
Behaviors are a special group for autonomous driving. So, it can be excluded from the general driving
situation. As a result, general driving can be performed by constituting the above three types: TMB,
ODD, and OEDR. In more general terms, this can be interpreted as the maneuver a driver is going to
control, the environment in which you drive, and the events that occur while driving. In other words,
driving is performed in the environment while performing the maneuver, and it can be seen that the
event is encountered in the middle of the related processing. So, you can log data of these components
to find out the situation and analyze the problems.

The four components can be classified acco

Figure 2. Four components of driving—maneuver, environment, time, and event.

The maneuver mostly follows NHTSA's classifications for TMB. In the case of maneuvering, it
is possible to divide the sections to be traveled while setting the entire travel route—for example,
highway drive, low speed shuttle, traffic jam drive, etc. After dividing by sections, it is possible to
perform detailed classification according to which driving should be performed in more detail, such
as following a car, n-point turns, and low/high speed merge. The driving maneuver eventually
appears in the form of a path with speed. In other words, the maneuver to be performed in detail is
expressed in the path that the vehicle must follow. So, if we save the path data to a logging system,
it may be the same with similar vehicle maneuvers.

In the case of the environment, this includes basic information about the road on which the
vehicle must travel and the environmental information such as weather/traffic conditions.
Environmental information, for instance, includes the road information, speed limit, and
school/construction zone information. This road information can be extracted from a map with
location information as data of the Global Positioning System (GPS). It also includes weather and
traffic information. These data do not change frequently, and we can record the data manually or use
an external image recorder.

Figure 2. Four components of driving—maneuver, environment, time, and event.

The maneuver mostly follows NHTSA’s classifications for TMB. In the case of maneuvering,
it is possible to divide the sections to be traveled while setting the entire travel route—for example,
highway drive, low speed shuttle, traffic jam drive, etc. After dividing by sections, it is possible to
perform detailed classification according to which driving should be performed in more detail, such as
following a car, n-point turns, and low/high speed merge. The driving maneuver eventually appears
in the form of a path with speed. In other words, the maneuver to be performed in detail is expressed
in the path that the vehicle must follow. So, if we save the path data to a logging system, it may be the
same with similar vehicle maneuvers.

In the case of the environment, this includes basic information about the road on which the vehicle
must travel and the environmental information such as weather/traffic conditions. Environmental
information, for instance, includes the road information, speed limit, and school/construction zone
information. This road information can be extracted from a map with location information as data of
the Global Positioning System (GPS). It also includes weather and traffic information. These data do
not change frequently, and we can record the data manually or use an external image recorder.

Sensors 2020, 20, 1356 6 of 29

Time is the basic component since movement over time is the most elementary data to analyze
driving. In addition, changes in the surrounding objects and traffic lights are also recorded based
on time.

Events are the most important components for autonomous driving systems. Events can be
described by an object and the event that the object generates. So, for the logging system, the objects
that can generate the event are listed, and the type of an event generated by the object is described.
Events may occur simultaneously, or they may occur in sequence. In order to reproduce an event
based on a log, the event object should be recorded. Event objects are classified into six categories,
but it can be more detailed or merged depending on the situation. However, together with the event
object, the detailed event information generated should be recorded together. Therefore, when storing
event information using the logging system, the event object and detailed event information are
also recorded.

Applying the formal specification to these driving components can be described as follows. The
Extended Backus–Naur form (E-BNF) is used for the formal specification.

<driving> ::= <maneuver> ON <environment> AT <time> [WITH <events>] (1)

The meaning of this sentence is that driving is a maneuver in the environment with events that can
exist together. The maneuver, environment, time, and events can have the following details. In Table 1,
the first stage of each component is presented. The components are refined up to the fourth stage.
Details of four-step stages are presented in Appendix A.

Table 1. The first stage of driving components.

<driving> ::= <maneuver> ON <environment> AT <time>
[WITH <events>]

<maneuver> ::= <highway drive>
| <low speed shuttle>

| <traffic jam drive>
| <emergency takeover>
| <valet parking>

<environment> ::=

<physical infrastructure>
[, <environmental
conditions>]
[, <operational constrains>]
[, <objects>]
[, <zones>]
[, <connectivity>]

<time> ::= “time”

<events> ::= <object>, <object event>
{<object>, <object event>}

Here is an example of the driving situation.

<driving> ::= <maneuver> ON <environment> AT <time> [WITH <events>]

::= car following ON multilane curves AT 4:13′27” WITH lead vehicle, stopped
(2)

Such a driving-state expression can be parsed into the following tree as in Figure 3.

Sensors 2020, 20, 1356 7 of 29Sensors 2019, 19, x FOR PEER REVIEW 7 of 31

Figure 3. The parsing tree of a driving-state expression.

By using the formal specification to describe the behavior of 'driving', it is possible to identify
which logging item belongs to which components and, thus, locate an erroneous or error-prone part
more clearly.

The autonomous driving system usually consists of perception, planning, and control modules.
The maneuver, environment, time, and events are appropriately handled in these three modules to
perform autonomous driving. Although they cannot be mapped exclusively, basically, maneuvers
will be processed in the planning module, and environment and events will be processed in the
perception module. Of course, vehicle control will be done in the control module too. To record how
the autonomous driving system responds to environments and events and reacts to maneuvers, it
must be able to record detailed information about the perception, planning, and control modules.
Therefore, the logging item is based on recording the planning result that determined the maneuver
by perception, adding the perception result to the information corresponding to events and the
environment.

The maneuver determines the movement of the vehicle, that is, the actions of actuators the
vehicle should take in a given environment. It selects actions based on the current environment (e.g.,
highway drive or traffic jam drive), and performs low-level functions such as maintaining speed or
following a car. In the autonomous driving system, these functions are performed by low-level
actions for routing, path planning, speed profile, and signals. Finally, it results in a steering control
value to determine the driving direction of the vehicle, a speed control value to determine the driving
speed, and a signal control value to transmit visual information to the nearby vehicles. Therefore, the
information of the maneuver can be recorded by recording steer, speed, and signal controls, as
depicted in Figure 4.

Figure 3. The parsing tree of a driving-state expression.

By using the formal specification to describe the behavior of ’driving’, it is possible to identify
which logging item belongs to which components and, thus, locate an erroneous or error-prone part
more clearly.

The autonomous driving system usually consists of perception, planning, and control modules.
The maneuver, environment, time, and events are appropriately handled in these three modules to
perform autonomous driving. Although they cannot be mapped exclusively, basically, maneuvers
will be processed in the planning module, and environment and events will be processed in the
perception module. Of course, vehicle control will be done in the control module too. To record how
the autonomous driving system responds to environments and events and reacts to maneuvers, it must
be able to record detailed information about the perception, planning, and control modules. Therefore,
the logging item is based on recording the planning result that determined the maneuver by perception,
adding the perception result to the information corresponding to events and the environment.

The maneuver determines the movement of the vehicle, that is, the actions of actuators the vehicle
should take in a given environment. It selects actions based on the current environment (e.g., highway
drive or traffic jam drive), and performs low-level functions such as maintaining speed or following a
car. In the autonomous driving system, these functions are performed by low-level actions for routing,
path planning, speed profile, and signals. Finally, it results in a steering control value to determine the
driving direction of the vehicle, a speed control value to determine the driving speed, and a signal
control value to transmit visual information to the nearby vehicles. Therefore, the information of the
maneuver can be recorded by recording steer, speed, and signal controls, as depicted in Figure 4.

The logging items for the environment component represents the information about the
environment in which the vehicle is driven. This includes information, which needs to be recorded
in real time but does not change significantly after being recorded once, such as weather conditions,
road geometry, road surface, speed limit, etc. For example, in the case of road geometry, this information
indicates which type of road is being driven on, and if a high definition map (HDMap) is used, the road
geometry can be inferred from its location. An HDMap is necessary for the self-driving system.

Sensors 2020, 20, 1356 8 of 29
Sensors 2019, 19, x FOR PEER REVIEW 8 of 31

Figure 4. Maneuver component and logging items.

The logging items for the environment component represents the information about the
environment in which the vehicle is driven. This includes information, which needs to be recorded
in real time but does not change significantly after being recorded once, such as weather conditions,
road geometry, road surface, speed limit, etc. For example, in the case of road geometry, this
information indicates which type of road is being driven on, and if a high definition map (HDMap)
is used, the road geometry can be inferred from its location. An HDMap is necessary for the self-
driving system.

In addition, for the information not included in the map (e.g., temperature or traffic conditions)
but not needed to be recorded quickly, either manual recording or separate image storing can be used
for testing instead of automatic recording of the logging system, which records at every moment.
Logging items related to the environment is based on position, direction, and matching indices for
the map, which can be used to retrieve all data such as road geometry, roadway types, roadway
surfaces, and/or other optional information from the map, as depicted in Figure 5.

Figure 5. Environment component and logging items.

Figure 4. Maneuver component and logging items.

In addition, for the information not included in the map (e.g., temperature or traffic conditions)
but not needed to be recorded quickly, either manual recording or separate image storing can be used
for testing instead of automatic recording of the logging system, which records at every moment.
Logging items related to the environment is based on position, direction, and matching indices for the
map, which can be used to retrieve all data such as road geometry, roadway types, roadway surfaces,
and/or other optional information from the map, as depicted in Figure 5.

Sensors 2019, 19, x FOR PEER REVIEW 8 of 31

Figure 4. Maneuver component and logging items.

The logging items for the environment component represents the information about the
environment in which the vehicle is driven. This includes information, which needs to be recorded
in real time but does not change significantly after being recorded once, such as weather conditions,
road geometry, road surface, speed limit, etc. For example, in the case of road geometry, this
information indicates which type of road is being driven on, and if a high definition map (HDMap)
is used, the road geometry can be inferred from its location. An HDMap is necessary for the self-
driving system.

In addition, for the information not included in the map (e.g., temperature or traffic conditions)
but not needed to be recorded quickly, either manual recording or separate image storing can be used
for testing instead of automatic recording of the logging system, which records at every moment.
Logging items related to the environment is based on position, direction, and matching indices for
the map, which can be used to retrieve all data such as road geometry, roadway types, roadway
surfaces, and/or other optional information from the map, as depicted in Figure 5.

Figure 5. Environment component and logging items. Figure 5. Environment component and logging items.

