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Abstract: Comprehensive and accurate vegetation monitoring is required in forestry and agricultural
applications. The optical remote sensing method could be a solution. However, the traditional
light detection and ranging (LiDAR) scans a surface to create point clouds and provide only
3D-state information. Active laser-induced fluorescence (LIF) only measures the photosynthesis and
biochemical status of vegetation and lacks information about spatial structures. In this work, we
present a new Multi-Wavelength Fluorescence LiDAR (MWFL) system. The system extended the
multi-channel fluorescence detection of LIF on the basis of the LiDAR scanning and ranging mechanism.
Based on the principle prototype of the MWFL system, we carried out vegetation-monitoring
experiments in the laboratory. The results showed that MWFL simultaneously acquires the 3D spatial
structure and physiological states for precision vegetation monitoring. Laboratory experiments on
interior scenes verified the system’s performance. Fluorescence point cloud classification results were
evaluated at four wavelengths and by comparing them with normal vectors, to assess the MWFL
system capabilities. The overall classification accuracy and Kappa coefficient increased from 70.7%
and 0.17 at the single wavelength to 88.9% and 0.75 at four wavelengths. The overall classification
accuracy and Kappa coefficient improved from 76.2% and 0.29 at the normal vectors to 92.5% and 0.84
at the normal vectors with four wavelengths. The study demonstrated that active 3D fluorescence
imaging of vegetation based on the MWFL system has a great application potential in the field of
remote sensing detection and vegetation monitoring.

Keywords: fluorescence LiDAR; laser-induced fluorescence; vegetation monitoring;
classification discrimination

1. Introduction

Plants play a considerable role in the carbon and water cycles of the global ecosystem [1,2]. A
prompt and effective monitoring of vegetation is of great significance for ecological environmental
monitoring and agricultural guidance. Researchers have regarded the optical remote sensing monitoring
method as an ideal and feasible way, owing to its several advantages, such as quickness, accuracy, and
non-destruction of plants [3]. Many optical remote sensing imaging techniques have been applied to
vegetation detection in recent decades. Passive hyperspectral reflection imaging, a commonly used
form of optical imaging, can provide abundant biochemical components of plants. However, such
a method lacks the spatial expression in 3D space and can be affected by various factors, such as
the external environment, including weather conditions, and measurement time [4,5]. The LiDAR
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technology, an active detection sensor with several technical advantages, such as high temporal–spatial
resolution and non-destruction, has received great attention from researchers [6]. Such technology has
obtained a wide range of applications on vegetation structural parameter inversion [7,8]. However, this
technology typically utilizes a single band of near-infrared laser for the detection of spatial location [9],
and it lacks spectral information associated with the materialized components. Therefore, the signal
acquisition of multi-wavelength channels can be extended on the basis of the single-wavelength LiDAR,
to expand the detection capability of vegetation biochemistry and growth state.

The fluorescence spectral properties of vegetation provide an available indicator for its detection.
Fluorescence is treated as the radiation appearance of the energy loss by the oscillating motion
of electrons during electromagnetic radiation [10]. The present research means for the vegetation
fluorescence emission include stimulation chlorophyll fluorescence by passive solar energy and active
artificial light source-laser for induction. Sun-induced fluorescence (SIF)-based vegetation remote
sensing monitoring has also achieved development in recent years. SIF can provide global-scale
chlorophyll fluorescence detection through on-board data and an indicator for studying the vegetation’s
ecological environment [11]. However, SIF only provides the fluorescence bands (685 and 740 nm)
associated with the chlorophyll in vegetation, due to the extraction method limitation [12–14]. This
passive fluorescence detection provides fluorescence spatial distribution in 2D images only and lacks
the 3D structural detection capacity of LiDAR.

