
sensors

Article

Integrated Avoid Collision Control of Autonomous
Vehicle Based on Trajectory Re-Planning and V2V
Information Interaction

Fen Lin *, Kaizheng Wang, Youqun Zhao and Shaobo Wang

College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016,
China; kzwang.nuaa@gmail.com (K.W.); yqzhao@nuaa.edu.cn (Y.Z.); shaobo@nuaa.edu.cn (S.W.)
* Correspondence: flin@nuaa.edu.cn

Received: 31 December 2019; Accepted: 12 February 2020; Published: 17 February 2020
����������
�������

Abstract: An integrated longitudinal-lateral control method is proposed for autonomous vehicle
trajectory tracking and dynamic collision avoidance. A method of obstacle trajectory prediction
is proposed, in which the trajectory of the obstacle is predicted and the dynamic solution of the
reference trajectory is realized. Aiming at the lane changing scene of autonomous vehicles driving in
the same direction and adjacent lanes, a trajectory re-planning motion controller with the penalty
function is designed. The reference trajectory parameterized output of local reprogramming is
realized by using the method of curve fitting. In the framework of integrated control, Fuzzy adaptive
(proportional-integral) PI controller is proposed for longitudinal velocity tracking. The selection and
control of controller and velocity are realized by logical threshold method; A model predictive control
(MPC) with vehicle-to-vehicle (V2V) information interaction modular and the driver characteristics is
proposed for direction control. According to the control target, the objective function and constraints
of the controller are designed. The proposed method’s performance in different scenarios is verified by
simulation. The results show that the autonomous vehicles can avoid collision and have good stability.

Keywords: autonomous vehicle; avoidance collision control; trajectory re-planning; obstacle trajectory
prediction; V2V

1. Introduction

The autonomous vehicle is an emerging technology that provides a safe and efficient transportation
experience. As part of the intelligent transportation system, it has a very wide application prospect [1,2].
The autonomous vehicle refers to a class of vehicles that can carry out sensing and decision-making,
track planning, and tracking. Trajectory tracking control is the basic problem and necessary condition
of autonomous vehicle research [3]. Due to the application of advanced sensing technology and the
development of vehicle state estimation algorithm, the state information of the vehicle becomes more
observable and more accurate, such as tire force conditions, sideslip angle, yaw rate, which are closely
related to vehicle handling stability [4–6], even the coefficient of friction of tires [7].

There has been a great deal of research on path planning and tracking control algorithms, such as
inverse kinetic compensation feedback control [8], the optimization algorithm based on the sampling
fusion and quadratic programming model [9], the linear combination method using weighted cost
function [10], integrated local path planning and tracking control [11], using non-linear programming
model [12] and so on. As the vehicle has its own mechanical structure, stability, driver handling
capacity and other restrictions, it is not easy to apply these methods directly to the collision scene of the
vehicle. Therefore, for the path planning problems, the movement states of other vehicles need to be
considered to solve the collision problem on the road. In order to improve the active safety performance
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of the vehicle and reduce the occurrence rate of rear-end collision accident, research and development
of high-performance vehicle collision avoidance system has become an urgent need. Auto active
collision avoidance system which using modern information and sensing technology to obtain outside
information takes a various information of vehicle and traffic into account to identify the collision risk.
The path planning of the vehicle obstacle avoidance system is to establish a collision-free trajectory.
The geometric characteristics of the obstacle and the movement constraints of the autonomous vehicle
are considered [13]. Literature [14] proposed a comprehensive autonomous vehicle collision avoidance
system framework, using an improved harmonic velocity potential method for path planning, and
using fuzzy adaptive module to maintain a safe distance. The simulation and verification of the
method are carried out in the curve scene with low traffic flow. In literature [15], a framework is
proposed to keep the collision-free path planning and tracking. The trigonometric function of the
road and the exponential function of the obstacle are constructed by the three-dimensional virtual
dangerous potential field, and the path is tracked by the multi-constrained model predictive control
(MMPC). In the literature [16], an alternative control framework for integrated local path planning and
path tracking using Model Predictive Control (MPC) is proposed. The two packages are proposed for
vehicle stability and obstacle avoidance functions, respectively, and have been successfully tested on
the test vehicle. In the literature [17], a rolling time domain control method for autonomous vehicle
obstacle avoidance motion planning in uncertain dynamic environment is proposed. This method
deals with perturbation effects and input and state constraints based on the structure of set theory.
The goal of any collision avoidance system is to design a control algorithm to avoid an imminent
accident. Longitudinal control (emergency braking) and lateral control (active steering) are possible
ways to avoid collisions. The longitudinal control method is limited by the longitudinal distance
between the vehicles, in which case the active lateral movement is more appropriate to avoid obstacles.

In order to achieve the obstacle avoidance function, the autonomous vehicle needs to obtain the
obstacle information through detectors such as radar detectors. Before lane change, it is necessary
to expand the distance from the obstacle to avoid the collision. In the implementation of obstacle
avoidance function, there are several ways to control the front wheel angle and the velocity of the
vehicle to choose. In this paper, the driving characteristics of the driver are added to the controller
n-order to meet the manipulation of human drivers and habits. A trajectory re-planning controller is
constructed by using the 5-order polynomial fitting algorithm.

