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Abstract: This paper puts forward a novel methodology of employing inverse filtering technique to
extract bridge features from acceleration signals recorded on passing vehicles using smartphones.
Since the vibration of a vehicle moving on a bridge will be affected by various features related to
the vehicle, such as suspension and speed, this study focuses on filtering out these effects to extract
bridge frequencies. Hence, an inverse filter is designed by employing the spectrum of vibration data
of the vehicle when moving off the bridge to form a filter that will remove the car-related frequency
content. Later, when the same car is moving on the bridge, this filter is applied to the spectrum of
recorded data to suppress the car-related frequencies and amplify the bridge-related frequencies.
The effectiveness of the proposed methodology is evaluated with experiments using a custom-built
robot car as the vehicle moving over a lab-scale simply supported bridge. Nine combinations of speed
and suspension stiffness of the car have been considered to investigate the robustness of the proposed
methodology against car features. The results demonstrate that the inverse filtering method offers
significant promise for identifying the fundamental frequency of the bridge. Since this approach
considers each data source separately and designs a unique filter for each data collection device
within each car, it is robust against device and car features.

Keywords: inverse filter; bridge monitoring; smartphone; vehicle–bridge interaction; frequency
spectrum

1. Introduction

Recent technology developments have provided a great opportunity for efficient urban
management in order to overcome the challenges they face today. In this context, Smart City is
a concept to develop a city where smart sensing, computing, and communication technologies are
employed to improve the efficiency of the critical infrastructure components and services of a city [1–4].
Sustainability of a smart city is intertwined with its transportation infrastructure [5]. Hence, many
studies have focused on the applications of smart technologies in transportation infrastructure [6,7].

In a developed transportation network, bridges are key components and their dysfunctionality
results in major disruptions in the network [8,9]. A considerable portion of bridge structures in modern
countries have reached their design life and need to be monitored and retrofitted to remain in service.
For instance, Canadian Infrastructural Report Card [10] has estimated about 26% of bridges in Canada
to be in ‘fair’, ‘poor’, or ‘very poor’ condition. These bridges are under the risk of potential deterioration
and their stable structural performance relies on appropriate monitoring and maintenance operations.
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To this end, Structural Health Monitoring (SHM) techniques have been proposed and studied in the
literature [11].

Most conventional SHM methods use fixed sensors to collect data from bridges, such as [12–15].
Although the efficiency of these methods has been proven in many studies, employing such direct
SHM methods to a large number of bridges may not be feasible. Instrumentation of each bridge with
fixed sensors and creating a data collection network is costly and time-consuming, and cannot be
employed to all bridges in a wide metropolitan area. Hence, indirect bridge monitoring methods [16]
have been proposed through focusing on sensors placed in passing vehicles as moving sensors, which
makes it possible to monitor a large number of bridges at a global level without installing fixed sensors.

Indirect bridge monitoring concept was first proposed by Yang et al. [17] where the dynamic
analysis of vehicle–bridge interaction was performed for a simple 2D beam model as the bridge and a
moving mass-spring system as the vehicle. In that paper, they successfully extracted bridge frequency
from the vibration of the vehicle. Later on, many studies followed the path of indirect bridge monitoring,
which can be divided into analytical/numerical analyses [18–21], lab-scale experiments [22–24],
and real-life experiments [25,26]. These studies support the fact that the vibration of the passing vehicle
contains bridge dynamic response which can be extracted to evaluate bridge condition. Although
using dedicated sensors in vehicles provides valuable means of effective real-time monitoring of the
population of bridges within a city, an alternative way of employing indirect monitoring methods
using the smartphones of the passengers in the vehicles has also been proposed recently as discussed
in the following.

In the context of smart cities, smartphones equipped with many sensors—such as accelerometer,
gyroscope, GPS, etc.—are critical devices as they may provide valuable data. The high popularity of
smartphones makes it possible to create a dense data source through crowdsourcing methods.
For instance, smartphones have been employed as effective tools to estimate traffic incidents,
like congestions or accidents [27,28] or road conditions [29]. Recently, the application of smartphones in
indirect health monitoring has been the subject of many studies. Mei and Gül [30] used a smartphone
to detect multiple damage states on a lab-scale bridge model through an indirect damage detection
method. In another study, the possibility of capturing bridge frequencies using smartphones was
investigated by Matarazzo et al. [31] in a real-life experiment. In another study, authors [32] investigated
the robustness of indirect monitoring methods against vehicle features, such as suspension stiffness and
speed, by performing a lab-scale experiment. All these studies note that the vibration of the vehicle is
more dominated by vehicle features—such as suspension, mass, speed, etc.—than bridge frequencies.