Laser-induced fluorescence (LIF) is an active means of generating fluorescence by using a single
short-wavelength laser as the excitation light. Vegetation absorbs the light energy of a given wavelength,
and a part of it is dissipated by light emission at long wavelengths within a short time [15,16]. Vegetation
has typical characteristic signals and spectral shapes in the case of being produced by laser stimulation.
With the discovery and exploration of the LIF technology, monitoring vegetation by using this
mechanism has become possible. Chappelle et al. [16] used an ultraviolet (UV) laser to stimulate
fluorescence signals on leaves and proposed the utilization of fluorescence to distinguish vegetation
types. They further explored the ability of fluorescence as a probe to resolve plant species and
stress states [17]. The production of chlorophyll fluorescence peaks in vivo was also explained [18].
Researchers studied the utilization of fluorescence characteristic peaks to develop a series of correlation
studies on vegetation growth status [19], biochemical content, and environmental stress factors [20].
Fluorescence characteristics have a strong indication of leaf nitrogen content [21], water deficiency [22],
and fungal infections [23]. Spectral properties of LIF demonstrate a powerful ability to monitor the
vegetation status as the reflection [24,25]. Artificial-light-source-induced fluorescence signals have
more comprehensive spectral characteristics than SIF and are excited with only a single-wavelength
light economically. Accordingly, we supposed that the LiDAR laser source is used to simultaneously
achieve laser scanning ranging and fluorescence induction forming multi-wavelength reception for
implementing a multi-wavelength fluorescence LiDAR. The system expands the ability to monitor the
physiological states of vegetation by adding several channels for receiving fluorescence signals.

Some existing fluorescence LiDAR systems have achieved a good ability of detecting marine oil
spills [26,27] and terrestrial water bodies [28]. A number of fluorescence imaging systems had been
previously constructed to express the distribution characteristics of fluorescence signals [29,30]. These
proactive vegetation fluorescence imaging systems can monitor growth and stress status by using
the LIF technology from an imaging perspective [31]. However, these fluorescence imaging systems
express the spatial distribution of fluorescence emission signals in the form of 2D images. The imaging
spatial scale is extremely small to be directly applied to the remote sensing of vegetation.

Simultaneous monitoring of the external appearance and internal biochemical status has a
comprehensive perception for vegetation remote sensing. We stimulate the vegetation fluorescence
reception for multi-wavelength channels on the basis of the scanning ranging function of
single-wavelength LiDAR. In this way, 3D spatial structural and growth state information of vegetation
can be simultaneously acquired. However, constructing such LiDAR with a multi-wavelength reception
of fluorescence manifests several problems. First, several wavelengths need to be selected for the
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fluorescence emission detection. Vegetation emits fluorescence in the form of a continuous spectrum
through UV laser excitation. The receiving wavelength design can represent biochemical information
and reduce the hardware cost of the system. Second, the enhancement of multi-channel fluorescence
data in the background signal is also a problem, since there is a large number of non-vegetation
signals as non-interested targets in the system data. Third, the data of these multiple different system
units must be organized and visualized. The data output comes from several units of the system.
These data require an integrated expression of the 3D spatial structure and fluorescence emissions of
the vegetation.

In this study, (1) the MWFL system was proposed, created, and integrated, to perform experimental
verification in the laboratory. The system design of the four wavelengths corresponding to the
characteristics of the vegetation fluorescence, system components, and system-based data form were
introduced. (2) The system experimented fluorescence signal imaging and scanned canopy distribution
of the vegetation to verify the 3D imaging ability of the system. (3) Three-dimensional fluorescence
imaging based on spectral enhancement pretreatment was adopted and achieved a good effect on
the experimental scenes. (4) System evaluation based on point cloud classification was applied to
classify 3D fluorescence point cloud data on vegetation, to further quantitatively explain the system
advantages. The ability of the MWFL system to monitor spatial and biochemical status of vegetation
through 3D fluorescence imaging was demonstrated. The feasibility of the MWFL system and the
efficiency of 3D fluorescence imaging for vegetation detection were assessed.

2. Materials and Methods

2.1. System Description

2.1.1. Selection of Fluorescence Wavelengths

MWFL, an active remote sensing monitoring device, adds several channels to receive the vegetation
fluorescence compared with the ranging LiDAR. When excited by the short-wavelength light source,
the energy of vegetation fluorescence is emitted in a longer continuous wavelength range. The
fluorescence-receiving wavelengths of the system design must be optimally selected to represent
vegetation fluorescence characteristics and to be as few as possible, considering the system cost.

In this study, two leaves in different physiological states were picked. The continuous fluorescence
spectra of the points measured through ICCD (Intensified Charge Coupled Device) excited with a UV
laser in the laboratory were recorded. Figure 1a shows that the two leaves had different physiological
states. The upper right corner of the right leaf had turned brown. Three points, namely A, B, and C,
in the two leaves were located in the fresh green, yellow, and brown areas, respectively. The color
characterization of the exterior leaves reflected the concentration distribution of the internal pigment.
Figure 1b shows the continuous fluorescence spectral shape of points A, B, and C (wavelength range of
360–800 nm).