The time component records current time of logging. Time has a simple value, but it is the most
important information for detailed logging item analysis. This is because all logging items are recorded
with time so that you can start problem analysis based on time. The time is recorded by logging time
as shown in Figure 6.

Sensors 2020, 20, 1356 9 of 29

Sensors 2019, 19, x FOR PEER REVIEW 9 of 31

The time component records current time of logging. Time has a simple value, but it is the most
important information for detailed logging item analysis. This is because all logging items are
recorded with time so that you can start problem analysis based on time. The time is recorded by
logging time as shown in Figure 6.

Figure 6. Time components and logging items.

In the case of events during driving, an object that makes the event must be stored because the
event occurs according to when the object changes. There are three types of objects: objects with
relative distances, fixed objects, and signaling objects that control traffic on the road. Objects of any
type can appear at the same time. In addition, it is necessary to record object types and their relative
distances. Therefore, the object type, relative distance, relative velocity, and signals are recorded
together, as depicted in Figure 7.

Figure 7. Event components and logging items.

Put together, the components for driving and the subordinate logging items for efficient
recording can be summarized as in Figure 8. Driving is the act of performing a maneuver in the
environment, at a time, and when events can occur. Thus, the key elements of driving such as the
maneuver, environment, time, and events must be recorded. Based on the information, malfunction
or dysfunction or latent errors can be detected via logical and mathematical analyses described later.

Figure 6. Time components and logging items.

In the case of events during driving, an object that makes the event must be stored because the
event occurs according to when the object changes. There are three types of objects: objects with
relative distances, fixed objects, and signaling objects that control traffic on the road. Objects of any
type can appear at the same time. In addition, it is necessary to record object types and their relative
distances. Therefore, the object type, relative distance, relative velocity, and signals are recorded
together, as depicted in Figure 7.

Sensors 2019, 19, x FOR PEER REVIEW 9 of 31

The time component records current time of logging. Time has a simple value, but it is the most
important information for detailed logging item analysis. This is because all logging items are
recorded with time so that you can start problem analysis based on time. The time is recorded by
logging time as shown in Figure 6.

Figure 6. Time components and logging items.

In the case of events during driving, an object that makes the event must be stored because the
event occurs according to when the object changes. There are three types of objects: objects with
relative distances, fixed objects, and signaling objects that control traffic on the road. Objects of any
type can appear at the same time. In addition, it is necessary to record object types and their relative
distances. Therefore, the object type, relative distance, relative velocity, and signals are recorded
together, as depicted in Figure 7.

Figure 7. Event components and logging items.

Put together, the components for driving and the subordinate logging items for efficient
recording can be summarized as in Figure 8. Driving is the act of performing a maneuver in the
environment, at a time, and when events can occur. Thus, the key elements of driving such as the
maneuver, environment, time, and events must be recorded. Based on the information, malfunction
or dysfunction or latent errors can be detected via logical and mathematical analyses described later.

Figure 7. Event components and logging items.

Put together, the components for driving and the subordinate logging items for efficient recording
can be summarized as in Figure 8. Driving is the act of performing a maneuver in the environment, at a
time, and when events can occur. Thus, the key elements of driving such as the maneuver, environment,
time, and events must be recorded. Based on the information, malfunction or dysfunction or latent
errors can be detected via logical and mathematical analyses described later.

Sensors 2020, 20, 1356 10 of 29
Sensors 2019, 19, x FOR PEER REVIEW 10 of 31

Figure 8. Summary of driving data logging items.

2.2. The Logging Data Structure

Based on formal specifications for driving, the logging system records four components:
maneuver, environment, time, and event. Each component has multistep stages. Note that the actual
logging data are items, as in Table 1, which are aggregated into categories. These categories are
mapped to stages of components from formal specifications described above. By separating formal
specifications and logging units, various stages of each driving component can have independent
and recurring logging data such as acceleration, target speed, etc.

Maneuver Components
 Mode: This category includes the current driving mode of the autonomous vehicle, the

reason code for entering the current driving mode, and the reason code for generating an
approximate error when a system error occurs. The first thing to analyze from the driving
information is to check the current driving mode and the reason for the mode change.

 Mode Change Info: This is for the change in autonomous driving mode. It is important to
record driving mode changes because an autonomous vehicle changes its movement
according to the driving mode. The previous mode right before the current mode is also
recorded. If there were many mode changes in autonomous driving, knowing which
mode the vehicle is in before the current stage greatly helps in data analysis.

 Driver Input: This category stores handling, accelerator, brake information, gear
information, steering torque, and so on. With this information, an inspector can see what
the driver control was at the time of logging.

 Control Info: In this category, vehicle control information is stored. Target steering, target
speed, and target acceleration are stored. Target acceleration/brake pedal position also can
be stored depending on the vehicle speed control type. Turn-signal control information
(i.e., left/right turn signal) is also stored. Based on this information, the intention of the
autonomous system can be identified.

 Path Info: Path info stores the driving path generated by the path planning module. The
autonomous system drives the vehicle based on this path.

Environment Component
 Vehicle Status: In this category, the running status of the vehicle is recorded. The current

position and heading of the vehicle are recorded by default. The velocity and acceleration
along the vertical and horizontal axes of the vehicle are also recorded together. Target
speed and current speed during autonomous driving are stored too.

Time Component

Figure 8. Summary of driving data logging items.

2.2. The Logging Data Structure

Based on formal specifications for driving, the logging system records four components: maneuver,
environment, time, and event. Each component has multistep stages. Note that the actual logging data
are items, as in Table 1, which are aggregated into categories. These categories are mapped to stages
of components from formal specifications described above. By separating formal specifications and
logging units, various stages of each driving component can have independent and recurring logging
data such as acceleration, target speed, etc.

Maneuver Components

• Mode: This category includes the current driving mode of the autonomous vehicle, the reason
code for entering the current driving mode, and the reason code for generating an approximate
error when a system error occurs. The first thing to analyze from the driving information is to
check the current driving mode and the reason for the mode change.

• Mode Change Info: This is for the change in autonomous driving mode. It is important to record
driving mode changes because an autonomous vehicle changes its movement according to the
driving mode. The previous mode right before the current mode is also recorded. If there were
many mode changes in autonomous driving, knowing which mode the vehicle is in before the
current stage greatly helps in data analysis.

• Driver Input: This category stores handling, accelerator, brake information, gear information,
steering torque, and so on. With this information, an inspector can see what the driver control
was at the time of logging.

• Control Info: In this category, vehicle control information is stored. Target steering, target speed,
and target acceleration are stored. Target acceleration/brake pedal position also can be stored
depending on the vehicle speed control type. Turn-signal control information (i.e., left/right turn
signal) is also stored. Based on this information, the intention of the autonomous system can
be identified.

• Path Info: Path info stores the driving path generated by the path planning module. The
autonomous system drives the vehicle based on this path.

Environment Component

• Vehicle Status: In this category, the running status of the vehicle is recorded. The current position
and heading of the vehicle are recorded by default. The velocity and acceleration along the vertical

Sensors 2020, 20, 1356 11 of 29

and horizontal axes of the vehicle are also recorded together. Target speed and current speed
during autonomous driving are stored too.

Time Component

• Time: This category represents the time of logging. The logging time interval can be adjusted as
needed. We performed logging every 10 or 20 ms to minimize the loss of very short-term driving
information. In future work, this time category could have siblings of more than one child item to
represent the temporal context of other components.

Event Component

• Object Info: This category stores the relationship with objects in the vehicle’s path. This can be
used to determine how the vehicle responded to a frontal obstacle.

The configuration of data for a logging item may vary case by case, but it must include the basic
components of driving defined by the formal specification. This makes it easier to identify problems
with the autonomous driving system. Details of logging items stored for autonomous driving are
shown in Table 2.

Table 2. Details of logging items for an autonomous driving system.

Component Category Item Description

Maneuver

Mode

Mode System’s current working mode

ReasonCode Reasons for entering the current
mode

FailCode Reasons for system failure
Mode

Change Info
Buttons Buttons pressed by the driver
StateIn Previous system mode

Driver
Input

APS Accelerator pedal position value
BPS Brake pedal position value
SAS Steering angle sensor value

GearPos Transmission gear position (P, R,
N, D)

OBD2Spd OBD2-based vehicle speed
PushBrake Push brake? On/Off

SteeringTorque Steering torque value

Auto Control
Info

TargetSteer Target steering command
TargetSpeed Target speed command
TargetAccel Target acceleration command

Target Signal Left/Right turn signal command

Path Info
PathLen Path length

PathMinSpd Minimum speed in path
PathPoints Start, mid, last points in path

Environment
Vehicle
Status

Longitude GPS longitude
Latitude GPS latitude
Heading GPS heading
LongVel Longitude velocity
LatiVel Latitude velocity

LongAccel Longitude acceleration
LatiAccel Latitude acceleration
WheelSpd Vehicle rear wheel average speed

VelCurr Current speed of the vehicle
Time Time Logging Time Current logging time

Event Object
Info

ObjectType Object type
Drel Relative distance to object
Vrel Relative velocity to object
Size Object size

Signals Traffic light signals

Sensors 2020, 20, 1356 12 of 29

3. Quantifiable Verifications

3.1. Metamorphic Relations

In the previous chapter, we used the formal specification to define the behavior and components
of driving. Logging items were selected to record key information about the component. The basic
data needed to analyze a problem with an autonomous system are recorded in the logging system by
definition. However, verification of formal specifications often fails due to the interpolation problem
in the practical implementation. Thus, our approach is to convert the logical relations for formal
verification to mathematical relations (i.e., metamorphic relations) that can be compared and examined
in a quantitative manner.

Metamorphic relations represent consistency of change between input and output values of a
certain function. For example, the larger the steering angle is, the greater the change in the heading
direction is. This kind of consistency is called an MR. In addition, each log item has aspects such as
input and/or output values of a specific behavior of the system. For instance, ’Heading’ can be viewed
as an output against ’TargetSteer’ as an input, which is, in turn, an output against ’PathPoints’ as an
input. Thus, there are multiple MRs between combinations of each log item.

The important point is its verification method. It is not on the exact output value, like oracles
to drive at or decelerate to a certain speed, but on the consistent relationship of output values
generated with consistently transformed input values. This often needs hundreds of, even thousands
of, experiments to check violations in the consistency. It means that a consistent logical relationship
defined in our formal specification in E-BNF can be converted to a quantifiable relationship that is able
to be examined without specific oracle values.