Signal processing and filtering methods have been widely used in SHM and bridge engineering.
For instance, Ding et al. [33] employed an adaptive finite impulse response filter to study temperature
effects on bridges. In addition, using Kalman filter for bridge health monitoring was a subject of many
studies [34,35]. However, employing an appropriate filtering method in indirect bridge monitoring is
a challenge since every signal is recorded on a different device located on a different vehicle. Thus,
any effective filter resulting in bridge features when applied to the vibration data of the moving vehicle
needs to be unique to the vehicle and the device. This paper proposes inverse filtering method to
achieve this goal.

In general, inverse filters are designed to extract a specific feature from a noisy signal. In other
words, the signals in noisy conditions are used to create a filter which then can be applied to other
signals to remove the effect of the noise. Some of the first applications of inverse filtering were in voice
processing [36,37]. Later, it was used in other fields such as image processing in medical sciences [38]
and geophysics [39]. This study proposes an inverse filtering method for indirect monitoring of bridges,
which utilizes the vibration data recorded on the vehicle while moving off-bridge, i.e., moving on the
ground, to filter out car features from the vibration of the vehicle while moving on-bridge. Therefore,
each device on each vehicle will have a unique filter which is compatible with the features of the
device and the car, and makes it possible to be applied to population of devices to monitor bridges.
For simplicity, the proposed methodology considers similar conditions for off- and on-bridge tests,
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including surface roughness, mass and speed of the vehicle, orientation of the smartphone, etc. In the
following, first the methodology of the proposed signal processing and inverse filtering is explained.
Later, the experiment setup is demonstrated. Finally, the analysis results are discussed.

2. Methodology

In this section, first, the fundamental idea of vehicle–bridge interaction and its application to
bridge health monitoring is discussed. Afterward, the frequency-domain analysis applied to the
time-domain vibration signals is described. Subsequently, the process of designing and applying
inverse filtering technique is presented.

2.1. Vehicle–Bridge Interaction

When a vehicle is moving over a bridge, vibrations of vehicle and bridge are coupled due to the
dynamic interaction. In other words, the vibration recorded on the vehicle includes both the vehicle
and the bridge features. One of the earliest studies to investigate this concept was Yang and Yau [40].
They considered a simple 2D beam model as the bridge and a moving spring-mass system as the
vehicle. They derived the following coupled formulation{

m(x)u′′b (x, t) + E(x)I(x)u′′′b (x, t) = c(x, t)
mvu′′v (t) + kv[uv(t) − ub(x, t)] = 0

(1)

In Equation (1), vehicle-related parameters include x as the distance of the vehicle to the bridge
end, v as the speed of the vehicle, mv and kv as the mass and stiffness of the vehicle, and uv as the
vertical displacement of the vehicle relative to the initial position. Bridge-related parameters are m
as the distributed mass of the bridge per unit length, E and I as the elastic modulus and moment of
inertia of the bridge section, respectively, and ub as the vertical displacement of the bridge relative
to its equilibrium position. In addition, t denotes the time, c represents the contact force, and prime
notation shows the time-derivative function. Actually, the first equation represents the governing
dynamic equilibrium of the bridge, and the second one is of the vehicle. Equation (2) demonstrates
that the dynamic response of the vehicle is coupled with and include dynamic features of the bridge.
Therefore, it is possible to extract bridge characteristics from vehicle response using appropriate signal
processing techniques. Based on this fact, this study proposes a novel filtering method in indirect
health monitoring of bridges to extract the fundamental frequency of the bridge using acceleration
response of the vehicle. Next section focuses on the first step of the methodology, i.e., converting
time-domain acceleration signal to frequency-domain spectrum.