Vegetation has typical fluorescence spectral emission waveforms during UV laser induction and
exhibits characteristic peaks, namely F460, F525, F685, and F740. The summit of F525 is sometimes
less evident, or merely a slight rise on the fluorescence spectrum is observed [32]. The characteristic
peaks of F685 and F740 are closely related to the chlorophyll content of leaves [33]. F460 is mainly
caused by water-soluble compound NADPH, vitamin K, and beta-carotene; the prime contributor to
the characteristic peak of F525 is riboflavin [32]. The measured points of the selected leaves show
typical fluorescence spectral curves, but they differ from each other. Points A, B, and C represent the
process of leaves turning from green to yellow and are eventually withered. Figure 1b demonstrates
that the fluorescence spectrum reflects the changes in biochemical substances inside the leaves during
this process. In the green leaf, chlorophyll closely related to photosynthesis reactions actively works,
as indicated by F685 and F740 on the spectrum of point A. The spectrum of point B shows that the
intensity of F740 first decreases, and that of F685 slightly increases when the leaf turns yellow. By
contrast, F460 related to lutein and carotene can have a relatively large increase in strength. The
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chlorophyll content decrease is accompanied by a decrease in the F740 intensity; an increase in F685
may be due to the weak resorption effect [34]. As illustrated in Figure 1, the fluorescence spectrum
of point C indicates that the strength of F460 and F525 is low when the leaves are withered, given
that the corresponding biochemical substances are decreasing. Simultaneously, chlorophyll is almost
exhausted, and the corresponding strength of F685 and F740 has become low, although not obvious.
The change process of the fluorescence spectrum demonstrates that the intensity variation of the four
characteristic wavelengths, namely F460, F525, F685, and F740, can represent the degree of yellowing
in the leaves.

Figure 1. Induced continuous fluorescence spectrum of leaves in different physiological states excited
with an UV laser. (a) Two leaves of different physiological states (Scene 1), and three points, namely A,
B, and C, were located in fresh green, yellow, and brown areas, respectively; (b) continuous fluorescence
spectrum of points A, B, and C excited with a UV laser (355 nm) was detected by the wavelength of
380–800 nm.

The developed active laser fluorescence imaging system predecessor was applied to the vegetation
detection. The wavelengths of fluorescence imaging system Lichtenthaler et al. studied were blue,
green, red, and far-red, corresponding to fluorescence emission [35]. Langsdorf et al. developed
multicolor fluorescence imaging to determine whether the nitrogen-stress state of leaves is related
to these four wavelengths [29]. The range of detection bands of fluorescence imaging systems for
vegetation nutrition stress and disease diagnosis detection has been focusing on the four wavelengths,
namely F460, F525, F685, and F740 [31,36,37], in recent years, in spite of a slight offset in the wavelength
position. Considering the point measurement results of the vegetation fluorescence spectrum in the
laboratory and receiving bands of the previous fluorescence imaging system, 460, 525, 685, and 740 nm
were selected as the four receiving wavelength centers of the MWFL system.

2.1.2. System Components

The MWFL system design aims to simultaneously obtain the 3D spatial structure and four
wavelengths of the fluorescence characteristics of the vegetation target. This system can implement
two detection mechanisms, namely reflection ranging and laser-induced fluorescence. In addition to
the scanning and ranging functions of the single-wavelength LiDAR, the system also has the module
for fluorescence detection and reception. The MWFL system includes system components of laser
emission, scanning, ranging, receiving detection, and data processing. Figure 2 shows the block
diagram of the MWFL system.
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Figure 2. Block diagram of the multi-wavelength fluorescence LiDAR.

In the MWFL system, the laser source uses a 355 nm UV laser as a laser-emitting unit considering
excitation efficiency. The UV laser is not only the excitation source of vegetation fluorescence, but its
reflective signal is the system’s distance-measuring source. The parameters of the laser source are set
to meet the requirements of laser pulse ranging and vegetation fluorescence induction. The L1 mirror
has high reflectivity to the UV-wavelength laser, which acts as a reflection and filter, for optimal design.
The L2 reflective mirror reflects the laser light to the center of the 2D scanning platform of a scanning
unit. The beam can be scanned in the x and y directions on vegetation canopy target as the platform
rotates. The system echo signals, including reflective UV laser and vegetation fluorescence signals,
are received through the view field of Schmidt–Cassegrain telescope. The connection between the
center of the scanning platform and the center of the L2 mirror is collinear with the central axis of the
telescope to form an optical coaxial design. Such a setup is the requirement for ranging and spectral
detection in the single point and is beneficial to improve the detection signal to noise ratio.

