
sensors

Article

Honeycomb Map: A Bioinspired Topological Map for
Indoor Search and Rescue Unmanned Aerial Vehicles

Ricardo da Rosa 1,2,*,† , Marco Aurelio Wehrmeister 2,† , Thadeu Brito 3,† ,
José Luís Lima 3,4,† and Ana Isabel Pinheiro Nunes Pereira 3,†

1 Federal Institute of Education, Science and Technology—Parana (IFPR), 85814-800 Campus Cascavel, Brazil
2 Campus Curitiba, Federal University of Technology—Parana (UTFPR), 80230-901 Curitiba, Brazil;

wehrmeister@utfpr.edu.br
3 Campus de Santa Apolónia, Instituto Politécnico de Bragança (IPB), Research Centre in Digitalization and

Intelligent Robotics (CeDRI), 5300-253 Bragança, Portugal; brito@ipb.pt (T.B.); jllima@ipb.pt (J.L.L.);
apereira@ipb.pt (A.I.P.N.P.)

4 INESC TEC - INESC Technology and Science, 4200-465 Porto, Portugal
* Correspondence: ricardo.rosa@ifpr.edu.br; Tel.: +55-45-99141-8255
† These authors contributed equally to this work.

Received: 16 January 2020; Accepted: 4 February 2020; Published: 8 February 2020
����������
�������

Abstract: The use of robots to map disaster-stricken environments can prevent rescuers from being
harmed when exploring an unknown space. In addition, mapping a multi-robot environment can
help these teams plan their actions with prior knowledge. The present work proposes the use of
multiple unmanned aerial vehicles (UAVs) in the construction of a topological map inspired by the
way that bees build their hives. A UAV can map a honeycomb only if it is adjacent to a known
one. Different metrics to choose the honeycomb to be explored were applied. At the same time, as
UAVs scan honeycomb adjacencies, RGB-D and thermal sensors capture other data types, and then
generate a 3D view of the space and images of spaces where there may be fire spots, respectively.
Simulations in different environments showed that the choice of metric and variation in the number of
UAVs influence the number of performed displacements in the environment, consequently affecting
exploration time and energy use.

Keywords: multi-robot; UAV; bioinspired map; topologic mapping; map exploration

1. Introduction

Mobile robotics is being applied more often to not only solve problems found in industrial
environments, but also applied to services and home uses. For example, robots can be used in the
process of warehouse automation, space monitoring, and house cleaning. These new applications
show that a mobile robot can perform complex tasks while navigating unknown environments and
avoiding unexpected obstacles by reacting to environmental stimuli [1]. Another application of mobile
robotics is in the support of rescue teams in natural-disaster or catastrophe situations. Exploration
might put the life of rescue-team professionals in danger. The use of Unmanned Aerial Vehicles (UAV)
may assist rescue activities, especially in indoor areas where the arrival or movement of a ground
robot is sometimes impossible. Access to unknown indoor areas requires techniques for defining the
space where a robot is positioned, generating environmental mappings in order to aid teams in the
reconnaissance of these areas where the use of global positioning systems (GPS) is unavailable. Thus,
an autonomous robot must deal with two critical problems to survive and navigate in its environment:
mapping the environment, and searching for its own location in the map [2].

For rescue environments, the time for space recognition becomes critical. Thus, the use of multiple
robots can reduce environment exploration time. The collective construction of a map that is used to

Sensors 2020, 20, 907; doi:10.3390/s20030907 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-5400-8652
https://orcid.org/0000-0002-1415-5527
https://orcid.org/0000-0002-5962-0517
https://orcid.org/0000-0001-7902-1207
https://orcid.org/0000-0003-3803-2043
http://www.mdpi.com/1424-8220/20/3/907?type=check_update&version=1
http://dx.doi.org/10.3390/s20030907
http://www.mdpi.com/journal/sensors

Sensors 2020, 20, 907 2 of 24

displace both multiple robots and the rescue team must represent spaces where it is possible to move
and points that need more attention, such as human-temperature recognition, toxic elements, fires,
and other factors that could be life-threatening.