With the development of vehicle-to-vehicle (V2V) communication technology, drivers, vehicles
and road information can be shared between vehicles [18]. The intention of the driver, the state
information of the vehicle such as sideslip angle, intersection lights, and road condition information
are available. Therefore, more information is used to ensure the safety of the vehicle. In addition to
the state of the vehicle itself, other vehicle states and road information are required to achieve safe
driving [19,20]. In recent years, obstacle avoidance algorithms based on V2V communication have been
widely studied. In literature [21], the vehicle information network is established to obtain the vehicle
states during the lane change. Using the information to establish the vehicle dynamics model, calculate
the expected acceleration value to control the vehicle throttle and brake pedal, in order to achieve the
road on the road when the vehicle collision avoidance. In literature [22], from the point of view of
driving comfort, through the vehicle communication system, the front vehicle information is obtained to
calculate the ideal vehicle spacing, and complete the cooperative initiative collision avoidance with the
method of allocating acceleration to the front and rear vehicles. In literature [23], a cooperative collision
avoidance system (CCA) based on V2V communication system is proposed, which can effectively avoid
the collision and ensure the driver’s comfort. In literature [24], a decentralized autonomous vehicle
collaborative transformation lane decision framework is proposed. The influence of decision frame
on traffic stability, efficiency, uniformity, and safety was studied. In summary, with the continuous
development of Cooperative Vehicle Infrastructure System (CVIS), information of driver, vehicle and
road can be shared between vehicles. Based on the information interaction between vehicles, it is a
trend to realize vehicle trajectory tracking and active collision avoidance by optimal processing of
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intelligent algorithm. However, in most articles, only the information of vehicle obtained from V2V
communication at the moment k is used as obstacle avoidance information, ignoring the collision risk
that the vehicle still has at the moment k + 1. In this paper, the vehicle information interactive model
is presented, so that more interactive information is used to optimize trajectory planning. With the
information interaction model presented, the vehicle real-time position information and its predicted
trajectory can be used as reference obstacle information to realize dynamic obstacle avoidance.

Nonlinearity, time variability is a typical feature of autonomous vehicles [25]. MPC has low
accuracy requirements for the model and it is very robust to the time-varying characteristics of the
system model [26]. At the next moment, if the longitudinal position and lateral position of the vehicle
can be predicted, the risk of collision can be effectively reduced. Predicting the location of a vehicle
requires a large amount of information to be processed at the same time, including driver’s intent,
vehicle states, environmental states, various restrictions, and path planning. MPC can effectively solve
the multi-objective optimization problem while effectively reducing the burden of calculation [27–29].
In this paper, The MPC controller is proposed to process the vehicle interactive information. That is,
the state information of the two vehicles is processed by the MPC controller at the same time to realize
the path tracking and active collision avoidance of the autonomous vehicle.

The contributions of this paper mainly include (1) an integrated avoid collision control framework
is proposed for autonomous vehicle to solve the safety problem of adjacent lane exchanging vehicles.
The interactive information is obtained by the vehicle as the state variables of the controller. (2) A
moving obstacle trajectory prediction algorithm is presented. The obstacle avoidance function is
realized by the trajectory re-planning controller embedded in driver’s characteristics. (3) An MPC is
proposed as a lateral controller, and the fuzzy adaptive PI control algorithm is proposed for longitudinal
control of the vehicle to achieve multi-objective problem optimization and obstacle avoidance function.

The rests of this paper are organized as follows. In Section 1, the vehicle model, driver model to
form the system dynamic model are described. Obstacle trajectory prediction model is also presented.
In Section 2, the main contributions of this paper, including the trajectory re-planning control framework
for lane exchanging of two vehicles, the fuzzy adaptive PI longitudinal controller design and analysis
to enable the accurate velocity tracking, the MPC with V2V information interaction modular and
the driver characteristics is proposed for direction control. In Section 3, the proposed method’s
performance in different scenarios are verified according simulation. These scenarios include different
initial vehicle distances, vehicle constant velocity, and variable velocity. The conclusions are presented
in Section 4.

2. System Modeling

In this section, the vehicle model, the driver model, and the moving obstacle trajectory prediction
model are described. The vehicle model and the driver model are integrated to establish a nonlinear
dynamic model considering the drivers’ handling characteristics. In the following model, the superscript
i = p, q is used to represent the two vehicles with different states, respectively. The multi-vehicle
interactive state information is processed by the vehicle p, and the interactive state information is
supplied by the vehicle q.

2.1. Vehicle Model

It is of great significance to establish a suitable vehicle dynamics model for the MPC controller [30].
Simplifying the vehicle dynamics model not only reflects the basic dynamic characteristics of the
vehicle, but also ensures the real-time performance of the control algorithm. A bicycle model, as shown
in Figure 1, is used to describe the dynamics of the two vehicles, including longitudinal, yaw, and
lateral motions [31].

Assuming that the front tire steering angle is small and the dynamics and parameters of the two
vehicles are the same. In the global coordinates oxy, Fx f and Fxr are the longitudinal forces acting on

the front and rear tires, respectively.
.
xi and

.
yi are the longitudinal and lateral velocity of the vehicle,
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respectively. l f and lr are the distance from the center of gravity of the vehicle to the front and rear

axles, respectively.
.
ϕ

i is the yaw rate of the vehicle. m is the vehicle mass. IZ is the yaw moment of
inertia of the vehicle.
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From Figure 1, dynamics of the vehicle can be described as follows:
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In the process of vehicle lane change, the direction angle of the vehicle is very small, that is to
meet the following approximate conditions, cos(

.
ϕ

i
) ≈ 1, sin(

.
ϕ

i
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.
ϕ
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X

i
=

.
xi
−

.
yi .
ϕ
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.
Y

i
=

.
xi .
ϕ

i
+

.
yi (5)

where
.

X
i
and

.
Y

i
are longitudinal and lateral positions of the vehicle along the global coordinates, X and

Y, respectively.
The front and rear lateral tire forces can be written as the functions of the tire slip angles described

as follows:
Fi

y1 = Cc fα
i
1 Fi

y2 = Ccrα
i
2 (6)

where Cc f and Ccr are the front and rear tire cornering stiffness and α1 are α2 the front and rear tire
slip angle.

αi
1 = δi

f −
l f

.
ϕ

i

.
xi − β

i αi
2 =

lr
.
ϕ

i

.
xi − β

i (7)

where δi
f is the front wheel steering angle and the vehicle side slip angle, βi =

.
yi/

.
xi.