The receiving detection unit mainly includes objects, such as telescope, spectrometer, and
transmission fiber. The L3 mirror can reflect the UV band and transmit the long band, which can
separate the UV reflection and fluorescence signal from vegetation. The reflective signal is recorded
by an APD (Avalanche Photo Diode) of the ranging unit, which is compared with the time of the
initial pulse by means of TOF (Time of Flight), to obtain the distance value of the single point through
the pulse method. After focusing through the L4 convex lens and coupling, fluorescence signals are
transmitted through the fiber to the spectrometer. Inside the spectrometer are a four-wavelength splitter
module and corresponding photodetectors. With regard to the spectroscopic module, the continuum
signal of the vegetation fluorescence introduced into the spectrometer is separated from each other by
dichroic filters passing through narrow-band filters and into the four photomultiplier tube arrays with
single-wavelength response centers on 460, 525, 685, and 740 nm. The four-channel photoelectric signal
is converted by analog–digital transformation. The fluorescence intensity is acquired by integration
and transmitted to the data-processing unit of the system. Table 1 shows the technical parameters of
MWFL system.
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Table 1. Technical parameters of MWFL system design.

Multi-Wavelength Fluorescence LiDAR

Laser wavelength 355 nm
Repetition rate 7 kHz

Pulse width 3~5 ns
Pulse energy 18 µJ

Beam divergence <1 mrad
Telescope aperture 200 mm

Spatial resolution Distance: 10 mm
Scanning: 2 mm @20m

Compared with the existing vegetation-monitoring fluorescence LiDAR [38,39], the MWFL system
has a combination of scanning ranging and LIF to achieve 3D fluorescence imaging of vegetation
targets. This imaging method can form an integrated monitoring of the vegetation’s external growth
and internal biochemical components.

2.1.3. Data Description

The form of the MWFL system data is spatially presented in a point cloud format. Each point
has a fluorescence spectral property. The MWFL system breaks through the limitations of traditional
single-wavelength ranging LiDAR only for 3D space detection, given its fluorescence spectral features
and expanded ability to detect vegetation. The type of system data is divided into two parts: 3D point
cloud data and four-wavelength data of fluorescence signal. Figure 3 illustrates the formation process
of the MWFL system data form.

Figure 3. Data formation process of multi-wavelength fluorescence LiDAR.

Figure 3 shows that the UV laser generates the multi-wavelength fluorescence signal for a single
point via LIF, and its reflection is used for ranging. The design method for single-point measurement
was described in Section 2.1.2. The data-processing unit of the MWFL system records the distance
values at the single-point position and the fluorescence intensity values of the four channels. The
system scanning platform can be rotated in two directions, to perform 2D scanning detection on
vegetation targets. The rotary step values are simultaneously recorded. The data that are saved and
transferred to the data-processing unit consisted of three parts: the distance values of points, the
signal intensity of four channels, and the step values of the platform scanning. Among these parts,
the distances and step values between points constitute the 3D point cloud spatial distribution in the
form of spherical coordinates. These coordinates can be converted into a spatial Cartesian coordinate
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system. The vegetation fluorescence intensity in the four channels constitutes multi-wavelength
fluorescence characteristic data. The data outputted by the system include the XYZ coordinates and
the fluorescence intensity values of F460, F525, F685, and F740 of the vegetation target. The system
generates a remote-sensing data form for vegetation targets. This new form of data couples the 3D
distribution and fluorescence spectra of vegetation detection. As a result, the integrated monitoring of
spatial and physiological status of vegetation target is enabled. We hope that this new data format based
on the MWFL system can be applied to the remote-sensing monitoring of vegetation for improving the
accuracy of qualitative and quantitative detections of vegetation.

2.2. Sample Materials

Two scenes were presented as samples to demonstrate the ability of MWFL system’s 3D fluorescence
imaging in characterizing the vegetation states and the ability to couple spatial and physiological states.
The two leaves mentioned in Section 2.1.1 for wavelength selection were recommended as Scene 1 to
implement 3D fluorescence imaging on the basis of point cloud. This task was carried out to study the
spectral-imaging differences in the green, yellow, and brown areas of the leaf.

A scanning experiment of the potted vegetation was conducted, to prove the detection advantage
of the system on the 3D canopy as Scene 2 in an experimental scene (Figure 4). The leaves in this potted
vegetation were spatially distributed at different angles and positions. Moreover, the leaves represent
their different physiological states. Such a featured scene can be used as an observation sample with
spatially complex states and physiological differences. For two scenes arranged in the laboratory,
the ability of MWFL system to effectively monitor vegetation can be verified. Scene 1 expresses the
spectral detection performance of the system for fluorescence emission at the leaf level. Scene 2 shows
the fluorescence point cloud imaging capability of vegetation with 3D morphology.