Accidents in intelligent dynamic machines with various sensors, like autonomous vehicles, could
arise from complex chain reactions between sensors and AI software, even to absent-minded pedestrian
behaviors, not to mention trivial device or program errors since many modules are involved in each
other. It means they are more vulnerable to the interpolation or oracle test problems. Thus, this
quantifiable verification over the problems could substitute formal verification.

3.2. Analysis Methods

There are two kinds of analyses based on the proposed logging architecture. One is to analyze
predefined test cases from prioritized MRs a bit similar to oracle tests. The other is to explore already
examined test cases again from the perspective of different MRs. For this, the logging system pushes
all the items into the log database, and then they can be retrieved as different categories for another
stage. This is the ultimate goal of our system; however, it needs the former as a prerequisite. Thus, the
current analysis method is only for predefined MRs.

As described in Chapter 4 with examples, the analysis method first defines a specific MR. This
MR would typically provide one or more relations for which arithmetic comparisons can be done.
In particular, the operands of a comparison are each set of results for the same experiment with slightly
transformed input values.

In order to analyze a system using a predefined MR, first you need to have an environment
where you can run a large number of experiments. This is not necessarily a large system, but rather
an environment that can provide various inputs and receive the results. When MR is used to find
problems in the test system, it is not usually possible to find the problem with one or two experiments;
hundreds or thousands of experiment times are needed by changing the input data and environment.

If such a large number of experiments is physically impossible, the simulation environment is
constructed and the experiment is performed. For example, in order to test autonomous vehicles,
there are ways in which many vehicles are mounted and checked in various environments after
installing the system, but there are problems of cost and time. Therefore, only a part of the experiment
using real cars is carried out, and many tests are actively used for simulation.

Sensors 2020, 20, 1356 13 of 29

After establishing the experimental environment, we define the components necessary for the
experiment using the formal specifications defined in Chapter 2. Defining components using formal
specifications has the advantage of defining only essential elements. Next, we determine how to
change MR-related inputs in the experimental environment, and then we conduct a large number of
experiments to confirm whether MRs are violated. For metamorphic testing, formally defining MRs
has been tried in various ways [23].

For instance, the first stage of the Maneuver component, ’Traffic jam drive’, could be
selected due to its frequency in urban areas, then it can be decomposed into the second-stage
maneuvers of ’car following’, ’maintain speed’, ’follow driving law’, ’obstacle avoidance’,
and so on. Those maneuvers need obstacles for the Event component. Target MRs can be
defined using the specific maneuvering functions and corresponding obstacles (e.g., lanes, traffic
signal, other vehicles) as transformable input values. The MRs should be defined to have
arithmetically comparable relationships rather than having the exact expected result values.
It is more preferable to have relationships not between results but between sets of results.
Then, the established MRs as above can be tested in a quantitative manner, overcoming the
interpolation problem and oracle-test problem. This refinement process can be described as below:

(step1) maneuver
<driving> ::= <maneuver>

::= <traffic jam drive>

::= “car following”

(step 2) environment
::= “car following” ON <environment>
::= “car following” ON <physical infrastructure>

::= “car following” ON <roadway geometry><roadway types>
::= “car following” ON “straightaways”, “urban”

(step3) time
::= “car following” ON “straightaways”, “urban” AT “time”

(step4) events
::= “car following” ON “straightaways”, “urban” AT “time” WITH <events>
::= “car following” ON “straightaways”, “urban” AT “time” WITH
<object>,<object event>
::= “car following” ON “straightaways”, “urban” AT “time” WITH “lead vehicle”,
“stopped”

There are several ways to confirm MR violation. For example, if the results of each experiment
can be compared individually, it can be confirmed immediately if the MR is violated at least once in
the experiments. In this case, a detailed analysis can be performed immediately. On the other hand,
sometimes, confirmation of MR violation is necessary by the average value. In that case, MR violation
can be admitted only after the target number of experiments is completed.

Thus, all we have to do is to conduct hundreds or more than thousands of repetitive experiments
to generate log items. After all the experiments, we keep tallies of them as operands of the comparison.
If the result of the comparison does not fit the predefined one, then the test would reveal latent error of
an autonomous driving system.

4. Experimental Results

4.1. System Configurations

To show the usability of driving data, we constructed two experimental environments. One is a
driving test using a simulation, and the other is a driving log analysis technique based on an actual

Sensors 2020, 20, 1356 14 of 29

vehicle. Both of these test environments used an autonomous driving system that we implemented.
The test sequence is shown in Figure 9.

Sensors 2019, 19, x FOR PEER REVIEW 14 of 31

Figure 9. Test sequence of an autonomous driving system.

The experiment environment is shown in Figure 10. On the left is a real car with an autonomous
drive system on a test track. On the right is a system configured to test the same autonomous driving
system on the simulator. In the simulation test, vehicle, driving environment, and recognition system
were implemented in the simulator, and the planning and control systems used the same system
mounted on the actual test vehicle. The simulator was based on the CARLA (Car Learning to Act)
simulator, which was developed for the purpose of autonomous driving research [24]. We
implemented ethernet and controller area network (CAN) connection modules to communicate
with our autonomous driving system in

Figure 10. Experiment setting—real vs. simulation.

By constructing these two environments, it is advantageous to use a simulator for testing various
situations, for repeated testing, and for testing using a real vehicle to check the actual driving
responsiveness. In addition, when the simulator is used alone, the result may be different from the
response of the actual vehicle. However, by constructing such a real vehicle simulation testing
environment, the difference between the simulator and the actual vehicle can be checked, and the
gap can be reduced. In this study, the tests and the methods performed for each of these two
environments will be described.

A test vehicle for autonomous driving is shown in Figure 11. The vehicle was a small sedan, fully
electric vehicle. Two cameras and two 16ch LiDAR sensors were used as vehicle sensors. It was also
equipped with a high-performance GPS for obtaining reference information. To control the vehicle,
control commands were issued via a Controller Area Network (CAN).

Figure 9. Test sequence of an autonomous driving system.

The experiment environment is shown in Figure 10. On the left is a real car with an autonomous
drive system on a test track. On the right is a system configured to test the same autonomous driving
system on the simulator. In the simulation test, vehicle, driving environment, and recognition system
were implemented in the simulator, and the planning and control systems used the same system
mounted on the actual test vehicle. The simulator was based on the CARLA (Car Learning to Act)
simulator, which was developed for the purpose of autonomous driving research [24]. We implemented
ethernet and controller area network (CAN) connection modules to communicate with our autonomous
driving system in the CARLA simulator. In addition to providing the interface, the system maintained
the same data format so that the system installed in the vehicle could be directly used in the simulator.

Sensors 2019, 19, x FOR PEER REVIEW 14 of 31

Figure 9. Test sequence of an autonomous driving system.

The experiment environment is shown in Figure 10. On the left is a real car with an autonomous
drive system on a test track. On the right is a system configured to test the same autonomous driving
system on the simulator. In the simulation test, vehicle, driving environment, and recognition system
were implemented in the simulator, and the planning and control systems used the same system
mounted on the actual test vehicle. The simulator was based on the CARLA (Car Learning to Act)
simulator, which was developed for the purpose of autonomous driving research [24]. We
implemented ethernet and controller area network (CAN) connection modules to communicate
with our autonomous driving system in

Figure 10. Experiment setting—real vs. simulation.

By constructing these two environments, it is advantageous to use a simulator for testing various
situations, for repeated testing, and for testing using a real vehicle to check the actual driving
responsiveness. In addition, when the simulator is used alone, the result may be different from the
response of the actual vehicle. However, by constructing such a real vehicle simulation testing
environment, the difference between the simulator and the actual vehicle can be checked, and the
gap can be reduced. In this study, the tests and the methods performed for each of these two
environments will be described.

A test vehicle for autonomous driving is shown in Figure 11. The vehicle was a small sedan, fully
electric vehicle. Two cameras and two 16ch LiDAR sensors were used as vehicle sensors. It was also
equipped with a high-performance GPS for obtaining reference information. To control the vehicle,
control commands were issued via a Controller Area Network (CAN).

Figure 10. Experiment setting—real vs. simulation.

By constructing these two environments, it is advantageous to use a simulator for testing various
situations, for repeated testing, and for testing using a real vehicle to check the actual driving
responsiveness. In addition, when the simulator is used alone, the result may be different from
the response of the actual vehicle. However, by constructing such a real vehicle simulation testing
environment, the difference between the simulator and the actual vehicle can be checked, and the gap
can be reduced. In this study, the tests and the methods performed for each of these two environments
will be described.

A test vehicle for autonomous driving is shown in Figure 11. The vehicle was a small sedan,
fully electric vehicle. Two cameras and two 16ch LiDAR sensors were used as vehicle sensors. It was
also equipped with a high-performance GPS for obtaining reference information. To control the vehicle,
control commands were issued via a Controller Area Network (CAN).

Sensors 2020, 20, 1356 15 of 29
Sensors 2019, 19, x FOR PEER REVIEW 15 of 31

Figure 11. Vehicle hardware configuration.

The autonomous vehicle system that we implemented used three PCs and one embedded board.
The perception module working on Vision PC recognized the vehicle's current position and
surrounding obstacles. Vision PC received sensor data by linking to GPS, cameras, LiDAR, etc., and
it calculated the current position and direction of the vehicle using the received sensor data. It also
detected obstacles with 360 degree coverage. It estimated the location, direction, and speed of current
obstacles. The planning module was run on Planning PC. It calculated the destination of the
autonomous vehicle and a global route that must be traversed to reach its destination. In addition, a
local path to be followed in detail to travel the global route was calculated and generated in real time.
The VCU running on the embedded board received the local path from the Planning PC and
generated the actual control command to perform the control. The control commands generated by
the VCU were target steering angle and target acceleration. In addition, the VCU managed the current
status of the vehicle, terminated autonomous running when there was a problem, manually operated
the vehicle in a system failure mode as necessary, and automatically stopped the vehicle. The Logging
PC recorded the logging data. The logging data included the items we described in Chapter 2.
Logging data files used the ASCII format for easy data reading and understanding.