The front and rear longitudinal tire forces can be written as the functions of the tire slip rate
described as follows:

Fi
x1 = Cl f si

1 Fi
x2 = Clrsi

2 (8)

where Cl f and Clr are the front and rear tire longitudinal stiffness and si
1 are si

2 the front and rear tire
slip rate.

2.2. Human Driver Model

The driver model is essentially a physical equation that simulates the driver’s behavior. In the
study of the driver-vehicle system closed-loop system, the driver plays a “controller” role and the
driver adjusts the direction according the characteristics. In this paper, the driver model and the vehicle
model are integrated to establish the driver-vehicle closed-loop system. The young and aged driver’s
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handling characteristics, including advance time, delay time, and steering wheel angle ratio, are
evaluated, and the driver handling characteristics can be characterized by these parameters [32]. The
basic driver model is considered to be a proportional and differential controller with a delay element
and attempts to minimize the difference between the vehicle trajectory and the desired trajectory. The
applicable steering wheel angle for representing the driver’s steering characteristics is described as
follows [32]:

δi
h =

Gi
h(1 + τi

hs)

1 + Ti
hs

(Yi
des −Yi) (9)

where Yi
des and Yi are the target and current lateral positions of the vehicle’s center of gravity, Gi

h is the
steering proportional gain, τi

h and Ti
h are derivative time constant and response time delay, respectively,

and s is the Laplace operator. By assuming that the gear ratio of the steering system is Rg, δi
f = Rgδi

h,
and the driver model in Equation (9) can be rewritten in the form of differential equation:

.
δ

i
f = −

1
Ti

h

δi
f +

RgGi
h

Ti
h

(Yi
des −Yi) +

RgGi
hτ

i
h

Ti
h

(
.
Y

i
des −

.
Y

i
) (10)

The systems described in Equations (1)–(8) and (10) can be assembled as a driver-vehicle system,
as shown in Figure 2. By combining the two systems and the V2V information interactive model, the
information interaction system is formed, and expressed as follows:

.
x(t) = f(x(t), u(t)) (11)

where the state variables of this system consist of the states of the two vehicles, defined as follows:

x =
[

.
yp,

.
xp,ϕp,

.
ϕ

p, Yp, Xp, δp
f ,

.
yq,

.
xq,ϕq,

.
ϕ

q, Yq, Xq, δq
f

]T
(12)

The control variable of the system is the front wheel steering angle of two vehicles:

u = δ
p
f (13)
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2.3. Predictive Model of Moving Obstacle Trajectory

In the actual environment, since the external environment is dynamic, the trajectory tracking
control under the given trajectory does not guarantee the autonomous vehicle to deal with any problem
accurately. The obstacle avoidance function which obstacles are fixed or trajectories are known has
been unable to meet the requirements of dynamic obstacle avoidance. In other words, the vehicle
state information at the moment k is shared by two vehicles and the vehicle p performs the obstacle
avoidance function according to the information at the moment k. Since the state information of the
vehicle q at the moment k+1 cannot be obtained in advance, there is still a collision risk between
vehicles at the moment k + 1. It is necessary to predict the trajectory by using the state information at
the moment k provided by other vehicles to realize the obstacle avoidance function.



Sensors 2020, 20, 1079 6 of 26

Based on simplified driver model, derived from the equation [33]:

dβq
pre

dt
= −

2(k1 + k2)

m
.
xq β

q
pre +

2k1

m
.
xq δ

q
− [1 +

2(l f k1 − lrk2)

m(
.
xq
)

2 ]
.
ϕ

q
pre (14)

d
.
ϕ

q
pre

dt
= −

2(l f k1 − lrk2)

I
β

q
pre +

2l f k1

I
δq
−

2(l2f k1 − l2r k2)

I
.
xq ϕ

q
pre (15)

Based on the front wheel steering angle δq of the interactive information, the vehicle sideslip angle
β

q
pre and the yaw angle ϕq

pre can be estimated and compared with the vehicle sideslip angle βq and the
yaw angle ϕq in the real-time interactive information.

dXq
pre

dt
=

.
xq cos(βq

pre + ϕ
q
pre) (16)

dYq
pre

dt
=

.
xq sin(βq

pre + ϕ
q
pre) (17)

The above equation is integrated to obtain the vehicle center of mass position:

Xq
pre = Xq

0 +
.
xq

∫ t

0
cos(βq

pre + ϕ
q
pre)dt (18)

Yq
pre = Yq

0 +
.
xq

∫ t

0
sin(βq

pre + ϕ
q
pre)dt (19)

The first derivative of the trajectory curve indicates the value of the front wheel steering angle δq
pre

of the vehicle while the direction of the steering angle is determined by the concavity and convexity
of the trajectory curve. Thus, the trajectory of the vehicle q at time k + 1 is predicted based on the
information at time k. The prediction model is validated by two typical conditions: (1) vehicle q with a
constant longitudinal velocity of 15 m/s; (2) vehicle q with a variable longitudinal velocity from 13 m/s
to 20 m/s, and the longitudinal acceleration is 1 m/s2.

The reference trajectory and the predicted trajectory are compared in Figure 3. The error between
the predicted trajectory and the reference trajectory is shown in Figure 4.
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As shown in Figures 3 and 4, in two conditions, the prediction trajectory is generated by the
obstacle trajectory prediction model, and the error between predicted trajectory and reference trajectory
is small. As shown in Figure 4, before the two lane change process, the error between predicted
trajectory and reference trajectory is negative, making the predicted trajectory closer to the autonomous
vehicle, enabling the autonomous vehicle to perceive obstacles ahead and achieve collision avoidance
control. After the crossing, the error value is positive which helps the autonomous vehicle make a
more rapid decision on whether there is a threat or not.