2.2. Frequency-Domain Analysis

In this research, in order to change time-domain acceleration signals to frequency-domain
spectrums, averaged discrete Fourier transform (ADFT) is applied. In this method, instead of
calculating the Fourier transform of the whole signal, small windows of the signal are transformed
separately and then the average of resulting spectrums is calculated. In order to explain ADFT in more
details, first consider discrete Fourier transform (DFT) equation as

X[k] =
N−1∑
n=0

a[n]e− j 2π
N kn (2)

in which a is the acceleration signal, N is the number of data points in the signal, and X denotes the
vector of DFTs, i.e., a complex vector containing amplitude and phase values. Also, index k represents
step frequencies through the equation

fk =
k
N

fs for 0 ≤ k ≤ N − 1 (3)
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where fs is the sampling frequency of the acceleration signal. Applying Equation (2) to the entire
acceleration signal leads to an extremely fluctuated spectrum, which is not suitable for filter design.
On the other hand, if the signal is divided into multiple windows and DFT process is separately applied
to each window, followed by averaging all the spectrums, the resulting spectrum will be smoother.
These segments are selected through applying a window function to the raw signal. A plethora of
window functions is proposed for selecting sub-signals in the literature [41]. Here, the Hamming
window is considered as follows

w[n] = 0.54 + 0.46 cos
2πn

Nw − 1
for |n| ≤

Nw − 1
2

(4)

In Equation (4), Nw is the number of terms of the window, representing window length. Note
that selected windows are not mutually exclusive to account for the effect of the transition resulting in
an overlap between windows of the signal. Therefore, the ADFT of the signal is calculated through
the equation

X[k] =
1
M

M∑
m=1

N−1∑
n=0

wm[n]a[n]e− j 2π
N kn (5)

In Equation (5), wm is the function for mth window and M is the total number of windows
calculated through

M = 1 +
N −Nw

(1− p) ·Nw
(6)

where p is the overlap percentage of the windows. Figure 1 illustrates the resulting FFT and ADFT
spectrums of an acceleration signal recorded on the robot car. As seen, ADFT spectrum is smoother
and more appropriate for filter design and peak analysis. The resulting ADFT spectrums are used to
design the inverse filter which is explained in the next section.
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2.3. Inverse Filter

In this paper, a novel method of filtering is proposed based on the comparison of off-bridge
and on-bridge acceleration signals. In fact, most of the frequency content of the recorded signals are
dominated by moving car features, like speed, suspension, weight, engine vibrations, etc. These effects
are present in both off-bridge and on-bridge data. However, bridge frequency is only expected to
appear in the on-bridge data. Hence, if a filter is designed to remove major frequency content of
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the off-bridge data, and then applied to the on-bridge data, it is expected that the filtered on-bridge
data will contain mostly frequencies related to the bridge dynamics. For more clarity, consider the
hypothetical spectrum of the off-bridge and on-bridge signals as illustrated in Figure 2 using black
and red curves, respectively. These curves are created using cubic polynomials. It is expected that the
major peaks of the off-bridge spectrum will be present in the on-bridge one. However, if the frequency
of the bridge is not close to the major frequencies of the car, there will be an unexpected change in the
amplitude of the spectrum at a specific frequency, as seen in Figure 2. This relatively small change may
not be considered as a peak in the on-bridge spectrum; while after applying the inverse filtering, this
peak will become more visible.
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m
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d

e 

 
 Frequency 

 Figure 2. Hypothetical spectrum of off-bridge (black) and on-bridge (red) acceleration signals.

In order to design the filter shape, the off-bridge spectrum is considered. As discussed in the
previous section, ADFT is used to convert the time-domain off-bridge signal to the frequency domain.
The proposed windowing and averaging technique ensures that a sudden external factor, such as a
sharp road defect, which drastically alters the shape of the spectrum of a single window, does not affect
the total shape of the resulting averaged spectrum. Afterward, the spectrum is inverted to form the
filter shape prototype using the equation

F̃[k] =
1

X[k]
(7)

where X denotes the ADFT spectrum of the off-bridge signal and F̃ represents filter shape prototype.
In Figure 3, the black curve shows the hypothetical ADFT of the off-bridge signal, and the blue curve
represents its inverse, which would be the prototype for the inverse filter. As expected, the filter shape
amplifies the frequencies with low amplitude in the off-bridge spectrum and suppresses those with
higher amplitudes, i.e., peaks, in the off-bridge spectrum.
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 Figure 3. Hypothetical spectrum of the off-bridge signal (black) and corresponding filter shape
prototype (blue).