An autonomous vehicle has five modes internally in two driving states. The two driving states
are manual driving state and auto driving state. Manual driving state is a mode in which the driver
operates the steering wheel, brake, and acceleration directly. In auto driving state, an autonomous
driving system operates the vehicle by itself. There are five modes in these two states: MANUAL,
AUTOREADY, and SYSFAIL modes are in the manual driving state, and AUTO and SYSLIMIT
modes exist in the auto driving state. The transition between each mode occurs according to the
driver's action and the conditions of the autonomous vehicle. The transition between each mode is
shown in Figure 12.

Figure 11. Vehicle hardware configuration.

The autonomous vehicle system that we implemented used three PCs and one embedded board.
The perception module working on Vision PC recognized the vehicle’s current position and surrounding
obstacles. Vision PC received sensor data by linking to GPS, cameras, LiDAR, etc., and it calculated the
current position and direction of the vehicle using the received sensor data. It also detected obstacles
with 360 degree coverage. It estimated the location, direction, and speed of current obstacles. The
planning module was run on Planning PC. It calculated the destination of the autonomous vehicle
and a global route that must be traversed to reach its destination. In addition, a local path to be
followed in detail to travel the global route was calculated and generated in real time. The VCU
running on the embedded board received the local path from the Planning PC and generated the
actual control command to perform the control. The control commands generated by the VCU were
target steering angle and target acceleration. In addition, the VCU managed the current status of the
vehicle, terminated autonomous running when there was a problem, manually operated the vehicle in
a system failure mode as necessary, and automatically stopped the vehicle. The Logging PC recorded
the logging data. The logging data included the items we described in Chapter 2. Logging data files
used the ASCII format for easy data reading and understanding.

An autonomous vehicle has five modes internally in two driving states. The two driving states
are manual driving state and auto driving state. Manual driving state is a mode in which the driver
operates the steering wheel, brake, and acceleration directly. In auto driving state, an autonomous
driving system operates the vehicle by itself. There are five modes in these two states: MANUAL,
AUTOREADY, and SYSFAIL modes are in the manual driving state, and AUTO and SYSLIMIT modes
exist in the auto driving state. The transition between each mode occurs according to the driver’s
action and the conditions of the autonomous vehicle. The transition between each mode is shown in
Figure 12.

Sensors 2020, 20, 1356 16 of 29

Sensors 2019, 19, x FOR PEER REVIEW 16 of 31

Figure 12. Driving states, modes, and transition diagram.

4.2. Metamorphic Test Examples

In this section, we show examples of MT for the autonomous driving system and logging data
used at that time. First, we identify the MRs. Next, we show testing input data and resulted output
data for testing. Finally, we show the MT results.

4.2.1. MT1: Stop Regardless of the Obstacle Order

When driving on the road, obstacles may exist in front of the vehicle. At this time, the vehicle
shall be capable of stopping based on the nearest obstacle, even if several obstacles exist. For example,
when there are several obstacles, the vehicle must be able to stop based on the nearest obstacle to
avoid collisions. In other words, even if there are obstacles in any order, the autonomous driving
system should react based on the closest obstacle. This property is described in MR1.

• MR1: if D = {x | x is a set of an obstacle’s relative distance}, then the ego-vehicle must stop at

min(D).
When there is a set of obstacles on the driving path, the ego-vehicle should always stop based
on obstacles with the least relative distance regardless of the order in which the obstacle is
inputted.

In order to do the metamorphic test based on MR1, the input Do was set as follows: some obstacle

vehicles were stopped at 10m intervals on the driving path straight along the vertical axis. The ego-
vehicle autonomously drives the path in the positive direction of the vertical axis. In this situation,
the ego-vehicle should stop at min(Do) regardless of the order or number of obstacles. Then, it satisfies
MR1.
• Input Do: Do = {the vertical axis position of obstacles}
• Expected output of Do: ego-vehicle should stop at min(Do)

Various test input sets were specified based on MR1 by mixing the order of elements, adding a

certain level of noise, or adding elements. If the test system satisfies MR1, the result should show that
the ego-vehicle always stops at min(Di={1,2,3}) regardless of test inputs. Test inputs are shown in Table 3.

Figure 12. Driving states, modes, and transition diagram.

4.2. Metamorphic Test Examples

In this section, we show examples of MT for the autonomous driving system and logging data
used at that time. First, we identify the MRs. Next, we show testing input data and resulted output
data for testing. Finally, we show the MT results.

4.2.1. MT1: Stop Regardless of the Obstacle Order

When driving on the road, obstacles may exist in front of the vehicle. At this time, the vehicle
shall be capable of stopping based on the nearest obstacle, even if several obstacles exist. For example,
when there are several obstacles, the vehicle must be able to stop based on the nearest obstacle to avoid
collisions. In other words, even if there are obstacles in any order, the autonomous driving system
should react based on the closest obstacle. This property is described in MR1.

• MR1: if D = {x | x is a set of an obstacle’s relative distance}, then the ego-vehicle must stop at
min(D).

When there is a set of obstacles on the driving path, the ego-vehicle should always stop based on
obstacles with the least relative distance regardless of the order in which the obstacle is inputted.

In order to do the metamorphic test based on MR1, the input Do was set as follows: some obstacle
vehicles were stopped at 10 m intervals on the driving path straight along the vertical axis. The
ego-vehicle autonomously drives the path in the positive direction of the vertical axis. In this situation,
the ego-vehicle should stop at min(Do) regardless of the order or number of obstacles. Then, it satisfies
MR1.

• Input Do: Do = {the vertical axis position of obstacles}
• Expected output of Do: ego-vehicle should stop at min(Do)

Various test input sets were specified based on MR1 by mixing the order of elements, adding a
certain level of noise, or adding elements. If the test system satisfies MR1, the result should show
that the ego-vehicle always stops at min(Di={1,2,3}) regardless of test inputs. Test inputs are shown in
Table 3.

Experiments were conducted using a simulator. Five vehicles were placed at intervals of 10 m
between y-coordinates, 565 and 610, as initial obstacles. This initial situation was set to Input set Do.
For metamorphic testing, input set D1 changed the order of vehicles based on input set Do, Input set
D2 to which a random value between 2 and 7 was added, and Input set D3 to which 10 vehicles were

Sensors 2020, 20, 1356 17 of 29

added. Repeated experiments were performed for each input, and a total of 1800 or more experiments
were performed. Figure 13 shows the results of the experiment.

Table 3. Test inputs for stopping regardless of obstacle order.

Inputs Description Expected Result

Do Original input set Stop before min(Do)
D1 Shuffle the elements in Do Stop before min(D1)
D2 Add random noise (2 m < n < 7 m) to the elements in Do Stop before min(D2)
D3 Add more elements in Do Stop before min(D3)

Sensors 2019, 19, x FOR PEER REVIEW 17 of 31

Table 3. Test inputs for stopping regardless of obstacle order.

Inputs Description Expected Result
Do Original input set Stop before min(Do)
D1 Shuffle the elements in Do Stop before min(D1)
D2 Add random noise (2m < n < 7m) to the elements in Do Stop before min(D2)
D3 Add more elements in Do Stop before min(D3)

Experiments were conducted using a simulator. Five vehicles were placed at intervals of 10 m
between y-coordinates, 565 and 610, as initial obstacles. This initial situation was set to Input set Do.
For metamorphic testing, input set D1 changed the order of vehicles based on input set Do, Input set
D2 to which a random value between 2 and 7 was added, and Input set D3 to which 10 vehicles
were added. Repeated experiments were performed for each input, a

Figure 13. Ego-vehicle stop with obstacle position.

In Figure 13, the horizontal axis represents the input set. Input sets D1, D2, and D3 changed based
on the basic input set Do and MR1. The left vertical axis and boxplot show the distribution of obstacle
vehicles. Input sets Do and D1 have the same variance because they are different only in ordering. In
D2, a random value between 2 and 7 was added to the distance value. Both the minimum and
maximum values were larger. In D3, the addition of 10 vehicles resulted in an increased variance. The
right vertical axis and the line show the ego-vehicle stopping position. The same change as the change
of the minimum value regardless of the variance of obstacles is shown. This can be interpreted as
satisfying MR1.

4.2.2. MT2: Stop Before the Stop Line

The autonomous driving system used in experiments was programmed to stop just before the
stop line when the traffic light was red. The operation order of this function is as follows.

1. Perception: traffic light recognition (red) and ego-vehicle localization;
2. Planning: calculation of the remaining distance to the stop line based on map data;
3. Control: calculation of the target speed based on remaining distance and braking control.

An important factor for the vehicle to stop before the stop line is its current speed and distance
to the stop line. If we simplify the problem by making the vehicle speed constant, the only factor

Figure 13. Ego-vehicle stop with obstacle position.

In Figure 13, the horizontal axis represents the input set. Input sets D1, D2, and D3 changed based
on the basic input set Do and MR1. The left vertical axis and boxplot show the distribution of obstacle
vehicles. Input sets Do and D1 have the same variance because they are different only in ordering.
In D2, a random value between 2 and 7 was added to the distance value. Both the minimum and
maximum values were larger. In D3, the addition of 10 vehicles resulted in an increased variance. The
right vertical axis and the line show the ego-vehicle stopping position. The same change as the change
of the minimum value regardless of the variance of obstacles is shown. This can be interpreted as
satisfying MR1.

4.2.2. MT2: Stop Before the Stop Line

The autonomous driving system used in experiments was programmed to stop just before the
stop line when the traffic light was red. The operation order of this function is as follows.

1. Perception: traffic light recognition (red) and ego-vehicle localization;
2. Planning: calculation of the remaining distance to the stop line based on map data;
3. Control: calculation of the target speed based on remaining distance and braking control.

An important factor for the vehicle to stop before the stop line is its current speed and distance to
the stop line. If we simplify the problem by making the vehicle speed constant, the only factor would
become the distance to the stop line. Basically, when the vehicle speed is constant and there is a red

Sensors 2020, 20, 1356 18 of 29

light on a traffic signal, the farther the vehicle is from the stop line, the more likely the vehicle will stop
before the stop line. The following is the description about this relation as MR2.

• MR2: if Input set Do and D1 exist, then |Ro| <= |R1| holds.
• If Input set Do = {x, y | x is ego-vehicle speed, y is a distance to the stop line} is given, the system

returns Output set Ro = {x, y | x is the ego-vehicle speed and must be zero, y is a distance to the
stop line and must be positive}.