3. Controller Design

In this paper, a typical vehicle-to-vehicle (V2V) encountering scenario of lane exchanging with
two vehicles maneuvered to exchange lanes is built. That is, two vehicles traveling on contiguous
lanes in the same direction are maneuvered to exchange lanes, as shown in Figure 5. The controller is
designed for this conflicting scenario.
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Vehicle tracking control requirements are mainly divided into longitudinal velocity control and
lateral position control. The control framework is shown as Figure 6.
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Figure 6. Vehicle control framework.

The integrated information interaction model constructs two vehicle systems into a V2V
information exchange system. This section first introduces the overall control framework, and
then gives the longitudinal control of the fuzzy adaptive PI controller design and lateral control design
of the LTV MPC controller design.

3.1. Control Framework

The trajectory re-planning control framework for lane exchanging of two vehicles is described in
Figure 7, where intentions of the drivers can be given by the front tire steering angles and throttle/brake
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inputs and feedback to the trajectory re-planning controller. Different drivers have different handling
characteristics for the vehicle. The driver’s character, age, and other factors have a great impact on
the handling of the vehicle. The data of the driver’s handling characteristics are available in the
onboard controllers. Communicate through the information interactive model aiming to make the state
information between the two vehicles can be interactive. The desired velocity and desired trajectory
determined by the controller are tracked by the longitudinal and lateral controllers, respectively.
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In the lane changing process, there are conflicting threats to the desired trajectory of the vehicles.
If two vehicles do not take proper measures, collisions are inevitable. Before lane exchanging, changing
the vehicle velocity or changing the desired trajectory of the vehicle is an effective way of avoiding
collisions. In this paper, the MPC controller is proposed to re-plan the optimal desired trajectory to avoid
obstacles. The focus of this paper is trajectory re-planning function in vehicle lane exchanging process.
The control framework in Figure 7 adopts fuzzy adaptive PI control and model predictive control to
realize the tracking and control of the vehicle’s longitudinal velocity and the desired value of the front
wheel steering angle. The information of vehicles is shared by the information interaction model.

3.2. Longitudinal Control

Longitudinal control is an important part of autonomous vehicles, and it is one of the most basic
and key technologies for autonomous vehicles. The longitudinal controller is designed and analyzed in
this section to enable the accurate velocity tracking. The longitudinal control of autonomous vehicles
is influenced by external factors. The controlled object has strong non-linearity, and it is difficult to
meet the requirements of rapid and accurate tracking reference velocity with the traditional control
method. The adaptive control can adjust the structure (parameters) of the controller in real time to
ensure that the system always running in the ideal state and the fuzzy adaptive PI control method is
adopted in this paper. The fuzzy control rule developed in the fuzzy PI control method is a reflection
of the driver’s knowledge and experience and the driver’s handling behavior is taken into account
during the design of the controller [34].
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3.2.1. PI Controller Design

The continuous proportional-integral-derivative (PID) control algorithm cannot be directly used
as a controller and needs to be discretized. The positional PID control algorithm is expressed as
follows [35]:

u(k) = kp

error(k) + T
TI

k∑
j=0

error( j) + TD
T (error(k) − error(k− 1))


= kperror(k) + ki

k∑
j=0

error( j) + kd(error(k) − error(k− 1))
(20)

where ki = kp ∗ T/TI, kd = kpTD/T. T, TI, and TD are the sampling time, integration time, derivative
time, respectively. k = 1, 2, · · · is the sampling number, error(k− 1) and error(k− 1) are the deviation
signals obtained at the time of k − 1 and k. u(k) in Equation (20) is the output of the positional PID
control algorithm. Set kd = 0. According to the recursive principle:

u(k− 1) = kp

error(k− 1) + ki

k−1∑
j=0

error( j)

 (21)

Equation (22) is subtracted by Equations (20) and (21):

∆u(k) = kp(error(k) − error(k− 1)) + kierror(k) (22)

∆u(k) is the output of the incremental PI control algorithm. The control variable u(k) is obtained
by Equation (23):

u(k) = u(k− 1) + ∆u(k) (23)

3.2.2. Fuzzy Adaptive PI Controller Design

Aiming at the velocity tracking problem of autonomous vehicles in this paper, the deviation
between the reference velocity and the actual velocity of the vehicle e and the rate of deviation change ec
are taken as input. The outputs of the fuzzy controller ∆kP, ∆kI are the increment of kP, kI for adjusting
the two important parameters of the PI controller. The structure of the fuzzy adaptive PI controller is
shown in Figure 8.
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Figure 8. Structure of fuzzy adaptive PI controller.

The input variable e, ec and the output variable ∆kP, ∆kI are all on the fuzzy set {−1, 0, 1}.
The quantization factors were 1/4 and 1/10 respectively. The scale factor is 50 and 0.1. Using
the fuzzy language name {N, Z, P}, representing negative, zero, positive. The fuzzy control rules are
shown in Tables 1 and 2.

(1) The setting principle of kP: When the response is in the ascending process (e is P), ∆kP takes a
positive value to increase kP. When overshoot (e is N), ∆kP takes a negative value to decrease kP. When
the error is near zero (e is Z), there are three cases: when ec is N, the overshoot is getting bigger and
bigger, then ∆kP takes negative; when ec is Z, in order to reduce the error, ∆kP is positive; when ec is P,
the positive error is getting bigger, then ∆kP is positive. The fuzzy control rules of kP are shown in
Table 1.
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Table 1. Fuzzy rules of kP.

e
ec

N Z P

N N N N
Z N P P
P P P P

(2) The setting principle of kI: using the integral separation strategy, when the error value is near
zero, ∆kI is positive, otherwise zero. The fuzzy control rules of kI is shown in Table 2.