In order to apply the inverse filter to the on-bridge spectrum, filter shape prototype needs
to be scaled. Since filter prototype was designed based on the pure inverse function, it will scale
all amplitudes to one, which is not a meaningful scale for acceleration amplitudes. Furthermore,
the amplitude level of the on-bridge signal may be different than that of the off-bridge because of the
external factors, like surface roughness or road defects. Here, the mean value of the spectrum as a
measure of the energy level within the signal is considered for scaling, which is calculated by

Y =

N−1∑
0

Y[k]

N
(8)

where Y denotes the mean value of the off-bridge spectrum. Therefore, the inverse filter shape will
follow this equation

F[k] =
(
Y
)
F̃[k] =

(
Y
)

X[k]
(9)

The filter in Equation (9) can be applied to the on-bridge spectrum to form the filtered spectrum

Y f [k] = F[k]Y[k] =

(
Y
)

X[k]
Y[k] (10)

in Equation (10), Yf[k] denotes the filtered spectrum. Figure 4 demonstrates the application of this
procedure to the hypothetical spectrums in Figures 2 and 3, where the red curve represents the
unfiltered on-bridge spectrum and the blue curve shows the filtered spectrum. As seen, the resulting
filtered spectrum has one major peak at the frequency of the deviation in amplitudes of off- and
on-bridge spectrums. Although there might be some fluctuations at other frequencies, the major peak
with significantly higher amplitude and prominence expresses the desired frequency of the target.
The flowchart of the proposed method is presented in Figure 5. In the next section, the proposed
method is applied to experimental data for verification.
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3. Experimental Setup

In this section, the details of the experimental setup and instrumentation are introduced. First,
the bridge model is described. Then, the robot-car, used as the moving vehicle, is explained. Finally,
the data collection instruments employed in the experiment are presented.

3.1. Bridge Model

In this study, a simply-supported bridge which consists of one steel plate as the deck and two
supports of pin and roller is considered, as shown in Figure 6. Steel plate is hot rolled of type W44,
which has the modulus of elasticity of 200 GPa, yield strength of 250 MPa, and ultimate strength of
310 MPa. The plate is 2 m long, 330 mm wide, and 12.7 mm thick. The weight of the plate is 60 kg. Here,
one pin support and one roller support are employed to carry the steel deck. In Figure 7, the pin-roller
support structure is illustrated. The structures of both support types are similar, except that the pin is
prevented from moving horizontally while the roller is free to move. Furthermore, an approaching
span is also connected to the main span, used for the first few seconds that the car accelerates and
reaches the constant target speed. Likewise, another plate is used at the end of the bridge, letting
the car leave the bridge at the target constant speed and then stop. An additional small thick plate is
placed between the main span plate and the supports to prevent any contact of approaching or end
spans with the main span and hence providing free rotation for supports.
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3.2. Robot Car Model

In this study, a robot car was designed and built as shown in Figure 8. This car consists of two
identical rectangular aluminum plates of 350 mm by 125 mm with a thickness of 3.1 mm. These two
plates are connected to each other by four aluminum rods with the radius of 4 mm and length of 15 cm.
Four springs are used together with aluminum rods to account for the suspension system of the car.
In this experiment, three spring types with stiffness values of 425, 615, and 726 N/m are employed,
which are herein referred to as A, B, and C, respectively, as shown in Figure 9. In addition, three
different car speeds of 0.2, 0.3, and 0.4 m/s are considered in this experiment.

The motor and the wheels are connected to the bottom plate. Each wheel is powered through
a separate motor, all controlled by the main board on the car. The total weight of the car is 2.3 kg,
consisting of 1 kg of the top plate, including the smartphone, the wireless sensor, and added masses, and
1.3 kg of the remaining parts connected to the bottom plate. It should be noted that the 3.8% mass-ratio
of car to bridge in this experiment is larger than most real-life cases, which relatively amplifies bridge
vibrations. However, since usually in real-life cases there are many cars simultaneously traveling over
the bridge, the amount of the induced vibration in the bridge in this experiment due to a single passing
car could be comparable to reality. Furthermore, this larger mass-ratio adds an extra challenge to the
frequency identification of the bridge model in the experiments as it alters the combined frequency of
the car-bridge system.
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3.3. Instruments

To collect the acceleration data from the robot car, one smartphone, Samsung Galaxy S8, is attached
to the top plate, as seen in Figure 8. The acceleration data is recorded with 400 Hz sampling frequency
by using an android app previously developed and used in [30], which records the global vertical
acceleration by using the accelerometer of the smartphone in combination with the gyroscope and
the magnetometer. This app also applies sampling frequency correction to the recorded data, which
is not considered in most similar commercial apps. In order to have a benchmark for comparison,
one G-Link©-200 wireless accelerometer is connected to the top plate beside the smartphone, as seen
in Figure 8, and used to record the acceleration with 512 Hz sampling frequency.