This work proposes a mapping approach that was bioinspired by honeycomb construction.
Honeybees use hexagonal-pattern cylinders to progressively build a complex structure by adding
wax produced and manipulated by several bees [3]. This hexagonal structure allows the construction
of combs with less wax (material saving), with the capacity for more storage. The construction of a
honeycomb structure starts from a cell floor. Then, the structure is progressively extended in depth by
adding more materials around the cell walls. The hive combs are the result of the collective work of
hundreds of bees. There is no central commander/master for the building process. The individuals
follow simple rules related to environmental construction (e.g., only one bee at a time can build a
particular comb, and a new cell must be adjacent to an existing cell), so that this environment influences
behavior, which, in turn, transforms the environment, it being a mechanism of synergy [3].

The scope of this work is in the application of simulated models of UAVs with similar
configuration, and in addition, it will make use of simulation environments to validate the developed
method. In this way, details and restrictions of communication technologies are abstracted.

2. Related Works

2.1. Map Generation

Building an environment map is necessary for both robot exploration and in simultaneous
localization and mapping (SLAM) tasks. In [4], map generation was partitioned into three parts:
metric, topological, and hybrid maps. Cartographic maps are able to make use of Vector map ([5–7]);
however, they are not the focus of this work.

2.1.1. Metric Maps

Metric maps try to extract the features and geometric properties of the environment, and they
are represented as a grid, geometric, or feature map [8] . Often, metric maps are probabilistic [4], and
establish methods for modeling noise and its effects on environmental modeling. The approaches are
based on a Bayesian filter, graph-based SLAM, and submap-joining SLAM.

2.1.2. Topological Maps

Topological maps represent the environment in graphs, where nodes represent places and objects
of interest, and edges represent the spatial relationship or path between nodes [4]. In addition to
providing a more compact representation of the environment than metric maps, topological maps
provide a higher-level symbolic understanding for planning and navigation tasks. While metric
maps are achieved with odometry-error accumulation, topological maps are built without the worry
of metric aspects. Odometry errors that are accumulated between graph nodes do not necessarily
accumulate through the global map.

2.1.3. Hybrid Maps

Hybrid maps combine the advantages of metric and topological mapping. Topological mapping is
applied for a global view of the environment, while metric mapping is applied to smaller areas, which
reduces computational complexity during metric-information processing. A hybrid-map form is the
use of each topological-map node to represent a small metric map, and edges between nodes represent
the path from the center point of one metric map to the center point of the next metric map [4].

Sensors 2020, 20, 907 3 of 24

2.2. Multiple Robots in Environment Mapping

Solutions that use multiple robots are characterized by the application of homogeneous and
heterogeneous robots. Many related works make use of SLAM algorithms, but the focus of this work
is environment exploration. Thus, works that make use of SLAM were considered for understanding
the way they build the maps.

In [9], the authors performed collaborative space mapping with UAV and Unmanned Ground
Vehicle (UGV) modeling through complementary maps. While the UGV does 2D area mapping, the
UAV does 3D mapping of orthogonal objects in the environment. In [10], the authors presented
a practical application, which is the mapping of areas struck by earthquakes. This being an
implementation that uses a UAV and UGV, operation is semiautonomous. That happens because the
UGV is remotely controlled, but when it faces obstacles it cannot overcome, the UAV autonomously
does the mapping of the area. The execution of a 3D SLAM is done by the UAV via an RGB-D sensor,
and by the UGV with a laser scanner. In [11], the UAV implements a Parallel Tracking and Mapping
(PTAM)on the basis of sonar readings, while the UGV executes a Visual SLAM (VSLAM) fed by RGB-D
and laser sensors. The work’s goal was heterogeneous exploration using integer programming. The
UGV has its own VSLAM and, for places that it cannot explore, the UAV is put in action using PTAM.
UAV data via PTAM are then sent to the UGV and integrated in a VSLAM.

Some works that only use UAVs are presented: [12] uses a swarm to distribute areas to be explored
by the UAVs. The focus is the use of UAVs for both hunting and cleaning. Here, in a group of many
UAVs, one is defined as a sentinel and partitions the area for exploration. The work of [13] modified
the PTAM algorithm for multiple agents using monocular cameras. Environment exploration is done
cooperatively with recognition of points of interest. The definition of exploration is done via auction,
where each bid is the linear distance of each UAV to the point being explored. The shortest distance
wins the auction. In [14], an adaptation of PTAM (Parallel Tracking and Multiple Mapping—PTAMM)
with the use of RGB-D, inertial measurement unit (IMU), and infrared (IR) sensors was presented.
The work did localization and mapping using RGB-D sensors. A characteristic of this work is that it
decomposed a 3D SLAM problem in a monocular SLAM with sparse representation.