• If Input set D1 = {x, y+d | x is the ego-vehicle speed, y is a distance to the stop line, d is a positive
value} is given, the system returns Output set R1 = {x, y | x is the ego-vehicle speed and must be
zero, y is a distance to the stop line and must be positive}.

• |Ro| and |R1| mean the number of elements in Ro and R1, respectively.

First, reference data, Input set D0, was generated. Then, a test input set D1 satisfying the property
of MR2 was generated. The test input set was generated by adding an additional distance d to the
distance of y in Input set Do. According to MR2, even if the distance y is changed to y + d for the same
speed, x, the number of stops before the stop line R1 must be the same as or larger than Ro. So, |Ro|≤|R1|

means the systems is correct. On the contrary, |Ro| > |R1| means that there is an error in the system.
Test inputs are shown in Table 4.

Table 4. Test inputs for stopping at the stop line.

Inputs Description Expected Result

Do Original input set |Ro|

D1
New input set D1 = {x, y+d | x, y in

Do, d is positive value}
|R1|

(Satisfying |Ro| ≤ |R1|)

For testing the reference input, the vehicle was driven at a constant speed (25 km/h or 35 km/h),
and the traffic light turned red when the distance from the vehicle to the stop line was within a preset
distance (50, 40, 30, 20, and 10 m). Based on this input, the additional distance, d, was selected with a
random, uniform distribution. Test results are shown in Figure 14.

Sensors 2019, 19, x FOR PEER REVIEW 19 of 31

Figure 14. Stop behind the stop line in the red light test.

The horizontal axis is the distance between the vehicle and the stop line when the red signal is
turned on, and the vertical axis is the number of attempts. The light-gray bar is the number of failures
to stop with the reference input, the dark-gray bar is the number of failures to stop given with the
additional distance, the light-blue bar is the number of successful stops with the reference input, and
the dark-blue bar is the number of successes stops when the additional distance is given. The
experiment was carried out by changing the distance to the stop line from 50 to 10m in 10m units.
Each set of experiments for a specific distance to the stop line was performed about 380 times, and
the total number of experiments was about 3820.

According to MR2, the dark-blue bar must be greater than or equal to the light-blue bar, that is,
|Ro| ≤ |R1|. Four sets of experiments showed this relationship. However, an exception was found at
50m: the dark-blue bar was smaller than the light-blue bar, which means a violation of MR2. By this
verification, we found a latent error that is seldom disclosed.

To identify the cause of the error, we carried out a process in the following order: (1) identify the
experiment that had the problem, (2) check the detail log using the logging data defined above, (3) in
the detailed log, confirm which part of the system had the problem, and (4) precise analysis is
performed about the corresponding part.

In search of the cause, we confirmed that the vehicle failed to stop in the experiment with the
additional distance. Then, we checked the detailed logs for the experiment, and the log showed no
problem with the distance between the vehicle speed and the stop line. However, the target
acceleration output was 0.1m/sଶ, not 0.0m/sଶ, and it was confirmed that the vehicle continued to
move forward and did not stop at the stop line due to the nonzero target acceleration value. Based
on this, it was found that there had been an error in the target acceleration calculation module.

Due to cost and time problems, it is difficult for developers to conduct thousands of interactive
tests. This case, in particular, was pretty hard to reveal in usual repetitive experiments since the target
speed calculation module worked well without any problems in other tests, and the 50 meter test also
showed problems very occasionally. The MT detected this scarce phenomenon by performing
experiments of a reasonable repetition size (under 400 times), which violated a specified MR based
on our logging architecture.

Figure 14. Stop behind the stop line in the red light test.

Sensors 2020, 20, 1356 19 of 29

The horizontal axis is the distance between the vehicle and the stop line when the red signal
is turned on, and the vertical axis is the number of attempts. The light-gray bar is the number of
failures to stop with the reference input, the dark-gray bar is the number of failures to stop given with
the additional distance, the light-blue bar is the number of successful stops with the reference input,
and the dark-blue bar is the number of successes stops when the additional distance is given. The
experiment was carried out by changing the distance to the stop line from 50 to 10 m in 10 m units.
Each set of experiments for a specific distance to the stop line was performed about 380 times, and the
total number of experiments was about 3820.

According to MR2, the dark-blue bar must be greater than or equal to the light-blue bar, that is,
|Ro| ≤ |R1|. Four sets of experiments showed this relationship. However, an exception was found at
50 m: the dark-blue bar was smaller than the light-blue bar, which means a violation of MR2. By this
verification, we found a latent error that is seldom disclosed.

To identify the cause of the error, we carried out a process in the following order: (1) identify
the experiment that had the problem, (2) check the detail log using the logging data defined above,
(3) in the detailed log, confirm which part of the system had the problem, and (4) precise analysis is
performed about the corresponding part.

In search of the cause, we confirmed that the vehicle failed to stop in the experiment with the
additional distance. Then, we checked the detailed logs for the experiment, and the log showed no
problem with the distance between the vehicle speed and the stop line. However, the target acceleration
output was 0.1 m/s2, not 0.0 m/s2, and it was confirmed that the vehicle continued to move forward
and did not stop at the stop line due to the nonzero target acceleration value. Based on this, it was
found that there had been an error in the target acceleration calculation module.

Due to cost and time problems, it is difficult for developers to conduct thousands of interactive
tests. This case, in particular, was pretty hard to reveal in usual repetitive experiments since the
target speed calculation module worked well without any problems in other tests, and the 50 m test
also showed problems very occasionally. The MT detected this scarce phenomenon by performing
experiments of a reasonable repetition size (under 400 times), which violated a specified MR based on
our logging architecture.

4.2.3. MT3: Avoiding Obstacles with a Minimum Margin

While driving, it is common to see vehicles on shoulders or on the side of the road. In some
situations, it may be necessary to avoid these obstacles even if the vehicle partially overlaps the next
lane. There are many things to consider when autonomous vehicles are driving in such an environment.

Basically, avoidance is done by having a sufficient distance from obstacle vehicles, but the
more distance you have, the more you move to the next lane, which increases the risk of accidents.
Therefore, it is necessary to decide whether to avoid the obstacle considering the location of the
vehicles, and in avoidance, the vehicle bypasses obstacles with a minimum extra distance. In other
words, when deciding whether to avoid the location of an obstacle, vehicles should be considered,
which shows that there is a relation between an avoidance maneuver and obstacles. The simplest
relationship between the two factors is that the larger the avoidance space is, the greater the possibility
of performing the avoidance gets. In other words, if the area of the ego-lane occupied by the obstacle
vehicle is smaller, the possibility of avoidance is increased. This aspect of the avoidance maneuver can
be defined as an MR as below.

• MR3: if Input set Do and D1 exist, then |Ro| <= |R1| holds.
• If Input set Do = {p, q | p is ego-vehicle position, q is an obstacle position} is given, the system

returns Output set Ro = {p | p is the ego vehicle position and the distance between p and the final
position in path must be less than or equal to the preset Euclidean distance e (e.g., e = 1.0 m)}.

• If Input set D1 = {p, q+d | p is the ego-vehicle position, q is an obstacle position, d is a positive
random value and greater than |do|} is given, the system returns Output set R1 = {p| p is the

Sensors 2020, 20, 1356 20 of 29

ego-vehicle position and the distance between p and the final position in path must be less than or
equal to the preset Euclidean distance e (e.g., e = 1.0 m)}.

• |Ro| and |R1| mean the number of elements in Ro and R1, respectively.
• Note that p, q, and d are coordinates in two-dimensional space and written in bold.

First, reference data, Original input set D0, was generated. Then, test input sets D1, D2, and D3

satisfying the property of MR3 were generated sequentially by adding a positive random value. If the
test system satisfies MR3, the result should show that the number of trials of the ego-vehicle arriving at
the final point in Input set D0 must be equal to or less than the number of trials with Di={1,2,3} regardless
of any positive random values d. Test setup and two scenarios of the test are depicted in Figure 15.

Sensors 2019, 19, x FOR PEER REVIEW 21 of 31

For testing with the reference input, three obstacle vehicles were used. These three obstacle
vehicles were generated on the original path with variance q and moved by di={1,2,3}. The original path
was straight and followed the center of the lane. The lane had lane markers on both sides. A test had
one result out of two scenarios: either 'Bypass with a minimal margin' or 'Blocked'. If all obstacles are
generated with sufficient margins, the ego-vehicle bypasses the obstacles. On the other hand, if one
of the obstacles does not have enough distance from the path, the vehicle will be blocked. Test setup
and two scenarios of the test are shown in Figure 15.

(a) (b) (c)

Figure 15. (a) Avoidance test setup and two scenarios of the test: (b) Bypass with a min. margin vs.
(c) Blocked.

Based on this input, the additional distance Di={1,2,3} was selected with a random, uniform
distribution. Test results are shown in Figure 16. The maximum value of Di={o,1,2} was less than the
minimum value of Dj={1,2,3} in order to satisfy MR3. For each test input set, over 850 tests were
conducted and over 3400 tests in total were done. If the system tested in this MT satisfies MR3, R3
must have the biggest number of trial results of bypassing than any of Ro, R1, and R2.

Figure 16. Avoiding obstacles test results.

The horizontal axis is the test cases, Di={o,1,2,3}, and the vertical axis is the number of trials. The
light-blue bar and the light-gray bar represent the numbers of 'bypassing obstacles' and 'blocked by

Figure 15. (a) Avoidance test setup and two scenarios of the test: (b) Bypass with a min. margin vs.
(c) Blocked.

Test inputs are shown in Table 5. The test input set was generated by adding an additional positive
random value d to q, the position of obstacles, based on the input set Do. According to MR3, even if
the distance q is changed to q + d for the positive value, the number of stops at the final point on path
R1 must be the same as or larger than Ro. So, |Ro|≤|R1| means the systems is correct. On the contrary,
|Ro| > |R1| means that there is an error in the system.

For testing with the reference input, three obstacle vehicles were used. These three obstacle
vehicles were generated on the original path with variance q and moved by di={1,2,3}. The original path
was straight and followed the center of the lane. The lane had lane markers on both sides. A test had
one result out of two scenarios: either ’Bypass with a minimal margin’ or ’Blocked’. If all obstacles are
generated with sufficient margins, the ego-vehicle bypasses the obstacles. On the other hand, if one of
the obstacles does not have enough distance from the path, the vehicle will be blocked. Test setup and
two scenarios of the test are shown in Figure 15.