4. Analysis

In this section, the proposed inverse filtering-based method is applied to the data collected in
the experiments. First, the off-bridge data is collected and the inverse filter prototype is developed
for each case. Later, the filter is verified by applying it to the off-bridge data. Finally, the filter is
applied to the on-bridge data in order to identify the fundamental bridge frequency. Note that car
speeds of 0.2, 0.3, and 0.4 m/s with the spring stiffness values of 425, 615, and 726 N/m are employed
in the experiments, resulting in total nine cases. Besides, since the lengths of recorded acceleration
signals vary between 4 to 8 s, a 3 s Hamming window with 75% overlap is considered in ADFT process.
Furthermore, to increase the frequency resolution of the ADFT spectrum, all windows are zero-padded
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to 10 s, resulting in a 0.1 Hz resolution in the ADFT spectrum. In addition, the acceleration signals
from the smartphone are resampled with the similar 400 Hz frequency using interpolation before
applying ADFT. Resampling provides consistent sampling intervals between recorded data points
since the raw data recorded on smartphones are not perfectly consistent and the intervals deviate from
the pre-set value. Although the android application developed in the authors’ research group [30]
significantly improves the stability of sampling frequency, resampling provides more accuracy in
calculations. One sample of the recorded acceleration signals using the sensor and the smartphone are
presented in Figure 10. These signals are recorded during the off-bridge test which will be discussed in
the next section. As seen, there are some differences between the sensor and the smartphone recorded
signals which are due to the placement of the accelerometer inside the smartphone and the vibration
of the whole device. However, as will be discussed later, the proposed inverse filtering technique is
robust against device features.
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4.1. Filter Design

First, the car moves on the ground to simulate the off-bridge condition. To this end, a 2 m steel
plate similar to the steel deck was put on the ground to mimic the surface condition of the bridge.
Since the plate may still vibrate due to imperfections of the floor surface, two masses were used at both
ends of the plate to restrain it from any flexural vibration, as seen in Figure 11. The total duration of
the off-bridge signal varied between 4 to 8 s for the three speed cases. Therefore, in order to reduce the
local effects of the beam and account for longer duration signals, three trials of off-bridge data were
collected in this part. ADFT spectrums of the acceleration data recorded by sensor and smartphone
are shown in Figures 12 and 13, respectively. These figures consist of three rows and three columns
representing different speeds and suspension stiffness values. In each plot, trials are illustrated using
gray curves and their average is shown with the black curve. As seen, major peaks which are mainly
due to motor vibration and moving frequency of the car are mostly dependent on the speed of the car.
In addition, an increase in the speed results in higher amplitude for major frequencies. As expected,
the data recorded on the sensor show higher resolution with respect to the smartphone due to the
higher accuracy of the device, resulting in capturing low-frequency harmonics with higher accuracy.
However, the smartphone is successful in capturing major peaks, which are the focus of the proposed
method. In fact, the designed filter for each device will be based on the spectrum of that device and
thus will be unique.
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Figure 12. ADFT spectrums of off-bridge signals recorded by sensor.

As explained in the preceding sections, the off-bridge spectrum is used to form the inverse filter
prototype, which is illustrated in Figures 12 and 13 for the sensor and smartphone data, respectively.
As seen, filter shapes are amplifying low-amplitude frequencies in off-bridge spectrums and suppressing
those of high-amplitude. However, as illustrated in Figures 14 and 15, filter shapes of sensor and
smartphone have major differences which makes it impossible to use a general filter for all devices
even in a similar car. In fact, this is one of the major advantages of the proposed method that considers
each device in each car as a separate data source and creates a unique filter for it. In addition, it can
be seen that the order of the amplitudes of the filter prototypes, i.e., y-axis values in Figures 14
and 15, are inverse of the order of off-bridge spectrum amplitudes, i.e., y-axis values in Figures 16
and 17. Thus, it seems reasonable to scale the filter before applying to the on-bridge spectrum to avoid
numerical problems.
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Figure 16. Unfiltered (gray) and filtered (black) spectrums of off-bridge data collected by sensor.
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Figure 17. Unfiltered (gray) and filtered (black) spectrums of off-bridge data collected by smartphone.