There are solutions that implemented cooperative indoor mapping by using only UGVs [15–19].
In [15], heterogeneous robots were used in 2D and 3D area mapping using laser scanners, performing
3D and 2D cooperative mapping via autonomous agent navigation. Here, each robot builds a local
map and sends the relevant data to a central server, where the data are joined with existing data
using join-compatibility branch and bound (JCBB) implementation. In [16], the authors adapted
the FastSLAM algorithm for multiple agents by also using laser scanners. Presenting a version of
FastSLAM adapted to multiple UGV robots, it could perform cooperative mapping with the stigmergic
potential field (SPF) technique, which represents behavioral influences of gathered data from the
operational environment of one of the agents. In [17], the UGVs executed a VSLAM via a monocular
camera. The creation of cooperative SLAM was based on salient landmarks to represent prominent
characteristics. For that, each robot performs its own monocular SLAM with Extended Kalman Filter
(EKF). The merge algorithm uses duplicated landmarks to increase the accuracy of the centralized map.
In [18], a laser and webcam were used to model an area. By employing multiple autonomous UGVs,
this work performs exploration with teams of robots for learning. Each robot creates a partial 3D map
that it shares with other robots in its communication range. A global map is created on the basis of
matching poses and mutual characteristics found in individual maps. The authors in [19] presented an
implementation of multiple GraphSLAM using a stereo camera. Here, autonomous UGVs perform
6D mapping of an area using graph topology to separate uncertainty estimates of the local filters of
multiple robots in a SLAM graph.

3. Methodology—Bioinspired Mapping Method

For [20], an exploration task is the combination of both mapping and robot motion-control activity.

Sensors 2020, 20, 907 4 of 24

This work proposes an environment exploration method with multiple UAVs inspired by how
bees build hives. The authors in [3] discussed how bees perform hive construction. Following the
behavior of bees in the construction of each honeycomb, UAVs perform the build and exploration map
in a similar way, where combs are represented as hexagons. Each honeycomb can have only one bee
occupying its space, so each hexagon can hold a maximum of one UAV. The built map is a collection
of hexagons.

The construction of a beehive begins with the work of the first bee, which begins construction
of the first honeycomb using wax to build its walls. Similarly, in the proposed method, a first UAV,
identified as the sentinel, generates the first map hexagon, checking whether there are adjacencies
for each of the six sides (honeycomb walls). In this case, the term adjacency means the possibility for
a UAV to move from one hexagon to another. Thus, a hexagon exists on the map if and only if it is
possible for a UAV to fully access it from another hexagon on at least one of its six sides, so obstacles
cannot exist between the center of one hexagon and the center of the other hexagon. Figure 1 shows a
UAV exploring a hex that should rotate at six angles: π/2, π/6,−π/6,−π/2,−5π/6, and 5π/6. Each
evaluated hexagon with possible adjacency is marked with an identifier.

Figure 1. Unmanned Aerial Vehicle (UAV) in hexagon exploration.

Briefly, the UAV explores the hexagon in each of its six angles, sets a new hexagon to explore and
moves to this, starts a new exploration. The Figure 2 shows this action.

Once the sentinel UAV finishes the first scan, all UAVs can start searching for spaces to explore.
To control the hexagons identified in the reading process from each of the six angles, some structures
are used. To record the identifiers (ids) of the explored hexagons, a list called “visited hexagon list” is
used. When the UAV rotates and finds adjacency for a new hexagon, a new id is generated and added
into a structure called a “not visited hexagon list”. Thus, a UAV searching for a hexagon to explore
should perform this search in the “not visited hexagon list”.

Sensors 2020, 20, 907 5 of 24

(a) Action 1: explore the first
hexagon.

(b) Action 2: get a new hexagon to
explore and scroll to it.

(c) Action 3: explore the new
hexagon

Figure 2. Exploration stages.

At the end of hexagon exploitation, id is removed from the latter list. Figure 3 presents two UAVs
exploring a given space. In this case, exploration started with hexagon 1, which was already explored.
For illustration purposes, hexagon 1 is green, indicating that it was already fully explored. In its
exploration process, adjacencies were identified with hexagons 2–4, which were inserted into the “not
visited hexagon list”. When a UAV began exploring hexagon 2, hexagons 5–7 were identified. Blue
hexagons represent spaces in exploration, while yellow ones are those that were identified but not yet
explored. The exploration process ends when the “not visited hexagon list” is empty.