Based on this input, the additional distance Di={1,2,3} was selected with a random, uniform
distribution. Test results are shown in Figure 16. The maximum value of Di={o,1,2} was less than
the minimum value of Dj={1,2,3} in order to satisfy MR3. For each test input set, over 850 tests were
conducted and over 3400 tests in total were done. If the system tested in this MT satisfies MR3, R3

must have the biggest number of trial results of bypassing than any of Ro, R1, and R2.

Sensors 2020, 20, 1356 21 of 29

Table 5. Test inputs for the avoidance test.

Inputs Description Expected Result

Do

Original input set Do = {p, q | p is
ego-vehicle position, q is obstacle

position, q = c * [0.0~0.4) }
|Ro|

D1

Input set D1 = {p, q+d1 | p, q in
Do, d1 is positive random value,

d1 = c * [0.0~0.1) }
|Ro| <= |R1|

D2

Input set D2 = {p, q+d2 | p, q in
Do, d2 is positive random value,

d2 = c * [0.1~0.2) }
|Ro| <= |R1| <= |R2|

D3

Input set D3 = {p, q+d3 | p, q in
Do, d3 is positive random value,

d3 = c * [0.2~0.3) }
|Ro| <= |R1|<= |R2|<= |R3|

*c is the preset constant (e.g., road width, vehicle width).

Sensors 2019, 19, x FOR PEER REVIEW 21 of 31

For testing with the reference input, three obstacle vehicles were used. These three obstacle
vehicles were generated on the original path with variance q and moved by di={1,2,3}. The original path
was straight and followed the center of the lane. The lane had lane markers on both sides. A test had
one result out of two scenarios: either 'Bypass with a minimal margin' or 'Blocked'. If all obstacles are
generated with sufficient margins, the ego-vehicle bypasses the obstacles. On the other hand, if one
of the obstacles does not have enough distance from the path, the vehicle will be blocked. Test setup
and two scenarios of the test are shown in Figure 15.

(a) (b) (c)

Figure 15. (a) Avoidance test setup and two scenarios of the test: (b) Bypass with a min. margin vs.
(c) Blocked.

Based on this input, the additional distance Di={1,2,3} was selected with a random, uniform
distribution. Test results are shown in Figure 16. The maximum value of Di={o,1,2} was less than the
minimum value of Dj={1,2,3} in order to satisfy MR3. For each test input set, over 850 tests were
conducted and over 3400 tests in total were done. If the system tested in this MT satisfies MR3, R3
must have the biggest number of trial results of bypassing than any of Ro, R1, and R2.

Figure 16. Avoiding obstacles test results.

The horizontal axis is the test cases, Di={o,1,2,3}, and the vertical axis is the number of trials. The
light-blue bar and the light-gray bar represent the numbers of 'bypassing obstacles' and 'blocked by

Figure 16. Avoiding obstacles test results.

The horizontal axis is the test cases, Di={o,1,2,3}, and the vertical axis is the number of trials. The
light-blue bar and the light-gray bar represent the numbers of ’bypassing obstacles’ and ’blocked by
obstacles’ results, respectively. The sum of the numbers of light-blue bars and light-gray bars is the
same as the total number of trials. The experiment was carried out by selecting a random distance
from the original path. Each test case did not overlap each other to be suitable for MR3.

According to MR3, the light-blue bar of Di={o,1,2} must be less than or equal to the light-blue bar of
Dj={1,2,3}, that is, |Ro| ≤ |R1|. The result of this MT shows the relation. So, the test system satisfies MR3.

4.3. Logging Data Analysis

Log data are obtained from test driving of the vehicle based on the logging system described
in Chapter 2. Figure 17 illustrates an example of log data. The graphs in Figure 17a show a round
driving path; the entire path (left), a lane-change section (top right), and a curve-turn section (bottom
right). The horizontal axis is the relative distance from west to east, and the vertical axis is the relative
distance from south to north in meters. The trajectories of the real and simulation vehicles are similar
in general (left) but slightly different in parts (right). Although it is ideal that the simulation vehicle
produced the exact same result as the real vehicle did, it is impossible in practice due to various factors
we cannot control, including environmental parameters and insufficient simulation models of all the
phenomena including engine dynamics, tire traction, etc. Thus, our practical goal is to make them as

Sensors 2020, 20, 1356 22 of 29

similar as possible to the extent that the algorithmic and/or procedural consistency of vehicle behaviors
can be compared.

Sensors 2019, 19, x FOR PEER REVIEW 22 of 31

obstacles' results, respectively. The sum of the numbers of light-blue bars and light-gray bars is the
same as the total number of trials. The experiment was carried out by selecting a random distance
from the original path. Each test case did not overlap each other to be suitable for MR3.

According to MR3, the light-blue bar of Di={o,1,2} must be less than or equal to the light-blue bar of
Dj={1,2,3}, that is, |Ro| ≤ |R1|. The result of this MT shows the relation. So, the test system satisfies MR3.

4.3. Logging Data Analysis

Log data are obtained from test driving of the vehicle based on the logging system described in
Chapter 2. Figure 17 illustrates an example of log data. The graphs in Figure 17(a) show a round
driving path; the entire path (left), a lane-change section (top right), and a curve-turn section (bottom
right). The horizontal axis is the relative distance from west to east, and the vertical axis is the relative
distance from south to north in meters. The trajectories of the real and simulation vehicles are similar
in general (left) but slightly different in parts (right). Although it is ideal that the simulation vehicle
produced the exact same result as the real vehicle did, it is impossible in practice due to various
factors we cannot control, including environmental parameters and insufficient simulation models
of all the phenomena including engine dynamics, tire traction, etc. Thus, our practical goal is to make
them as similar as possible to the extent that the algorithmic and/or procedural consistency of vehicle
behaviors can be compared.

The graphs in Figure 17(b) show the graphs of the vehicle speed (top) and steering angle
(bottom). The upper vertical axis is the ego-vehicle speed (km/h) and the lower vertical axis is the
steering angle (degree). The horizontal axis of both graphs is time (s). Note that the dummy data (zero
value) was inserted in the simulation vehicle data for plotting in accordance with real vehicle data
(the intervals are grayed out in blocks). That area was ignored in the actual comparison. Of course,
the real vehicle data were not modified at all. Those graphs show the differences of the real and
simulation vehicles more clearly. In the interval from 20 to 80s, the simulation vehicle generated
similar results compared to the real vehicle's. However, the simulation vehicle produced
different results compared to the real vehicle's from 250 to 32

Figure 17. Logging data from real vs. simulation vehicle driving: (left) relative driving path, (right)
speed and steering angle info.

Although the simulation vehicle used in this study did not produce the same results as the real
vehicle's, it generated consistent patterns that were similar, which can be used to detect unknown
errors existing in the real vehicle.

In order to compare the log data of the simulation and the real vehicle’s driving in more detail,
a vehicle-stopping experiment was performed with respect to the traffic light. Figure 18 shows the
comparison between the real vehicle’s logging data with the simulation vehicle’s logging data in a
red light situation. There are two graphs sharing the horizontal axis representing time (s). The vertical
axis of the upper graph is the speed (km/h), and the other one of the lower graph is the remaining
distance (m) to the stop line.

Figure 17. Logging data from real vs. simulation vehicle driving: (left) relative driving path, (right)
speed and steering angle info.

The graphs in Figure 17b show the graphs of the vehicle speed (top) and steering angle (bottom).
The upper vertical axis is the ego-vehicle speed (km/h) and the lower vertical axis is the steering angle
(degree). The horizontal axis of both graphs is time (s). Note that the dummy data (zero value) was
inserted in the simulation vehicle data for plotting in accordance with real vehicle data (the intervals
are grayed out in blocks). That area was ignored in the actual comparison. Of course, the real vehicle
data were not modified at all. Those graphs show the differences of the real and simulation vehicles
more clearly. In the interval from 20 to 80 s, the simulation vehicle generated similar results compared
to the real vehicle’s. However, the simulation vehicle produced different results compared to the real
vehicle’s from 250 to 320 s. A big difference occurred around 170 s, which was caused by unanticipated
braking of the test driver in the real vehicle.

Although the simulation vehicle used in this study did not produce the same results as the real
vehicle’s, it generated consistent patterns that were similar, which can be used to detect unknown
errors existing in the real vehicle.

In order to compare the log data of the simulation and the real vehicle’s driving in more detail,
a vehicle-stopping experiment was performed with respect to the traffic light. Figure 18 shows the
comparison between the real vehicle’s logging data with the simulation vehicle’s logging data in a red
light situation. There are two graphs sharing the horizontal axis representing time (s). The vertical axis
of the upper graph is the speed (km/h), and the other one of the lower graph is the remaining distance
(m) to the stop line.

In the upper graph, the solid blue line is the real vehicle’s current speed, and the solid red line is
the simulation vehicle’s current speed. The dashed blue line is the real vehicle’s target speed, and the
dashed red line is the simulation vehicle’s target speed. In the lower graph, the distance to the stop
line, the solid blue line is the remaining distance to the stop line of the real vehicle, and the red solid
line is the remaining distance to the stop line of the simulation vehicle.

In the two graphs, both the real vehicle and the simulation vehicle showed almost the same results.
Especially, in the speed graph, both vehicles’ target speeds were set to 0 km/h at about 8 s, and then
the target speed increased to about 5 km/h at around 10 s. Although the detailed values were slightly
different, similar control patterns appeared when the real vehicle and the simulation were controlled
by the test system. As a result, it can be seen that the vehicle test through the simulation showed a
pattern similar to the real vehicle test, which means that the test of the autonomous vehicle control
system through the simulation is meaningful.

Sensors 2020, 20, 1356 23 of 29
Sensors 2019, 19, x FOR PEER REVIEW 23 of 31

In the upper graph, the solid blue line is the real vehicle’s current speed, and the solid red line
is the simulation vehicle’s current speed. The dashed blue line is the real vehicle’s target speed, and
the dashed red line is the simulation vehicle’s target speed. In the lower graph, the distance to the
stop line, the solid blue line is the remaining distance to the stop line of the real vehicle, and the red
solid line is the remaining distance to the stop line of the simulation vehicle.