Table 2. Fuzzy rules of kI.

e
ec

N Z P

N Z Z Z
Z P P P
P Z Z Z

The well-known Mamdani inference method is used to solve the fuzzy implication. The fuzzy
surfaces are shown in Figures 9 and 10:
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3.3. Lateral Control

This paper focuses on the study of the lateral obstacle avoidance control of autonomous vehicles.
The longitudinal velocity changes when necessary. The lateral controller of the autonomous vehicle
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is based on the planned path. The non-linear MPC have been developed for vehicle lateral control.
The nonlinear MPC requires solving the optimal control problem on the finite prediction step. Although
these problems are convex in the linear MPC, they are no longer convex in the nonlinear MPC. This
poses a challenge to nonlinear MPC stability theory and numerical solutions, and does not satisfy
real-time constraints [36]. In this paper, a linear model predictive control method is proposed to design
the trajectory tracking controller.

3.3.1. Discretization and Linearization

At the moment of t, the nonlinear vehicle dynamics model (x0(t), u0(t− 1)) was developed for
Taylor [37]:

.
x(t) = f(x0(t), u0(t− 1)) +

∂f
∂x

∣∣∣∣∣
x0(t),u0(t−1)

(x(t) − x0(t)) +
∂f
∂u

∣∣∣∣∣
x0(t),u0(t−1)

(u(t) − u0(t− 1)) (24)

where: ∂f
∂x

∣∣∣∣
x0(t),u0(t−1)

, ∂f
∂u

∣∣∣∣
x0(t),u0(t−1)

are calculated by the following equation [37]:

∂f
∂x

∣∣∣∣
x0(t),u0(t−1)

=



−2(Cc f +Ccr)

m
.
xi −

.
ϕ

i 0 −
.
xi
+

2(Ccrlr−Cc f l f )

m
.
xi 0 0

2Cc f
m

.
ϕ

i 0 0
.
yi 0 0 0

0 0 0 1 0 0 0
2(Ccrlr−Cc f l f )

IZ
.
xi 0 0 −

2(Ccrl2r+Cc f l2f )

IZ
.
xi 0 0

2Cc f l f
IZ

1 0
.
xi 0 0 0 0

0 1 −
.
yi 0 0 0 0

−RgGi
hτ

i
h

Ti
h

0
−RgGi

hτ
i
h

Ti
h

.
xi 0

−RgGi
h

Ti
h

0 −1
Ti

h



,

∂f
∂u

∣∣∣∣
x0(t),u0(t−1)

=
[ 2Cc f

m 0 0
2Cc f l f

IZ
0 0 −

1
Ti

h

]T

make the following settings:
û = u0(t− 1) x̂ = x0(t)

Then Equation (24) can be expressed as:

.
x(t) =

.
x̂ +

∂f
∂x

∣∣∣∣∣
x0(t),u0(t−1)

(x(t) − x̂) +
∂f
∂u

∣∣∣∣∣
x0(t),u0(t−1)

(u(t) − û) (25)

To be discretized [37]:

x(k + 1) = x̂(k + 1) + A(x(k) − x̂(k)) + B(u(k) − û(k)) (26)

Equation (26) is organized into a linear discretization of vehicle dynamics model of the equation
of state:

x(k + 1) = Ax(k) + Bu(k) + d(k) (27)

where d(k) = x̂(k + 1) −Ax̂(k) −Bû(k). Since the two vehicle state information needs to be processed
simultaneously by the MPC controller,

we define A = diag( Ap Aq ), where Ai(i = p, q) = I + T · ∂f
∂x

∣∣∣∣
x0(t),u0(t−1)

, T is sampling time,

we define B = diag( Bp Bq ), where Bi(i = p, q) = T · ∂f
∂u

∣∣∣∣
x0(t),u0(t−1)

, T is sampling time.
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Change the input of Equation (27) from control variable u(k) to control increment ∆u(k) to obtain
the state equation of vehicle dynamics model as shown in Equation (28):

x̃(k + 1) = Ãx̃(k) + B̃∆u(k) + d̃(k) (28)

where x̃(k) =

[
x(k)

u(k− 1)

]
, Ã =

[
An×n Bn×m

0m×n Im×m

]
, B̃ =

[
Bn×m

Im×m

]
, ∆u(k) = u(k) − u(k− 1), d̃(k) =[

d(k)
0

]
, m and n are the dimension of the control variables and state variables, respectively.

In this paper, the yaw angle ϕi and the longitudinal position of the vehicle Yi are selected as the
output of the state space. In order to integrate the state information of two vehicles into the MPC
controller and maintain the dimension uniformity, the output is:

ỹ(k) = C̃x̃(k) (29)

where ỹ(k) = [ϕp, Yp,ϕq, Yq]T, C̃ =

[
Φ 0
0 Φ

]
, Φ =

[
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0

]
.

3.3.2. Obstacle Avoidance Function

In the actual environment, since the external environment is dynamic, the trajectory tracking
control under the given trajectory does not guarantee the autonomous vehicle to deal with any problem
accurately. When there is an obstacle in a given desired trajectory, the autonomous vehicle re-plans the
trajectory according to the information of the obstacle to avoid the obstacle and then continues to track
the desired trajectory.

In this paper, based on the trajectory tracking control, the MPC-based local planning layer is
proposed to form a new control system. The local path planning controller re-plans the local desired
trajectory according to the reference path information and the obstacle information obtained by the
sensor. At the same time, the local desired trajectory information is input to the tracking control layer,
thus the global reference path is tracked while the obstacle avoidance is realized.

The basic idea of the penalty function is to adjust the size of the function value according to the
distance deviation between the obstacle and the target, and the closer the distance is, the larger the
function value is. The penalty function is as follows:

Jobs,i =
Sobs(v2

x + v2
y)

(xi − x0)
2 + (yi − y0)

2 + ∆
(30)

where Sobs is the weight coefficient, (xi, yi) is the position of the obstacle in the body coordinate system,
(x0, y0) is the position of the center of mass of the vehicle, ∆ is a small positive number, preventing
the denominator from being zero. The target of local trajectory planning is to achieve the obstacle
avoidance function while minimizing the deviation from the global reference path. The local trajectory
re-planning model predictive controller is as follows:

min
Ut

Np∑
i=1
‖ ỹ(k + i|k) − yre f (k + i|k) ‖2

S
+ ‖Ui‖

2
R + Jobs,i

s.t.Umin ≤ Ut ≤ Umax

(31)

where ỹ(k + i|k) and yre f (k + i|k) are the output value and desired value at the moment k + i. Ui is the
control variable sequence.