Figure 3. Multiple UAV exploration: green hexagon, explored place; yellow hexagons, places that
have adjacency, but not yet explored; blue hexagons, places that are explored by UAV; white hexagons,
unknown places that are mapped in future steps.

3.1. Environment Exploration

Figures 4 and 5 present state diagrams of the scanning activity of both sentinel and other UAVs.
The sentinel UAV only behaves differently in the first exploration (where it generates the first id from
point xyz from its placement); in the others, it has the default behavior of the other UAVs.

Sensors 2020, 20, 907 6 of 24

Figure 4. First sentinel UAV exploration.

Figure 5. All UAVs after first sentinel exploration.

Sensors 2020, 20, 907 7 of 24

3.1.1. Checking If “Not Visited Hexagon List” Is Empty

This is the stopping criterion of the exploring algorithm. Each uncovered discovered hexagon is
inserted into the “not visited hexagon list”. When a UAV receives a id to explore, it remains in the
“not visited hexagon list” to the end of the exploration, but the UAVs that it exploits are registered.
This ensures that no UAV stops the exploration process without actually having any new spaces to
explore. For example, at one point in the exploration, one UAV may have finished its exploration,
while another is working. If no unvisited hexagons are currently available, the first UAV waits for
possible discoveries of the second UAV, which is still in exploration activity. If no new hexagon is
discovered, then exploration is finished, or new explorations process are done again.

3.1.2. Getting Id/Hexagon to Explore

When a UAV is free (no hexagons in the exploration process), it seeks a new place to explore,
which is done in the “not visited hexagon list”. To define which is assigned to the UAV, two metrics
were defined for different simulations: First-In–First-Out (FIFO) and Euclidean distance. The FIFO
metric assigns to the UAV that unvisited hexagon than has been awaiting exploration for the longest,
so the first discoveries are the first to be explored. The second metric defines that the hexagon to be
explored by the UAV is the one with the smallest Euclidean distance from the initial hexagon (id 1).

3.1.3. Go to Hexagon

Once the UAV gets a hexagon to explore, it must travel there. The UAV only transitions through
familiar and accessible spaces. Thus, given the hexagon where the UAV is located and the target,
one path is defined to go. This path is built from Dijkstra’s algorithm [21], with an adapted version
from [22]. With this path, the UAV travels the map until it reaches its target.

3.1.4. Add Hexagon Id into “Visited Hexagon List”

When the UAV finishes moving along the path defined by Dijkstra’s algorithm, it is in the hexagon
to explore. At the beginning of the exploration activity, hexagon id is inserted into the “visited hexagon
list” . This ensures that a UAV identifies a hexagon already found and identified by another UAV, not
creating a new id for the same space.

3.1.5. Rotate to Angle and Check If Angle Has Adjacent Hexagon

For each six sides of the hexagon (six angles), the UAV should rotate and check for adjacency: a
sensor checks if it is possible for the UAV to access the center of the neighboring hexagon; in other
words, if there are no obstacles between the two hexagons. If so, adjacency is added to an adjacency
matrix. Each angle of the explored hexagon is identified in the honeycomb map with dashed lines if
there is adjacency at that angle, or with continuous lines if there is none, as shown in Figure 6.

Sensors 2020, 20, 907 8 of 24

Figure 6. Honeycomb map.

3.1.6. Add Adjacent Hexagon Id into “Not Visited Hexagon List”

When the sensor reading discovers an adjacent hexagon for each of the six angles, and it is not in
the “visited hexagon list”, it sends it to the “not visited hexagon list”, if it is not already there (this is a
newly discovered hexagon).

3.1.7. Perform RFB-D and Temperature Reads

Map information is available for both UAVs to control their movements in the environment, and
for rescue teams to know the space that can be navigated. In addition to obstacle sensors, RGB-D and
temperature sensors are used. RGB-D sensors read the 3D angle of the UAV, and a cube view is then
built to aid rescue teams in space recognition. At the same time, a thermal sensor reads the temperature
from the same angle. If a temperature higher than a reference value is found, it is identified and a
photo of the location is taken. In honeycomb map, this scenario is represented with red lines, as shown
in Figure 6.