Figure 4. Scene 2 for 3D point cloud imaging of the MWFL scanning experiment.

2.3. Methods

2.3.1. D Fluorescence Imaging Based on Spectral Enhancement

The spectral signal of the MWFL system comes from the photoelectric conversion of four channels.
However, the fluorescence spectral information of vegetation from the target of interest is often
insufficiently prominent, due to the ground-scene background. During the 3D imaging of vegetation
fluorescence, appropriate methods should be adopted to highlight the fluorescence characteristics of
vegetation for adapting to the perception of human eyes. The method of processing remote-sensing
hyperspectral image uses hyperspectral enhancement application and obtains exceptional analytical
results [40,41]. Histogram equalization (HE) is a commonly used image spectral enhancement method
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that redistributes the spectra intensity by histogram distribution [42]. In this work, the raw spectral
data obtained by the system were processed by the HE method. The fluorescence characteristics of the
vegetation point cloud after treatment in this way were significantly and visually enhanced. The signal
strength pseudo-color imaging of point cloud in four wavelengths can represent spatial changes in
leaves in different physiological states.

2.3.2. System Evaluation Based on Point Cloud Classification

The MWFL system expands the detection capability of the physiology and growth status through
the LIF mechanism for traditional LiDAR. The four added bands multiply the amount of information
contained in the system data compared with the single-wavelength LiDAR. The improvement of
vegetation-recognition ability via the increased four-wavelength fluorescence must be quantitatively
evaluated. In this study, the point cloud with multichannel fluorescence properties was analyzed by
classifying the different conditions of the leaves. The point cloud classification analysis included the
classification of data within four channels and the comparative classification of the spatial parameter
and four channels with that.

Support vector machine (SVM), which is a popular machine learning method, has been widely
applied for data classification and regression [43,44]. SVM has certain advantages, such as robustness
and demanding small sample size of remote sensing data for training [45]. Such a method is adaptive
for classifying the spatial and spectral feature data of the system. This method was used for point
cloud classification, to demonstrate the effectiveness of the 3D fluorescence data of the system for
vegetation detection.

The classification for system data is for Scene 2 because the data of Scene 1 are the representation of
fluorescence detection in a planar form on the MWFL system. The single-, double-, and four-wavelength
spectral data from Scene 2 were used as input eigenvalues of the model classifier for classification and
analysis. The normal vector is a commonly used parameter and is related to the spatial structure in
vegetation detection [46]. The normal vectors of the point cloud were used to indicate the recognition
ability of the single-wavelength LiDAR. The classification results of the fluorescence data of four
wavelengths with normal vectors were compared. In the training process of SVM classification, due
to the difference in the sample sizes of ground categories, the training samples were selected within
a category in turn. The classification selected 2-fold cross-validation—that is, 50% training and 50%
testing—and SVM kernel function choose the linear.

Moreover, the overall classification accuracy of the point cloud results can be affected by the
imbalance of the sample size of each category [47]. The Kappa coefficient [48] was also used as a
parameter to evaluate the overall classification in combination with the classification accuracy.

3. Results

For 3D imaging of fluorescence, the space point cloud is formed by reflective ranging of the
ultraviolet light and the rotary step values of the scanning. The point cloud data include the distance
values obtained by TOF method and the step values. In the experiments of Scene 1 and Scene 2, the
detection distance is about 3.5 m, and the point–point distance is about 3.5 mm. The space size of Scene
1 is 0.12 m × 0.22 m, and Scene 2 is 0.25 m × 0.28 m.

Figure 5 shows the 3D imaging result of the fluorescence point cloud of Scene 1. The results
of point cloud imaging showed the characterization of the vegetation’s physiological states by the
four-channel fluorescence signal, given that Scene 1 landed the leaves on the blackboard.
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Figure 5. Single-wavelength fluorescence 3D imaging based on scene 1 scanning experiment of the
MWFL system: (a) 460 nm, (b) 525 nm, (c) 685 nm, and (d) 740 nm wavelength signal intensity
pseudo-color 3D imaging. The intensity values were subjected to histogram equalization (HE)
and normalization.