4.2. Filter Verification

Before applying the inverse filter to the on-bridge data, the performance of the filter is verified by
applying it to unseen off-bridge data, i.e., new off-bridge data that was not used in the filter development
phase. It is expected that the designed filter should remove all major car-related frequencies from
the spectrum and no major preference should be present between the frequencies in the filtered
off-bridge spectrum. To this end, unfiltered and filtered spectrums of off-bridge acceleration signals
are shown in Figures 16 and 17 for the sensor and smartphone data, respectively. In these figures, the
original unfiltered spectrums are illustrated by gray curves and the filtered ones are in black. As seen,
the filtered data are almost considered as the white noise with no major peaks, which verifies the
successful performance of the inverse filter in removing car-related frequency content. In addition,
the performance of the filter is stable for all combinations of speed and suspension stiffness which
proves the robustness of the proposed method. As expected, the performance of the filter is stronger
using the sensor and filtered spectrums have lower variations. However, Figure 17 demonstrates
that the filter designed by smartphone-collected data is capable of eliminating most of the major
car-related frequency content, which would be used to detect any external frequency content when
another vibration source, specifically bridge data, is added to the signal.

4.3. Filter Application

In this section, the car moves over the bridge and the developed inverse filters are applied to
the collected acceleration signals, i.e., on-bridge signals. Figure 18 shows the unfiltered and filtered
spectrums of on-bridge signals in black and red curves, respectively, for sensor-collected data, while
Figure 19 shows the same for the smartphone data. In these figures, a frequency range of 0–20 Hz
are considered to focus on the fundamental frequency of the bridge. In addition, the fundamental
frequency of the bridge is marked with black dashed lines in both figures. This frequency was identified
by a separate test through applying initial displacement at the center of the bridge and recording
and analyzing the responding free vibration of the bridge. As seen, filtered spectrums, shown with
red curves, amplify the fundamental frequency of the bridge, while detecting the frequency of the
bridge among all other peaks is challenging through unfiltered spectrums, shown with black curves.
In addition, comparing Figures 18 and 19 demonstrates that the smartphone with lower accuracy
performs similarly in detecting the fundamental frequency of the bridge comparing to the sensor.
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The reason is that the inverse filter was designed based on the performance of the device and hence
eliminated device errors. Furthermore, considering different combinations of speed and suspension
stiffness evidences the robustness of the proposed methodology against car features. Since the duration
of the signals was relatively short in this experiment, i.e., 4–6 s, recorded data may not be able to
model the general pattern of the spectrum. It is expected that in real-life conditions, longer signals may
improve the performance of the ADFT spectrum and the resulting inverse filter. However, it is also
acknowledged that more challenges will be added to the problem in such real-life applications, e.g.,
surface roughness or speed changes between off-bridge and on-bridge conditions, which are not in the
scope of this paper.
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The experimental results illustrated in Figures 18 and 19 provide further insight toward indirect
monitoring of bridges using frequency analysis of the passing vehicle. For instance, lower speeds
provide longer recorded signals, which results in an enriched spectrum with more bridge-vehicle
content than higher speeds. Comparing each row of Figures 18 and 19 shows that the presence of
the bridge frequency in the spectrums are stronger at the first rows for lower speeds, while at higher
speeds, especially third rows, bridge frequency presence is faded. Furthermore, the accuracy of the
sensor in recording acceleration signals yields closer frequencies to the exact bridge frequency as
seen in Figure 18. However, smartphone results show more shifted frequencies in Figure 19, which
could be improved in future studies. In addition, it should be noted that there are small harmonic
peaks emerged in the filtered spectrums of both the sensor and the smartphone, which are due to the
inconsistency in the speed of the robot car among off-bridge and on-bridge conditions. The speed
of the robot car in this experiment is controlled through the voltage of the motor and the voltage
value is kept constant during each experiment, which would warrant constant speed on a flat surface.
However, the deformation of the bridge deck affects the speed of the robot car, unlike the off-bridge
condition where the surface is perfectly flat. Since the current methodology does not account for the
effect of the speed change of the car, harmonics of the altered speed emerge as new peaks in the filtered
spectrums, even though they are not significant enough to shadow the bridge frequency.