The RGB-D reading returns a matrix structure. The matrix size (nxm) and the range of RGB-D
sensor are set in a V-REP simulator in the sensor settings. Matrix values are between 0 and 1, where 0
is very close to and 1 very far from the sensor. When the UAV reads RGB-D, the 3D data, and the
angle and position of the UAV during the reading are recorded. These data are transformed from a
perspective to a global point. For instance, let R be the cube size, amplitudeRGBD the extent of the
RGB-D sensor, bu f f er the RGB-D matrix read, xn and yn the bu f f er dimension, angUAV the UAV
Euler angle, and posUAV the xyz UAV position. Algorithm 1 brings the data transformation.

Sensors 2020, 20, 907 9 of 24

Algorithm 1 RGB-D transformation algorithm.

1 function [xc , yc , zc] = TransformRGBD (R , amplitudeRGBD ,
2 buffer , xn , yn , angUAV, posUAV)
3 xc = 0 ;
4 yc = 0 ;
5 zc = 0 ;
6 deltaAngleRGBD = double (amplitudeRGBD) /double (xn) ;
7 for i =1 : yn
8 for j =1 : xn
9 i f (double (b u f f e r (i , j)) <0 .99)

10 angUAVz=rad2deg (angUAV(3)) ;
11 −−−nz i s the d i s t a n c e in meter .
12 −−−RGB−D i s s e t to 2m
13 nz=double (b u f f e r (i , j)) ∗2 ;
14 i f (j ==1)
15 dtAng =0;
16 e l s e i f (j ==xn)
17 dtAng=amplitudeRGBD ;
18 e lse
19 dtAng=deltaAngleRGBD∗double (j) ;
20 end
21 i f (dtAng < amplitudeRGBD/2)
22 a l f a =double (angUAVz) + ((amplitudeRGBD/2)−dtAng) ;
23 e lse
24 a l f a =double (angUAVz)−(dtAng−(amplitudeRGBD/2)) ;
25 end
26 a l f a r a d =deg2rad (a l f a) ;
27 −−−Sine ’ s Law
28 dy = double (nz∗ sin (double (a l f a r a d)) /sin (deg2rad (9 0))) ;
29 dx = nz∗ sin (double (deg2rad(180−90− a l f a))) /sin (deg2rad (9 0)) ;
30 −−−c a l c u l a t e dz
31 angUAVx = rad2deg (angUAV(1)) ;
32 i f (i ==1)
33 dtAngz =0;
34 e l s e i f (i ==xn)
35 dtAngz=amplitudeRGBD ;
36 e lse
37 dtAngz = deltaAngleRGBD∗double (i) ;
38 end
39 i f (dtAngz < amplitudeRGBD/2)
40 a l f a z =double (angUAVx) + ((amplitudeRGBD/2)−dtAngz) ;
41 e lse
42 a l f a z =double (angUAVx)−(dtAngz−(amplitudeRGBD/2)) ;
43 end
44 dz = nz∗ sin (double (deg2rad (a l f a z))) /sin (deg2rad (9 0)) ;
45 xp = posUAV(1) + dx ;
46 yp = posUAV(2) + dy ;
47 zp = posUAV(3) + dz ;
48 −−−D i s c r e t i z i n g values .
49 xc = round (xp/R) ∗R ;
50 yc = round (yp/R) ∗R ;
51 zc = round (zp/R) ∗R ;
52 end
53 end
54 end
55 end

Sensors 2020, 20, 907 10 of 24

3.1.8. Remove Id from “Not Visited Hexagon List”

At the end of the reading of the six sides of the hexagon, id is removed from the “not visited
hexagon list”. Then, the UAV can begin the search for a hexagon to explore again if the “not visited
hexagon list” is not empty; otherwise, the UAV’s exploration activity is finished.