The imaging results of Figure 5 demonstrate that the leaf and non-leaf backgrounds are displayed
in the form of point cloud and show significant differences. In the fresh green, yellow, and brown
areas of leaves, the four-wavelength spectral point cloud imaging presents visual features that match
themselves. However, the left and right leaves in Scene 1 exhibit significant differences in these four
characteristic wavelengths. The leaf on the left represents the green state of the vegetation. The
intensity values at 460 and 525 nm wavelengths are significantly lower than the yellow and brown-leaf
regions on the right. The brown area of the right leaf exhibits an extremely high intensity at 460 and
525 nm wavelengths due to the increased degree of the yellowing of the leaves. Fluorescence intensity
values at 685 and 740 nm are correlated in most regions of point cloud. The green area of the left leaf
and the yellow area of the right leaf are stronger than the brown area because the chlorophyll content
in the latter was exhausted. The tip portion of the upper side of the green leaf on the left has similar
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intensity values, at 685 and 740 nm, to the high intensity of the yellow region. The realistic picture of
Scene 1 shows that the green color in this area was declining. The actual colors between the two areas
are similar. The high-intensity values of most green areas might be due to the decrease of water content
or the nonlinear relationship between chlorophyll fluorescence intensity and chlorophyll content. In
the portion where the yellow and brown areas on the right side of the right leaf are bordered, that
is, the position of point B at wavelength selection in Section 2.1.1, the fluorescence intensity at 685
nm is slightly stronger than that at 740 nm. Such an outcome is consistent with the test result of the
continuous spectrum on point B. This finding indicates that a change buffer distribution of the internal
physiological state occurs between the yellow and brown areas of the leaf. The spatial distribution
change was revealed by fluorescence imaging of the MWFL system.

Experiments on the spatial distribution of Scene 2 based on MWFL system are performed
(Figure 6a). The spatial 3D geometry distribution of the potted vegetation in Figure 4 is presented
by the MWFL system. The manual labels were given as real categories of Scene 2, in preparation
for classification (Figure 6b). In comparison with Figure 4, Scene 2 was divided into four categories:
flowerpot, yellow leaves, withered leaves, and fresh green leaves (Figure 6b).

Figure 6. Scene 2 scanning experiment 3D point cloud based on MWFL system. (a) Three-dimensional
distribution of spatial point cloud; (b) The ground truth categories given for classification.

Figure 7 displays the four-wavelength 3D spectral intensity imaging results of Scene 2. Four
single-wavelength signal intensity pseudo-color 3D imaging interpretations are presented. In the point
cloud imaging of Scene 2, the imaging results of the four channels show an excellent spatial distribution
and spectral detection capability. The flowerpot exhibited low values in the four-wavelength 3D
fluorescence intensity imaging. Green leaves exhibit high intensity at 685 and 740 nm wavelengths.
Such leaves also present weak fluorescence signals at 460 and 525 nm wavelengths. Meanwhile, the
withered leaves in this scene show high intensity at 460 and 525 nm wavelengths. The signals at 685
and 740 nm wavelengths are barely high. However, the yellow leaves exhibited low intensity in four
channels. After that, we classified and analyzed the fluorescence point cloud data obtained by the
MWFL system. This step was conducted to quantitatively estimate and describe the recognition ability
of vegetation in Scene 2.
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Figure 7. Single-wavelength fluorescence 3D imaging based on the Scene 2 scanning experiment of
the MWFL system: (a) 460 nm, (b) 525 nm, (c) 685 nm, and (d) 740 nm wavelength signal intensity
pseudo-color 3D imaging. The intensity values were subjected to HE and normalization.

4. Discussion

The four single-wavelength spectral signal intensity imaging on the potted vegetation of Scene 2
demonstrated the spatial and spectral combined imaging potential of the MWFL system. The spatial
variation distribution of the leaf spectrum in Scene 2 showed the continuous change of the spectrum in
space to a certain extent.

Due to the influence of the spatial-distribution conditions, the fluorescence intensity can be
affected by factors such as the distance and angle of the system observation [49]. In addition, the
laser echo has the mixtures of vegetation and background targets during the scanning experiment.
These factors all affect the expression of fluorescence in 3D point cloud. Figure 8 shows the original
signal-intensity distribution of different ground categories in Scene 2. As shown in Figure 8a, it is clear
that green leaves exhibit high chlorophyll fluorescence intensity, and flowerpots, as non-plant targets,
have almost no signal in these two wavelengths. Yellow leaves in Scene 2 have almost no chlorophyll
fluorescence, with some fluorescence emission in 460 nm wavelength. Compared with yellow leaves,
withered leaves have a significantly enhanced fluorescence emission at 460 nm. From Figure 8b, the
correlation between the intensity of two chlorophyll fluorescence bands 685 and 740 nm in Scene 2 is
high. However, the difference between these two bands can be reflected in the imaging of Scene 1. The
distribution of the intensity of the features in Scene 2 in the channel shows the separability of the data,
which means the possibility of the classification.
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Figure 8. Scatter distribution of the channels’ intensity of the ground categories in scanning experiment
of Scene 2: (a) Channels 460 nm vs. 685 nm; (b) Channels 685 nm vs. 740 nm.