In order to make the result of trajectory planning feasible, the expansion of the obstacle is carried
out according to the vehicle body size. In this paper, circles with the same radius are used instead of
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the vehicle body rectangle, as shown in Figure 11. In order to ensure safe driving, the distance between
the vehicle body and the center of the obstacle must be greater than the radius of any circle.
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In [38], a trajectory planning algorithm based on polynomial fitting is proposed, which uses a
simplified spherical extension polyhedron to express the obstacle and add dynamic constraints and it
is easier to generate smooth trajectories by selecting the coefficients to select the permissible trajectories.
The fifth order polynomial is used as the fitting curve:

Y = a0t5 + a1t4 + a2t3 + a3t2 + a4t1 + a5
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where ap = [a0, a1, a2, a3, a4, a5], bp = [b0, b1, b2, b3, b4, b5] are the parameters to be solved.

3.3.3. MPC Controller Design

The structure of the model predictive controller is shown in Figure 12.
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The MPC controller’s task is to solve the optimal solution of the trajectory re-planning under the
premise of satisfying the various constraints such as driver’s operation, obstacle avoidance, and the
mechanical structure of the vehicle. The vehicle information interaction system includes the states of
two connected vehicles. The states of the model are:

x =
[

.
yp,

.
xp,ϕp,

.
ϕ

p, Yp, Xp, δp
f ,

.
yq,

.
xq,ϕq,

.
ϕ

q, Yq, Xq, δq
f

]T

The control variable is the front wheel steering angle u = δ
p
f .
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The prediction horizon of the system is defined as Np and control horizon is defined as Nc. At time
k, the output of the vehicle system at time k + 1, · · · , k + Np is predicted:

Yout(k) = Ω(k)x̃(k) +Θ(k)∆U(k) (33)

with Yout(k) =


ỹ(k + 1|k)
ỹ(k + 2|k)

...
ỹ
(
k + Np

∣∣∣k)
, Ω(k) =


C̃Ã
C̃Ã2

...
C̃ÃNp

, Θ(k) =



C̃B̃ 0 0
...

... 0
C̃ÃNc−1B̃ · · · C̃B̃

...
...

C̃ÃNp−1B̃ · · · C̃ÃNp−NcB̃


, ∆U(k) =


∆u(k|k)

∆u(k + 1|k)
...

∆u(k + Nc − 1|k)

.
The optimization problem to be solved in the receding horizon is defined as follows:

min
∆Ut,ε

(

Np∑
i=1

‖ ỹ(k + ik) − yre f ,local(k + i|k) ‖2
S
+

Nc−1∑
i=0

‖∆u(k + i|k) ‖2R + ρε2) (34a)

s.t.∆Umin ≤ ∆Ut ≤ ∆Umax (34b)

Umin ≤ A∆Ut + Ut ≤ Umax (34c)

yhc,min ≤ yhc ≤ yhc,max (34d)

ysc,min − ε ≤ ysc ≤ yhc,max + ε (34e)

ε > 0 (34f)

In Equation (34a), ỹ(k + i|k) and yre f ,local(k + i|k) are the output value and desired value of
the output at the future moment k + i. yre f ,local = [Yre f ,local,ϕre f ,local] is the local reference trajectory.
∆u(k + i|k) is the control variable sequence of future times. ρ is the weighting factor. ε is the relaxation
factor. ysc and yhc are soft constraints and hard constraints, respectively.

Since the control increment in the control time domain is unknown. The objective function is
designed using the control increment of the vehicle system as a variable. The optimal control increment
sequence in the control horizon is obtained by minimizing the optimization of the objective function.
In order to ensure the tracking accuracy of the vehicle, the vehicle lateral position deviation and yaw
rate deviation are taken into account in the objective function. At the same time, in order to keep the
change of the control variables stable and avoid the abrupt change of the control variables, constraints
are added to the control increment in the objective function. The relaxation factor is added to ensure
that the objective function has a feasible solution.

The state information of the two vehicles is used as the state variable by the controller. In order to
maintain dimensions of the matrix unified, the output weight matrix is as follow:

S = diagNp×Np

(
s s · · · s

)
,

where s = diag4×4
(

s1 s2 s3 s4
)
,

The control weighting matrix is

R = diagNu×Nc

(
r r · · · r

)
.
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Equations (34b)–(34f) are the design of the constraint condition. There is a certain limit to the
steering range of the front wheel steering angle of the vehicle, therefore, the front wheel steering angle
is restrained so as to avoid the fact that the front wheel steering angle is beyond the actual range.
The constraint for the control variable is set to:

Umin(k) ≤ U(k) ≤ Umax(k) (35)

In order to ensure that the vehicle trajectory tracking process is more stable, the control increment
is constrained:

∆Umin(k) ≤ ∆U(k) ≤ ∆Umax(k) (36)

Set relaxation factor:
0 ≤ ε ≤ 10 (37)

By Equations (36) and (37):
ξmin(k) ≤ ξ(k) ≤ ξmax(k) (38)

where ξmin(k) =
[

∆Umin(k) 0
]T

, ξmax(k) =
[

∆Umax(k) 10
]T

.
Equation (38) is the upper and lower bounds of the objective function.
In order to solve the objective function, Equation (34) is transformed into the inequality of ∆U(k).

The relationship between the control variables of the vehicle system and the control increment at the
moment k is as follows:

u(k|k)
u(k + 1|k)

...
u(k + Nc − 1|k)

 =


1 0 · · · 0
...