In the two graphs, both the real vehicle and the simulation vehicle showed almost the same
results. Especially, in the speed graph, both vehicles’ target speeds were set to 0 km/h at about 8 s,
and then the target speed increased to about 5 km/h at around 10 s. Although the detailed values
were slightly different, similar control patterns appeared when the real vehicle and the simulation
were controlled by the test system. As a result, it can be seen that the vehicle test through the
simulation showed a pattern similar to the real vehicle test, which means that the test of the
autonomous vehicle control system through the simulation is meaningful.

5. Conclusions

In this work, we designed a log analysis framework to be useful in testing an autonomous
driving system. Complex interactions of well-designed/tested units and algorithms could produce
minor errors, dysfunction, and even severe malfunction. Fortunately, there is a source of clues to the
cause of problems in a practically working machine, which is, of course, its log data generated by
each module on the fly. In the autonomous vehicle industry, many log recording systems such as the
EDR have already been adopted (even mandatorily in some regions). However, the heap of log data
per se does not tell us what will happen before visible malfunction or accidents.

Therefore, we proposed a logging architecture based on formal specifications, providing a priori
relationships between modules and/or data and a log analysis method based on quantifiable
verification of a posteriori relationships, which overcomes the interpolation and oracle test problems.
Using this framework, testers can define unanticipated test cases, results of which can be checked via
tangible log data from a working system by a number of automatable repetitive tests.

For formal specification, we used E-BNF to describe the logical relationships for an autonomous
driving system and NHTSA's framework as a standard model for the relationships. Then, we adopted
MT for quantifiable verification of the specified relationships, which were used as the source of MRs.
To examine the effectiveness of our approach, we implemented the logging architecture in both real

Figure 18. Real vs. simulation: vehicle current and target speeds (upper), the distance to the stop
line (lower).

Figure 18. Real vs. simulation: vehicle current and target speeds (upper), the distance to the stop line
(lower).

5. Conclusions

In this work, we designed a log analysis framework to be useful in testing an autonomous driving
system. Complex interactions of well-designed/tested units and algorithms could produce minor
errors, dysfunction, and even severe malfunction. Fortunately, there is a source of clues to the cause of
problems in a practically working machine, which is, of course, its log data generated by each module
on the fly. In the autonomous vehicle industry, many log recording systems such as the EDR have
already been adopted (even mandatorily in some regions). However, the heap of log data per se does
not tell us what will happen before visible malfunction or accidents.

Therefore, we proposed a logging architecture based on formal specifications, providing a priori
relationships between modules and/or data and a log analysis method based on quantifiable verification
of a posteriori relationships, which overcomes the interpolation and oracle test problems. Using this
framework, testers can define unanticipated test cases, results of which can be checked via tangible log
data from a working system by a number of automatable repetitive tests.

For formal specification, we used E-BNF to describe the logical relationships for an autonomous
driving system and NHTSA’s framework as a standard model for the relationships. Then, we adopted
MT for quantifiable verification of the specified relationships, which were used as the source of MRs.
To examine the effectiveness of our approach, we implemented the logging architecture in both real
and simulation vehicles and defined three test cases based on three MRs, respectively, which included
both longitudinal and lateral behaviors of the vehicle.

Thousands of similar experiments with slight differences have shown us that our autonomous
vehicle had a latent error that could cause accidents on a given day. This did not frustrate us, but it
gave us confidence that an autonomous vehicle with our logging architecture could be examined on a
concrete basis of systematic logs and the corresponding analysis method.

The experiments of three MRs and MTs, however, are not sufficient to demonstrate practical
effectiveness of our framework. In particular, despite our guideline to procedurally draw MRs and
corresponding MTs from formal specifications expressed via E-BNF, it is still cumbersome and needs
some expertise. This should be alleviated by a semi-automatable method.

Note that the current grammar in E-BNF lacks confidence levels of sensor values necessary to
cope with not only binary (positive/negative) decision points but also uncertainty for perception and

Sensors 2020, 20, 1356 24 of 29

planning systems. Due to the logical and deterministic nature of formal languages like E-BNF, our
formal specification does not embrace fuzzy or stochastic situations. Thus, a probabilistic or stochastic
model such as the Markov chain would be introduced to our deterministic model.

Although we did not pursue value-by-value similarities between real and simulation vehicle
behaviors, the discrepancy between them should be bounded by some given extent so that the
simulation result can be a reasonable substitute for the actual driving test. For this, the bounding
method could formally be defined. We will be working on this in the near future.

We can extend our relationship model by considering the standardized safety test catalogues,
such as the New Car Assessment Program (NCAP) established by various governments, especially for
fatal situations like crashes. We expect it will increase the relevance of our framework to the industry.

Author Contributions: K.S. made significant contributions to this study regarding conception, design, and
analysis and writing the manuscript. K.-W.M. participated in measurements and provided intellectual suggestions
and conceptualization. B.-C.K. conceptualized the proposed methodology, participated in revising the article for
the critical intellectual content, and supervised the whole study. J.C. also supervised the study. All authors have
read and agreed to the published version of the manuscript.

Acknowledgments: This work was supported by Institute for Information & communications Technology
Promotion (IITP) grant funded by the Korea government (MSIP) (No. 2018-0-00327, Development of Fully
Autonomous Driving Navigation AI Technology in high-precision map shadow environment).

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

In this appendix, the detailed components of driving defined in this study are shown. Driving,
defined in this study, consisted of four elements: maneuver, environment, time, and events. Maneuver
used with the binary operator ON represents tasks performed during operation, and the environment
after operator ON describes the environment in which the task is performed. Events used with the
Unary operator WITH represent events that occurred during driving. This detailed component is
summarized based on the NHTSA framework.

Table A1. The driving components.

<driving> ::= <maneuver> ON <environment> AT <time> [WITH <events>]

Table A2. The 1st and 2nd stages of <maneuver>.

<maneuver> ::=

<highway drive>
| <low speed shuttle>
| <traffic jam drive>
| <emergency takeover>
| <valet parking>

“maintain speed”
| “car following”
| “lane centering”
| “lane switching/overtaking”
| “obstacle avoidance”
| “follow driving law”

<highway drive> ::=

| “low/high speed merge”

Sensors 2020, 20, 1356 25 of 29

Table A2. Cont.

<low speed shuttle> ::=

“maintain speed”
| “car following”
| “lane centering”
| “lane switching/overtaking”
| “obstacle avoidance”
| “follow driving law”
| “stop at destination”
| “n-point turn”
| “route planning”
| “parking”
“maintain speed”
| “car following”
| “lane centering”
| “lane switching/overtaking”
| “obstacle avoidance”
| “follow driving law”

<traffic jam drive> ::=

| “low speed merge”

<emergency takeover> ::= “takeover request”
“takeover response”
“maintain speed”
| “car following”
| “obstacle avoidance”
| “follow driving law”

<valet parking> ::=

| “parking”

Table A3. The 1st and 2nd stages of <environment>.

<environment> ::=

<physical infrastructure>
[, <environmental conditions>]
[, <operational constrains>]
[, <objects>]
[, <zones>]
[, <connectivity>]
<roadway geometry>
[, <roadway types>]
[, <roadway surfaces>]

<physical infrastructure> ::=

[, <roadway edges>]

<environmental conditions> ::=

<weather>
, <weather-induced roadway conditions>
, <particulate matter>
, <illumination>

<operational constrains> ::=
<speed limit>

, <traffic conditions>

<objects> ::=
<signage>
, <roadway users>
, <non-roadway user obstacles/objects>
“geo-fencing”
| “traffic management zones”
| “school zone”
| “construction zones”
| “regions/states”

<zones> ::=

| “interference zones”

<connectivity> ::=

“V2V”
| “traffic density information”
| “remote fleet management system”
| “infrastructure sensors and
communications”

Sensors 2020, 20, 1356 26 of 29

Table A4. The 3rd stage of <environment><physical infrastructure>.

<physical infrastructure> ::=

<roadway geometry>
[, <roadway types>]
[, <roadway surfaces>]
[, <roadway edges>]
“straightaways”
| “curves”
| “hills”
| “lateral crests”
| “corners”
| “negative obstacles”

roadway geometry> ::=

| “lane width”

<roadway types> ::=

“divided highway”
| “undivided highway”
| “urban”
| “rural”
| “parking”
| “multi-lane”
| “single-lane”
| “4-way/2-way stop”
| “merge lanes”
“asphalt”
| “concrete”
| “mixed”
| “brick”

<roadway surfaces> ::=

| “dirt”

<roadway edges> ::=

“line markers”
| “temporary line markers”
| “shoulder(paved or gravel)”
| “shoulder(grass)”
| “concrete barriers”
| “curb”
| “cones”

Table A5. The 3rd stage of <environment><environmental conditions>.

<environmental conditions> ::=

<weather>
, <weather-induced roadway
conditions>
, <particulate matter>
, <illumination>

<weather> ::= “temperature", ("snow" | "wind" |
<rain>)

<weather-induced roadway conditions> ::=

“standing water”
| “flooded roadways”
| “icy roads”
| “snow on road”
“fog”
| “smoke”
| “smog”
| “dust/dirt”

<particulate matter> ::=

| “mud”

<illumination> ::=

“day”
| “dawn”
| “dusk”
| “night”
| “street lights”
| “headlights”
| “oncoming vehicle lights”

Sensors 2020, 20, 1356 27 of 29

Table A6. The 3rd stage of <environment><operational constrains>.

<operational constrains> ::= <speed limit>
, <traffic conditions>

<speed limit> ::=
“minimum speed limit”

, "maximum speed limit”

<traffic conditions> ::=

“minimal traffic”
| “normal traffic”
| “bumper-to-bumper/rush-hour traffic”
| “altered(accident, construction, . . .)”

Table A7. The 3rd stage of <environment><objects>.

<objects> ::=
<signage>
, <roadway users>
, <non-roadway user
obstacles/objects>
<signs>
| <traffic signals>
| “crosswalk”
| “railroad crossing”
| “stopped bus”
| “construction signage”

<signage> ::=

| “hand signals”

<roadway users> ::=

<vehicle types>
, "stopped vehicle”
, "moving vehicles”
| “pedestrians”
| “cyclists”
<animals>
| “shopping carts”
| <debris>
| “construction equipment”
| “pedestrians"

<non-roadway
user obstacles
/objects>

::=

| “cyclist”

Table A8. The 4th stage of <environment><objects><signage>.