The effectiveness of the data obtained by the four added channels, especially the fluorescence
data, was evaluated by point cloud classification. SVM acted as a classifier to distinguish the categories
of Scene 2. We presented the classification results of two single-wavelengths (460 and 685 nm),
double-wavelength combination (460 nm + 685 nm), and four wavelengths as input eigenvalues
(Figure 9). The classification accuracies of the four single-wavelength were basically similar. Therefore,
two of four single-wavelength were representatively displayed as minimum and maximum classification
accuracies. The results of the double-wavelength combination classification were equal; hence, only
one combination was selected. Table 2 shows the confusion matrix of Figure 9a–d.

Figure 9. Different wavelength spectral data classification result graphs based on the MWFL
system scanning in Scene 2. (a) Single-wavelength (460 nm); (b) Single-wavelength (685 nm); (c)
Double-wavelength (460 nm + 685 nm); (d) Four-wavelength intensity data for classification.
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Table 2. Confusion matrices of different wavelengths’ spectrum data classification results for Scene 2
(corresponding to Figure 9).

Ground Truth
Predicted Class Producer

AccuracyFlowerpot Withered
Leaves

Yellow
Leaves

Fresh Green
Leaves

(a) 460 nm

Flowerpot 108 0 0 140 0.44
Withered leaves 16 0 0 100 0

Yellow leaves 4 0 0 129 0
Fresh green leaves 132 0 0 1147 0.90

User accuracy 0.42 0 0 0.76

Overall accuracy (%): 70.7%

Kappa coefficient: 0.17

(b) 685 nm

Flowerpot 235 0 0 13 0.95
Withered leaves 30 5 0 81 0.04

Yellow leaves 1 1 0 131 0
Fresh green leaves 159 6 0 1114 0.87

User accuracy 0.55 0.42 0 0.83

Overall accuracy (%): 76.2%

Kappa coefficient: 0.43

(c) 460 nm +
685 nm

Flowerpot 236 2 3 7 0.95
Withered leaves 51 13 6 46 0.11

Yellow leaves 5 12 18 98 0.14
Fresh green leaves 55 22 25 1177 0.92

User accuracy 0.68 0.27 0.35 0.89

Overall accuracy (%): 81.3%

Kappa coefficient: 0.56

(d) Four
wavelengths

Flowerpot 240 0 4 4 0.97
Withered leaves 7 57 19 33 0.49

Yellow leaves 0 13 69 51 0.52
Fresh green leaves 24 20 23 1212 0.95

User accuracy 0.89 0.63 0.60 0.93

Overall accuracy (%): 88.9%

Kappa coefficient: 0.75

Figure 9 and Table 2 demonstrate that the species-recognition accuracy is gradually increasing
from single to double to four wavelengths. Such accuracy was limited in the case where only
single-wavelength data were applied. The overall accuracies of the single-wavelength classifications
are 70.7% and 76.2%. Such a result is attributed to the simple category division, and the number of fresh
green leaves account for a large proportion, thereby resulting in a high classification. However,
the confusion matrices demonstrate that the single-wavelength data have almost no ability to
distinguish between yellow and withered leaves of the vegetation. The Kappa coefficients of the two
single-wavelength classifications also illustrate that. The classification to the kappa values of 0.17 and
0.43 were not ideal. If the double-wavelength data were used for classification, then the recognition
ability would be significantly improved. The classification accuracy of this case is 81.3%, and the Kappa
coefficient increased to 0.56, reflecting an improvement compared with those of single-wavelength data.
The result of the four-wavelength classification reveals that the classification accuracy reaches 88.9%,
and the Kappa coefficient increases to 0.75. Such a finding indicates that the classification results (see
Figure 9d) are consistent. The application of four-wavelength data further improves the identification
capability of vegetation physiological states. This finding illustrates the necessity for four wavelengths
to detect vegetation fluorescence. From the classification of the flowerpot, the system also has a certain
degree of detection ability for the background objects during vegetation-detection fieldwork.