. . . . . .
...

...
. . . 0

1 · · · · · · 1




∆u(k|k)

∆u(k + 1|k)
...

∆u(k + Nc − 1|k)

+


u(k− 1|k)
u(k− 1|k)

...
u(k− 1|k)

 (39)

written in matrix form:
U(k) = G∆U(k) + Ũ (40)

The Equation (35) can be converted to:

Umin(k) ≤ G∆U(k) + Ũ ≤ Umax(k) (41)

Constrain the output of the vehicle system:

Yout min(k) ≤ Yout(k) ≤ Yout max(k) (42)

The Equation (42) is expressed as:

Yout min(k) ≤ Ω(k)x̃(k) +Θ(k)∆U(k) +Ω(k)x̃(k) ≤ Yout max(k) (43)

According to the dimension of the state information, Equation (44) is sorted by Equations (41)
and (43):

A∗(k)ξ(k) ≤ b∗(k) (44)

with A∗(k) =


G 0
−G 0
Θ(k) 0
−Θ(k) 0

, bi∗(k) =


Umax(k) − Ũ
−Umin(k) + Ũ

Yout max(k) −Ω(k)x̃(k) −Ω(k)x̃(k)
−Yout min(k) +Ω(k)x̃(k) +Ω(k)x̃

,
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The problem is transformed into a single objective optimization problem with upper and lower
bound constraints and inequality constraints. By optimizing Equation (34), the optimal control
increment sequence in the control horizon Nc can be obtained as:

∆U∗(k) =


∆u∗(k|k)

∆u∗(k + 1|k)
· · ·

∆u∗(k + Nc − 1|k)


T

(45)

The MPC algorithm does not apply the optimal sequence to the vehicle system one by one, but
only the first control increment ∆u∗(k|k) is applied to the vehicle system. Equation (46) is used to obtain
the optimal control at the current moment acting on the vehicle system.

u(k|k) = u(k− 1|k) + ∆u∗(k|k) (46)

The driver model is embedded in the MPC controller using Equation (24). This section chooses
young and aged, respectively, as a comparison of driver characteristics. Set Gh = 0.8, Th = 0.13,
τh = 1.1 as a young driver characteristic parameter and Gh = 0.5, Th = 0.18, τh = 1.1 as an aged driver
characteristic parameter.

The parameters of MPC controller are shown in Table 3.

Table 3. The main parameters of MPC.

Symbol Description Value (Units)

Np Number of prediction points in model predictive control 20
Nc Number of control points in model predictive control 5
s1 Weight of the lateral offset error of vehicle p 2× 103

s2 Weight of the heading error of vehicle p 2× 104

s3 Weight of the lateral offset error of vehicle q 2× 103

s4 Weight of the heading error of vehicle q 2× 104

r Weight of the steering control increment 106

Ts Sample time of the model predictive controller 0.01 (s)
ρ Weight of the relaxation factor 1000
ε Relaxation factor 10

Sobs Weight in penalty function 800

4. Simulation Results

In this section, the nonlinear vehicle dynamics model in Carsim software is used and co-simulation
is carried out by Simulink. Select the D-Class Sedan model for simulation. The main parameters of the
model are shown in Table 4.

Table 4. The main parameters of the vehicle.

Symbol Description Value (Units)

m Mass of the vehicle 1530 (kg)
Iz Yaw moment of inertia 4607(kg·m2)
l f C.g. distance to the front axle 1.11 (m)
lr C.g. distance to the rear axle 1.666 (m)

Cc f Front wheel cornering stiffness 1220 (N/deg)
Ccr Rear wheel cornering stiffness 1220 (N/deg)
Rsa f Radius of the safety circle 1.4 (m)

We mainly deal with low-traffic scenarios on the roads; thus, make the following conditions
and assumptions:
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1. Initially, the vehicle q moves in the left lane of the road, then changes lanes on the right lane,
ignoring other vehicles and collision threats.

2. When the vehicle is changing lanes, no other vehicle is used as an obstacle to ensure that there are
no other conflicts.

3. The vehicle can obtain interactive information accurately including the state information of its
own and obstacle vehicle.

There are three simulation scenarios in total for trajectory re-planning controller verification.
These include different initial vehicle distances, vehicle constant velocity, and variable velocity. In this
paper, the logic threshold switch is designed, and the selection of vehicle velocity and the controller
are selected according to the logical relationship between the difference of the longitudinal position
and the difference of the lateral position of the vehicles.

A. Scenario on larger initial distance. First, we consider a simple two vehicle lane exchanging
scenario, as shown in Figure 4. Vehicle p is used as an active vehicle containing a trajectory re-planning
controller, and the vehicle q is used as an obstacle vehicle. The initial distance between two vehicles is
12 m. The vehicle q moves at a constant velocity of 54 km/h. The vehicle p has an initial velocity of
54 km/h. The position and trajectories are shown in Figures 13 and 14. Figures 15–18 are longitudinal
velocity, front wheel steering angle, yaw angle, lateral acceleration of vehicle p, respectively.
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The discrete points of the curve in Figure 13 represent the positions of the vehicle at different times.
As shown, there is no collision throughout the time course. The curves in Figure 14 are the dynamic
reference trajectories of the controller which are determined by the real-time trajectory and prediction
trajectory of obstacle, respectively. The two kinds of dynamic reference trajectories almost coincide,
which proves the validity and correctness of the method proposed in this paper. As a result of the large
initial distance, the logic threshold controller determines the no conflict between vehicles. Therefore,
there is no change in the longitudinal velocity of the vehicle. There is no need to re-plan a new reference
trajectory by local trajectory re-planning controller. As shown in Figure 15, although the longitudinal
velocity of the vehicle has a very small change, it can be considered that the longitudinal velocity of
the vehicle is constant. As shown in Figures 16–18, since the local trajectory is not re-planned, the MPC
controller is in good condition, and the vehicle is controlled smoothly with good stability.