3.2. Lock Path Resolution

Throughout the exploration process, the various UAVs will be moving towards their targets, and
consequently, their paths may cross. Avoiding collisions is a critical point for an environment with
multiple robots. Several approaches have been presented, where means of prevention are proposed
by optimized programming [23–25], potential fields [26], sampling-based methods [27], and others.
In general, two concepts are applied [28]: one where robots are free and can change their paths, and
another where robots have a fixed path with no possibility of changes. Thus, in the first concept,
the focus is on changing paths, while in the second, the focus is on controlling movement and time.
In [28] a method for treating deadlock for multiple robots where the path is fixed is discussed. To
improve performance, some stopping policies are proposed. With these policies, each robot makes
the decision to change or wait for another one. A correct-by-construction synthesis approach to
multi-robot mission planning that guarantees collision avoidance with respect to moving obstacles are
approach in [29], where has done an integration of a high-level mission planner with a local planner
that guarantees collision-free motion in three-dimensional workspaces, when faced with both static
and dynamic obstacles.

To avoid collisions, the proposed architecture defines that only one UAV can occupy one hexagon
(honeycomb) at a time. Thus, it is necessary to have a record of the hexagon that the UAV currently
occupies. To do this, each time a UAV moves from one hexagon to another, it records both which one it
is in and what is the next move. Collision is avoided in this way; however, deadlock states can happen.

In the proposed approach, it is assumed that a UAV can be found in three possible states: “in
exploration”, “in displacement” or “stopped”. The state “in exploration” means that the UAV is reading
the six angles of the hexagon (honeycomb), and generating the mapping data. “In displacement” means
that the UAV is moving to a hexagon and make their exploitation. The “stopped” state means that the
UAV has no allocated exploration, and is not moving to any honeycomb.

A key element for resolving path blocks in this approach is the Adjacent Degree (AD), which
is the number of adjacent hexagons, directly or indirectly, to which the UAV can travel, in order to
free the paths. To obtain the AD, each UAV checks how many hexagons are directly adjacent to it,
excluding those in which they are occupied by other UAVs. If the AD value is greater than 1, it means
that there is space to perform a maneuver to release the passage. If the AD value is 1, the AD value for
this adjacent single is searched. The AD value found for the adjacent one will be its value as well.

A comparison between the AD values of each UAV is made, and if there is a conflict between
UAVs, the one with the highest AD must give way to the one with the smallest, moving to one of its
adjacent hexagons to resolve the deadlock . When he finishes moving, he retraces his trajectory for his
hexagon to explore and returns to his tasks. The Figure 7 presents a scenario with two UAVs, where
the UAV in the blue hexagon has three adjacent hexagons directly and its AD value is 3, while the one
in yellow has a single adjacent one; however, this, in turn, it has two adjacent hexagons, making the
UAV AD in the yellow hexagon to be 2.

Sensors 2020, 20, 907 11 of 24

Figure 7. Adjacent Degree: blue hexagon has AD = 3, while yellow hexagon AD = 2.

Considering the existence of several UAVs in the environment, each one identified as A, B, C, ..., Z,
and A→ B representing the UAV who wants to move to the hexagon which is the UAV B. Some cases
of path blocking can happen:

• Case 1—A→ B and B→ A:

In this scenario, UAV A wants to move to the hexagon of UAV B, and at the same time, UAV B
wants to move to the hexagon where UAV A. Here, each UAV calculates its adjacent degree (AD).
The UAV that has the largest AD will open the way to the other UAV.

• Case 2—A→ B:

In this scenario, only UAV A shows that it wants to move to the hexagon of UAV B; however, B
will not go to the hexagon of A is. In this case, UAV B may be in an “in exploration” or “stopped”
state. If it is in an “in exploration” state, UAV A will recalculate a new path trying to deflect
the hexagon occupied by B. If there is only one path, UAV A waits for UAV B to complete its
exploration. On the other hand, if UAV B is in a “stopped” state, UAV B itself will identify that
UAV A wants to go to the hexagon it occupies. That way, it will calculate your AD and compare it
with the UAV A. If your AD is greater, it will move to a free adjacent hexagon, and otherwise, it
will try to move to a hexagon adjacent to the UAV A, which causes them to find themselves in
Case 1.

• Case 3—A→ B, B→ C and C → A:

In this case, two UAVs are unable to mutually identify a deadlock. So, it is necessary to check if
there is a cyclically blocking. Thus, from the hexagon to which you want to move, UAV A checks
if there are any others that want to move to where it is. If this block is detected, the UAV calculates
its AD, and if it is greater than 0, it will give space for the resolution of the deadlock. After that,
the path to the defined hexagon will be recalculated, and then continue your task.