The normal vector was used as the representative parameter of the spatial structural state to
be classified (Figure 10a). The normal vectors were computed by searching the neighbor points of
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the single point on the basis of the KNN algorithm and calculating the vertical pointing of the fitted
plane. The normal vectors and four-wavelength signal values were used together for classification
(Figure 10b). Table 3 shows the confusion matrix diagrams of Figure 10a,b.

Figure 10. Normal vectors and normal vectors with four-channel spectral classification results (Scene
2): (a) Normal vectors data and (b) Normal vectors with four-channel spectral data for classification.

Table 3. Confusion matrices of the normal vectors and normal vectors with four-channel spectral
classification results for Scene 2 (corresponding to Figure 10).

Ground Truth
Predicted Class Producer

AccuracyFlowerpot Withered
Leaves

Yellow
Leaves

Fresh Green
Leaves

(a) Normal vectors

Flowerpot 107 0 0 141 0.43
Withered leaves 8 7 6 95 0.06

Yellow leaves 3 0 9 121 0.07
Fresh green leaves 48 0 0 1231 0.96

User accuracy 0.64 1.0 0.60 0.78

Overall accuracy (%): 76.2%

Kappa coefficient: 0.29

(b) Normal vectors
+ four

wavelengths

Flowerpot 244 0 0 4 0.98
Withered leaves 4 73 13 26 0.63

Yellow leaves 3 14 91 25 0.68
Fresh green leaves 6 14 24 1235 0.97

User accuracy 0.95 0.72 0.71 0.96

Overall accuracy (%): 92.5%

Kappa coefficient: 0.84

The results in Figure 10 and Table 3 illustrate that the spatial parameter normal vectors present
a very unsatisfactory classification outcome for the complex structure of vegetation (classification
accuracy 76.2% and Kappa coefficient 0.29). In terms of the point cloud of Scene 2, the spatial shapes
and angles of vegetation leaves vary, and certain leaves have few points. Figure 10a demonstrates
that the normal vectors can distinguish a part of the flowerpot and most fresh green leaves, which are
also related to a large number of the fresh green leaves’ points. The normal vectors for yellow and
withered leaves are completely indistinguishable. However, the ability of fluorescence to indicate the
physiological state are exerted when the normal vectors and the four-wavelength spectral data are
combined as multi-eigenvalues (Figure 9b). The classification accuracy improves to 92.5% with the
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significant enhancement of the producer, user, and overall accuracies. The kappa coefficient increases
to 0.84, which is a promotion relative to the four-wavelength classification.

From the results of classification, the detection of vegetation fluorescence was improved to a
higher level compared to the space detection capability of the single-wavelength LiDAR. Therefore, the
four-wavelength signals detected by the MWFL system can effectively improve the recognition ability
of different growth states of vegetation through the LIF mechanism. Such a mechanism effectively
works with spatial parameters, which single-wavelength LiDAR possesses. The coupled detection of
these two mechanisms has great potential for the remote-sensing field.

5. Conclusions

The proposed MWFL system expands the fluorescence characteristic generated by the LIF in four
wavelengths, on the basis of the ranging LiDAR. We believe that the four-wavelength detectors added
to the system could represent the internal components of the vegetation. The data form of the MWFL
system can be coupled with the 3D spatial structural state and the physiological state information
of vegetation monitoring through data organization. The combination of two mechanisms enhances
the ability to identify and monitor vegetation targets. The significance of 3D fluorescence imaging
of vegetation is that it not only expresses the growth status from the outer space, but also expresses
the stress status of the internal physiological status. For different types of vegetation, in addition to
the different spatial-expansion states of external growth, the internal biochemical content also varies
greatly. The ability of fluorescence features to qualitatively and quantitatively indicate vegetation has
improved the capability of LiDAR monitoring. This monitoring method is of great benefit to forestry
development and precision agriculture.

At present, the signals of the 460 and 525 nm wavelengths have a relatively high correlation.
The necessity for designing these two bands may be performed by the quantitative monitoring of the
vegetation in the future.

Our analysis reflects the effectiveness of the 3D fluorescence imaging monitoring on the basis of the
MWFL system for vegetation remote sensing. The technical upgrades and performance optimization
of the system are required if there are platform operations and large space–time scale applications. In
the MWFL system, the radiation correction of distance and angular polarization are beneficial for the
quantitative monitoring of the surface vegetation.
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