B. Scenario on smaller initial distance. The initial distance is changed to 6.7 m, and the other
initial conditions are the same as those of scenario A. The vehicle p is an active vehicle with trajectory
re-planning controller. Vehicle q is used as an obstacle vehicle. Figures 19 and 20 are drawn for
depicting the real-time trajectories of the two vehicles in lane exchanging. The longitudinal velocities,
front wheel steering angle, yaw angle, yaw rate, and lateral acceleration under the different handling
characteristics of the driver are shown in Figures 21–25.
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The discrete points of curves in Figure 19 indicate the position of vehicles at different times.
During the entire period of time, vehicle p under different handling characteristics have no collision,
and the trajectory is smooth. In this section, vehicle p with young handling characteristics is analyzed
for example. In order to give a clearer description of the position of the vehicle when the two vehicles
meet, the local position of vehicles is shown in Figure 20. The large rectangles are used to express the
contour of the vehicle. The discrete points at the same time are connected by the dotted line and the
arrow. There is no collision between vehicles in the process of lane exchanging. As shown in Figure 21,
the logic threshold controller selects the speed of vehicle due to the existence of a collision threat
under the smaller initial distance. The designed fuzzy PI controller can effectively track the velocity.
As shown in Figures 22–25, due to the threat of collision, the trajectory re-planning controller needs
to re-plan the trajectory to eliminate the collision threat. The peak appears at the moment where the
lateral position of the center of mass of the two vehicle approaches. After the peak, with the increase
of the lateral distance between the two vehicles, the collision threat is gradually reduced. Due to the
coefficient of expansion of the vehicle, the collision threat will take a period of time to completely
eliminate. When the collision threat is eliminated, the global controller will track the vehicle trajectory
more smoothly, stably and accurately. Due to the different driver characteristics, the vehicle control
response is different. Young drivers still maintain the aggressive and sensitive operating characteristics
of the steering wheel, making the peak value of the vehicle parameters higher. The lateral acceleration
of the vehicle is always less than 0.4g, which ensures the stability of the vehicle.

C. Scenario on smaller initial vehicle distance, and variable velocities of vehicle q. In general,
vehicle q will increase the velocity to increase the distance between the rear vehicles as much as possible
to reduce the collision threat. Based on the scenario B, in this example, vehicle q is set to use the
acceleration of 1 m/s2 to change lanes, and the controller is simulated and verified. Vehicle p with
young handling characteristics is analyzed for example which is more radical and the collision threat
is more prominent. Figures 26 and 27 are drawn for depicting the real-time trajectories of the two
vehicles in lane exchanging. The longitudinal velocities, front wheel steering angle, yaw angle, yaw
rate, and lateral acceleration under the different handling characteristics of the driver are shown in
Figures 28–32.
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The discrete points of curves in Figures 26 and 27 indicate the position of vehicles at different times.
During the entire period of time, vehicle p under different handling characteristics has no collision,
and the trajectory is smooth. In this section, vehicle p with young handling characteristics is analyzed
for example. The large rectangles are used to express the contour of the vehicle. The discrete points at
the same time are connected by the dotted line and the arrow. There is no collision between vehicles in
the process of lane exchanging. As shown in Figure 28, the logic threshold controller selects the speed
of vehicle due to the existence of a collision threat under the small initial distance. The designed fuzzy
PI controller can effectively track the velocity. As shown in Figures 29–32, because of the collision
threat, the trajectory re-planning controller needs to re-plan the trajectory to eliminate the collision
threat. In order to track the reference trajectory produced in real time, the MPC controller has frequent
fluctuations in the front wheel steering angle, resulting in frequent fluctuations in vehicle yaw angle
and yaw rate. Compared with the constant velocity of vehicle q, the acceleration of vehicle makes the
longitudinal distance between vehicles increase, and the collision threat between the two vehicles is
relatively reduced. Meanwhile, the collision threat will be eliminated faster. The peak value of the front
wheel steering angle of vehicle p is relatively reduced. It can reach a steady state faster. The peak value
of the yaw angle, the yaw rate, and the lateral acceleration of vehicle p decreases relatively and reach a
steady state faster. The lateral acceleration of the vehicle is always less than 0.4 g, which ensures the
stability of the vehicle.

The moving obstacle trajectory prediction method proposed in this paper has little effect on
the desired trajectory generated by the controller between the vehicles with real-time information
interaction. The prediction information produced by the method proposed is more suitable for
trajectory information as obstacles. The logic threshold control method can make the appropriate
choice for the vehicle velocity and the controller. The local trajectory re-planning controller can adjust
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the vehicle state parameters and trajectory desired values when the collision threat occurs between
vehicles, so that the vehicle can avoid obstacle under the condition of smooth operation.

5. Conclusions

In this paper, an integrated avoid collision control framework is proposed for autonomous vehicle
trajectory tracking and dynamic collision avoidance. For longitudinal control, a fuzzy adaptive PI
controller is proposed for longitudinal velocity tracking. The selection and control of controller and
velocity are realized by logical threshold method. For lateral control, a local trajectory re-planning
controller based on MPC controller is proposed by collision avoidance control penalty function, which
includes many functions such as driver’s handling characteristics, information interaction, real-time
obstacle trajectory prediction, local trajectory re-planning.

Simulation results show that the designed controllers can re-plan the real-time trajectory when
there is a collision threatening, so as to eliminate the collision conflict. During trajectory re-planning,
although the fluctuation of the front wheel steering angle and the states increased, the vehicle
parameters are always within the constraints, and the vehicle always maintains stability. The trajectory
re-planning motion controller can effectively avoid collision and has good stability.

The time-delay is a key issue in control system [39], especially in autonomous vehicle real-time
control. In the future research, the delay problems will be considered in the control framework in order
to compensate the delays drawbacks.
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