In order to quantify the performance of inverse filtering method on bridge frequency identification,
a peak scoring analysis is conducted based on amplitude and prominence using MATLAB.
The prominence of a peak is defined to measure how the peak stands out with respect to other
adjacent peaks considering its intrinsic height and location. The prominence of an isolated peak with a
low amplitude may be higher than another peak that has a larger amplitude but is among a range of
tall peaks. On the other hand, two peaks with similar prominence values but with a notable amplitude
difference are not equally significant in a spectrum. Hence, both the prominence and amplitude are
considered in the scoring criterion of this study. For each spectrum, the prominence and amplitude
scores of all peaks are scaled out of 100. Then, the scores are averaged among all passes of the car over
the bridge. For simplicity, the smartphone data are considered for peak analysis. The histogram plots
of the peak analysis are provided in Figures 20 and 21 for unfiltered and filtered spectrums, respectively.
In both plots, the fundamental frequency of the bridge is shown with vertical dashed lines. As seen,
considering different cars passing over the bridge at different speeds, the filter can almost double the
chance of detecting the frequency of the bridge correctly. In fact, for the performed lab experiments in
this paper, 100% of the time, the peak with the maximum amplitude and the maximum prominence
was the fundamental bridge frequency. It should be noted that due to the moving frequency of the
bridge and also the effect of the car mass in this experiment, the frequency of the bridge is shifted,
and the amount of the shift and its sources are not in the scope of this paper.
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5. Conclusions

This paper proposes a methodology for identifying the fundamental frequency of a bridge by
using acceleration signals recorded on cars passing over the bridge. While most studies focus on
processing on-bridge data alone, this study suggests the application of off-bridge signals to filter
the on-bridge data. The spectrum of the off-bridge data is used to design a specific inverse filter
which then could be applied to the on-bridge data. This way, the frequency content of the car is
expected to be removed from the on-bridge data, leaving those of the bridge. In order to verify the
performance of the methodology, a lab-scale experiment—including a robot car and a simply-supported
bridge—was performed considering nine combinations of speed and suspension stiffness values.
The main highlights and outcomes of this paper can be listed as: (1) for the first time in the literature,
an inverse filtering-based method for indirect frequency identification of bridges is developed; (2) the
experiment results demonstrate that inverse filtering provides promising results in suppressing
car-related frequencies and amplifying bridge frequency; (3) the filter is designed for each device
in each car separately and thus is robust against their features and there is no need to consider
the properties of the car or data-collecting devices; (4) the results show that although smartphones
have relatively lower accuracy than standalone accelerometers, the proposed inverse filter is able to
overcome such challenges by designing unique filter based on the accuracy of the device.

It is expected that as long as the fundamental frequency of the bridge is not close to major
frequencies of the car, the filter would be able to successfully extract the frequency of the bridge. In a
real-life situation with a variety of cars with different frequencies passing over the bridge, this method
is expected to be practical once employed to a large crowdsourced data. Furthermore, the proposed
inverse filtering approach is efficient when the speed of the car and the surface roughness level are
similar in the off-bridge and on-bridge conditions. Both factors significantly affect the pattern of the
acceleration spectrum recorded on the car and their effect should be investigated in future studies in
order to achieve a general inverse filtering technique.

Author Contributions: Conceptualization, M.G.; Data curation, N.S.-G.; Formal analysis, N.S.-G.; Funding
acquisition, M.G.; Investigation, M.G.; Methodology, N.S.-G.; Project administration, M.G.; Resources, M.G.;
Supervision, M.G.; Validation, N.S.-G.; Visualization, N.S.-G.; Writing—original draft, N.S.-G.; Writing—review
and editing, M.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the corresponding author’s Natural Sciences and Engineering Research
Council of Canada (NSERC) Discovery Grant.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Angelidou, M.; Psaltoglou, A.; Komninos, N.; Kakderi, C.; Tsarchopoulos, P.; Panori, A. Enhancing sustainable
urban development through smart city applications. J. Sci. Technol. Policy Manag. 2018, 9, 146–169. [CrossRef]

2. Martin, C.J.; Evans, J.; Karvonen, A. Smart and sustainable? Five tensions in the visions and practices of
the smart-sustainable city in Europe and North America. Technol. Forecast. Soc. Chang. 2018, 133, 269–278.
[CrossRef]

http://dx.doi.org/10.1108/JSTPM-05-2017-0016
http://dx.doi.org/10.1016/j.techfore.2018.01.005


Sensors 2020, 20, 1190 18 of 19

3. Gomes, E.H.; Dantas, M.A.; Macedo, D.D.D.; Rolt, C.R.D.; Dias, J.; Foschini, L. An infrastructure model for
smart cities based on big data. Int. J. Grid Util. Comput. 2018, 9, 322. [CrossRef]