<signs> ::=
“stop”
| “yield”
| “pedestrian”
“flashing”
| “school zone”
| “fire department zone”

<traffic
signals>

::=

| “etc”

Table A9. The 4th stage of <environment><objects><roadway users>.

<vehicle types> ::=

“cars”
| “light trucks”
| “large trucks”
| “motorcycles”

Sensors 2020, 20, 1356 28 of 29

Table A10. The 4th stage of <environment><objects>< non-roadway user obstacles/objects>.

<animals> ::=

“dogs”
| “cats”
| “deer”
| “etc”
“pieces of tire”
| “trash”
| “ladders”<debris> ::=

| “etc”

Table A11. The 1st stage of <time>.

<time> ::= “time”

Table A12. The 1st and 2nd stages of <events>.

<events> ::= (<object>, <object event>)
{, (<object>, <object event>) }
“lead vehicle”
| “side/back vehicle”
| “pedestrian”
| “pedalcyclist”
| “animal/debris/dynamic object”

<object> ::=

| “signals/signs”

<object event> ::=

“decelerating”
| “stopped”
| “accelerating”
| “turning”
| “cutting out”
| “parking”

References

1. Li, J.; Cheng, H.; Guo, H.; Qiu, S. Survey on Artificial Intelligence for Vehicles. Automot. Innov. 2018, 1, 2–14.
[CrossRef]

2. Oh, S.; Kang, H. Object detection and classification by decision-level fusion for intelligent vehicle systems.
Sensors 2017, 17, 207. [CrossRef] [PubMed]

3. Jati, G.; Gunawan, A.A.S.; Jatmiko, W. Dynamic swarm particle for fast motion vehicle tracking. ETRI J. 2020,
42, 54–66. [CrossRef]

4. Bimbraw, K. Autonomous Cars: Past, Present and Future—A Review of the Developments in the Last
Century, the Present Scenario and the Expected Future of Autonomous Vehicle Technology. In Proceedings
of the 2015 12th International Conference on Informatics in Control, Automation and Robotics (ICINCO),
Colmar, France, 21–23 July 2015; pp. 191–198.

5. Fridman, L.; Brown, D.E.; Glazer, M.; Angell, W.; Dodd, S.; Jenik, B.; Terwilliger, J.; Patsekin, A.;
Kindelsberger, J.; Ding, L. MIT advanced vehicle technology study: Large-scale naturalistic driving study of
driver behavior and interaction with automation. IEEE Access 2019, 7, 102021–102038. [CrossRef]

6. Favarò, F.; Eurich, S.; Nader, N. Autonomous vehicles’ disengagements: Trends, triggers, and regulatory
limitations. Accid. Anal. Prev. 2018, 110, 136–148. [CrossRef]

7. Kalra, N.; Paddock, S.M. Driving to safety: How many miles of driving would it take to demonstrate
autonomous vehicle reliability? Transp. Res. Part A Policy Pract. 2016, 94, 182–193. [CrossRef]

8. Levin, S. Uber crash shows’ catastrophic failure’of self-driving technology, experts say. The Guard.
2018. Available online: https://www.theguardian.com/technology/2018/mar/22/self-driving-car-uber-death-
woman-failure-fatal-crash-arizona (accessed on 16 December 2019).

9. Wongpiromsarn, T.; Murray, R.M. Formal verification of an autonomous vehicle system. In Proceedings
of the Conference on Decision and Control, Cancun, Maxico, 9–11 December 2008; Available online:
http://www.cds.caltech.edu/~{}murray/papers/wm08-cdc.html (accessed on 20 December 2019).

http://dx.doi.org/10.1007/s42154-018-0009-9
http://dx.doi.org/10.3390/s17010207
http://www.ncbi.nlm.nih.gov/pubmed/28117742
http://dx.doi.org/10.4218/etrij.2018-0435
http://dx.doi.org/10.1109/ACCESS.2019.2926040
http://dx.doi.org/10.1016/j.aap.2017.11.001
http://dx.doi.org/10.1016/j.tra.2016.09.010
https://www.theguardian.com/technology/2018/mar/22/self-driving-car-uber-death-woman-failure-fatal-crash-arizona
https://www.theguardian.com/technology/2018/mar/22/self-driving-car-uber-death-woman-failure-fatal-crash-arizona
http://www.cds.caltech.edu/~{}murray/papers/wm08-cdc.html

Sensors 2020, 20, 1356 29 of 29

10. Seshia, S.A.; Sadigh, D.; Sastry, S.S. Formal methods for semi-autonomous driving. In Proceedings of the 2015
52nd ACM/EDAC/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 8–12 June 2015;
pp. 1–5.

11. Chen, T.Y.T.; Cheung, S.S.C.; Yiu, S.S.M. Metamorphic testing: A new approach for generating next test
cases. Tech. Rep. HKUST-CS98-01, Dep. Comput. Sci. Hong Kong Univ. Sci. Technol. Hong Kong 1998,
1–11. Available online: https://www.cse.ust.hk/~{}scc/publ/CS98-01-metamorphictesting.pdf (accessed on
10 December 2019).

12. Segura, S.; Zhou, Z.Q. Metamorphic testing 20 years later: A hands-on introduction. In Proceedings of the
40th International Conference on Software Engineering: Companion Proceeedings, Gothenburg, Sweden,
May 2018; pp. 538–539.

13. Zhou, Z.Q.; Sun, L. Metamorphic testing of driverless cars. Commun. ACM 2019, 62, 61–67. [CrossRef]
14. California Code of Regulations, Title 13, Division 1, Chapter 1, Article 3.7. 2018. Available

online: https://govt.westlaw.com/calregs/Browse/Home/California/CaliforniaCodeofRegulations?guid=

I14E801D0D46811DE8879F88E8B0DAAAE&originationContext=documenttoc&transitionType=Default&
contextData=(sc.Default) (accessed on 10 December 2019).

15. Motor Vehicle Management Act, Statutes of the Republic of Korea, Article 27. 2016. Available online:
https://elaw.klri.re.kr/eng_service/lawView.do?hseq=42015&lang=ENG (accessed on 10 December 2019).

16. Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The KITTI dataset. Int. J. Rob. Res. 2013, 32,
1231–1237. [CrossRef]

17. Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B.
The Cityscapes Dataset for Semantic Urban Scene Understanding. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 3213–3223.

18. Jin, X.; Deshmukh, J.V.; Kapinski, J.; Ueda, K.; Butts, K. Challenges of Applying Formal Methods to Automotive
Control Systems. In Proceedings of the NSF National Workshop on Transportation Cyber-Physical Systems,
2014; Available online: https://cps-vo.org/node/11225 (accessed on 10 December 2019).

19. Kamali, M.; Dennis, L.A.; McAree, O.; Fisher, M.; Veres, S.M. Formal verification of autonomous vehicle
platooning. Sci. Comput. Program. 2017, 148, 88–106. [CrossRef]

20. Weyuker, E.J. On testing non-testable programs. Comput. J. 1982, 25, 465–470. [CrossRef]
21. Sung, K.; Min, K.; Choi, J. Driving information logger with in-vehicle communication for autonomous vehicle

research. In Proceedings of the International Conference on Advanced Communication Technology, ICACT,
Chuncheon-si Gangwon-do, Korea, 11–14 February 2018; Volume 2018-Febru, pp. 300–302.

22. Thorn, E.; Kimmel, S.; Chaka, M. A Framework for Automated Driving System Testable Cases and
Scenarios. 2018; pp. 1–180. Available online: https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/
13882-automateddrivingsystems_092618_v1a_tag.pdf (accessed on 10 December 2019).

23. Segura, S.; Fraser, G.; Sanchez, A.B.; Ruiz-Cortes, A. A Survey on Metamorphic Testing. IEEE Trans. Softw.
Eng. 2016, 42, 805–824. [CrossRef]

24. Dosovitskiy, A.; Ros, G.; Codevilla, F.; Lopez, A.; Koltun, V. CARLA: An Open Urban Driving Simulator.
In Proceedings of the 1st Annual Conference on Robot Learning, PMLR, Mountain View, CA, USA,
13–15 November 2017; pp. 1–16.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.cse.ust.hk/~{}scc/publ/CS98-01-metamorphictesting.pdf
http://dx.doi.org/10.1145/3241979
https://govt.westlaw.com/calregs/Browse/Home/California/CaliforniaCodeofRegulations?guid=I14E801D0D46811DE8879F88E8B0DAAAE&originationContext=documenttoc&transitionType=Default&contextData=(sc.Default)
https://govt.westlaw.com/calregs/Browse/Home/California/CaliforniaCodeofRegulations?guid=I14E801D0D46811DE8879F88E8B0DAAAE&originationContext=documenttoc&transitionType=Default&contextData=(sc.Default)
https://govt.westlaw.com/calregs/Browse/Home/California/CaliforniaCodeofRegulations?guid=I14E801D0D46811DE8879F88E8B0DAAAE&originationContext=documenttoc&transitionType=Default&contextData=(sc.Default)
https://elaw.klri.re.kr/eng_service/lawView.do?hseq=42015&lang=ENG
http://dx.doi.org/10.1177/0278364913491297
https://cps-vo.org/node/11225
http://dx.doi.org/10.1016/j.scico.2017.05.006
http://dx.doi.org/10.1093/comjnl/25.4.465
https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/13882-automateddrivingsystems_092618_v1a_tag.pdf
https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/13882-automateddrivingsystems_092618_v1a_tag.pdf
http://dx.doi.org/10.1109/TSE.2016.2532875
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Driving Data Recording
	Formal Methods
	Metamorphic Testing
	Problem Statement

	The Logging Architecture
	Formal Specifications of the Driving Situation
	The Logging Data Structure

	Quantifiable Verifications
	Metamorphic Relations
	Analysis Methods

	Experimental Results
	System Configurations
	Metamorphic Test Examples
	MT1: Stop Regardless of the Obstacle Order
	MT2: Stop Before the Stop Line
	MT3: Avoiding Obstacles with a Minimum Margin

	Logging Data Analysis

	Conclusions
	
	References