4. Silva, B.N.; Khan, M.; Han, K. Towards sustainable smart cities: A review of trends, architectures, components,
and open challenges in smart cities. Sustain. Cities Soc. 2018, 38, 697–713. [CrossRef]

5. Bătăgan, L. Smart Cities and Sustainability Models. Inform. Econ. 2011, 15, 80–87.
6. Glancy, D.J. Sharing the road: Smart transportation infrastructure. Fordham Urban Law J. 2013, 41, 1617–1664.
7. Balaji, A.K.; Soori, P.K. Sustainable Transportation Infrastructure for Smart Cities in the Gulf Cooperation

Council: The Case of Electric Vehicle Charging. In Smart Cities in the Gulf ; Springer: Singapore, 2018;
pp. 107–121.

8. Mondoro, A.; Frangopol, D.M.; Soliman, M. Optimal Risk-Based Management of Coastal Bridges Vulnerable
to Hurricanes. J. Infrastruct. Syst. 2016, 23, 04016046. [CrossRef]

9. Dong, Y.; Frangopol, D.M.; Saydam, D. Sustainability of highway bridge networks under seismic hazard.
J. Earthq. Eng. 2014, 18, 41–66. [CrossRef]

10. Canadian Infrastructural Report Card 2016. Available online: https://fcm.ca/en/resources/canadian-
infrastructure-report-card-2016 (accessed on 20 February 2020).

11. Wenzel, H. Health Monitoring of Bridges; John Wiley & Sons: Hoboken, NJ, USA, 2008.
12. Gul, M.; Catbas, F.N. Statistical pattern recognition for Structural Health Monitoring using time series

modeling: Theory and experimental verifications. Mech. Syst. Signal Process. 2009, 23, 2192–2204. [CrossRef]
13. Gul, M.; Catbas, F.N. Structural health monitoring and damage assessment using a novel time series analysis

methodology with sensor clustering. J. Sound Vib. 2011, 330, 1196–1210. [CrossRef]
14. Noel, A.B.; Abdaoui, A.; Elfouly, T.; Ahmed, M.H.; Badawy, A.; Shehata, M.S. Structural Health Monitoring

Using Wireless Sensor Networks: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2017, 19, 1403–1423.
[CrossRef]

15. Kaya, Y.; Ventura, C. Seismic structural health monitoring of bridges in British Columbia, Canada. In Springer
Tracts in Civil Engineering; Springer: Berlin/Heidelberg, Germany, 2019; pp. 31–49.

16. Malekjafarian, A.; McGetrick, P.J.; Obrien, E.J. A review of indirect bridge monitoring using passing vehicles.
Shock Vib. 2015, 2015, 286139. [CrossRef]

17. Yang, Y.B.; Lin, C.W.; Yau, J.D. Extracting bridge frequencies from the dynamic response of a passing vehicle.
J. Sound Vib. 2004, 272, 471–493. [CrossRef]

18. Hattori, H.; He, X.; Catbas, F.N.; Furuta, H.; Kawatani, M. A bridge damage detection approach using
vehicle–bridge interaction analysis and neural network technique. In Proceedings of the Bridge Maintenance,
Safety, Management, Resilience and Sustainability, Stresa, Italy, 8–12 July 2012; p. 376.

19. Keenahan, J.; OBrien, E.J.; McGetrick, P.J.; Gonzalez, A. The use of a dynamic truck-trailer drive-by system to
monitor bridge damping. Struct. Health Monit. 2014, 13, 143–157. [CrossRef]

20. OBrien, E.J.; Malekjafarian, A.; González, A. Application of empirical mode decomposition to drive-by
bridge damage detection. Eur. J. Mech. A/Solids 2017, 61, 151–163. [CrossRef]

21. Hester, D.; González, A. A discussion on the merits and limitations of using drive-by monitoring to detect
localised damage in a bridge. Mech. Syst. Signal Process. 2017, 90, 234–253. [CrossRef]

22. Zhang, Y.; Lie, S.T.; Xiang, Z. Damage detection method based on operating deflection shape curvature
extracted from dynamic response of a passing vehicle. Mech. Syst. Signal Process. 2013, 35, 238–254.
[CrossRef]

23. Cerda, F.; Chen, S.; Bielak, J.; Garrett, J.H.; Rizzo, P.; KovaČević, J. Indirect structural health monitoring of a
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