3.3. Simulation

To validate the proposed method, simulations were performed with different scenarios and UAV
numbers. Through the simulation, it was possible to verify the proposed approach, i.e., to plan the
UAV tasks to map a catastrophic environment. Simulations were created with the following setup:
CPU, Intel Xeon with 3.33 GHz 6 Core, 6 GB 1333 MHz DDR3 memory, and GPU ATI Radeon HD 5770
1024 MB.

Sensors 2020, 20, 907 12 of 24

There are several robot simulation environments, such as Open HRP [30], Gazebo [31], Webots [32]
and Virtual Robot Experimentation Platform (V-REP) [33]. In this work, we chose V-REP, which
has application programming interfaces (API) that allow communication with many programming
languages. The proposed approach was implemented in MATLAB [34].

Figure 8 shows the simulation scenarios. Both were 10 × 10 m locations. Scenario 1 (Figure 8a)
presents a place characterized by rooms with furniture that were knocked down, like an earthquake
scene, while Scenario 2 (Figure 8b) is a place with passages; red dots represent fire spots.

(a) Scenario 1. (b) Scenario 2.

Figure 8. V-REP simulation scenarios.

To perform exploration, the simulations made use of two and three similar UAVs. Figure 9 shows
a used UAV. The UAV was equipped with an RGB-D camera, a thermal sensor, and a laser sensor. The
laser sensor took a 0.5 cm radio to the honeycomb, so distance from a hexagon center to another was
1 m. For each scenario and each configuration (two or three UAVs), simulations were performed with
the FIFO and Euclidean Distance algorithms.

Figure 9. UAV in simulation.

4. Results

Figure 10 shows scenarios merged with the honeycomb-map build. After the simulations were
performed, it was possible to verify the displacements of each UAV within the generated map, as well
as the order of honeycomb exploration by each UAV.

Sensors 2020, 20, 907 13 of 24

(a) Scenario 1 with honeycomb map. (b) Scenario 2 with honeycomb map.

Figure 10. Scenarios merged with honeycomb map.

4.1. Scenarios and Honeycomb-Map Generation

Figures 11 and 12 show the movements made by the UAVs in the simulations of Scenarios 1
and 2, respectively. Figures 13 and 14 present the exploration order of each UAV with the respective
hexagon-definition algorithm to be explored, FIFO and Euclidean distance. The blue line correspond
to UAV 1, the red is UAV 2, and the green is UAV 3 (when the simulation had three UAVs).

The yellow circle identifies the highest-traffic hexagon. Hexagon traffic means how many times a
UAV went through the hexagon. Table 1 shows the max traffic number in the simulations. Considering
the ids of Table 1, and relating them in Figures 11 and 12, these most accessed hexagons were located
in places characterized as doors or passageways.

In the simulations, the movements of each UAV were recorded. Displacement means that a UAV
moved from a hexagon to an adjacent one. Table 2 shows the displacement number and average
per UAV in each simulation in Scenario 1. Table 3 shows the same for Scenario 2. Table 4 bring the
exploration time. Tables 5 and 6 details data from both exploration order and displacement.

Table 1. Hexagon traffic.

Simulation Scenario 1 Scenario 2

Id Hexagon Traffic Number Id Hexagon Traffic Number

Two UAVs–FIFO 8 17 3 19
Two UAVs–Euclidean distance 4 and 12 8 3 13

Three UAVs–FIFO 5 and 10 15 2 21
Three UAVs–Euclidean distance 10 and 13 9 12 14

Table 2. Displacement number—Scenario 1.

Simulation FIFO Average/UAV Euclidean Distance Average/UAV

Two UAVs 196 98 143 71.5
Three UAVs 203 67 169 56.33

Variation - 31.63% - 21.21%

Sensors 2020, 20, 907 14 of 24

(a) Scenario 1 - 2 UAVs—First-In–First-Out
(FIFO).

(b) Scenario 1. Two UAVs–Euclidean distance
(ED).

(c) Scenario 1. Three UAVs–FIFO.
(d) Scenario 1. Three UAVs–Euclidean
distance.

Figure 11. Displacement—Scenario 1.

Table 3. Displacement number—-Scenario 2.

Simulation FIFO Average/UAV Euclidean Distance Average/UAV

Two UAVs 290 145 206 103
Three UAVs 324 108 271 90.33

Variation - 25.51% - 12.29%

Sensors 2020, 20, 907 15 of 24

(a) Scenario 2-2. UAV–FIFO. (b) Scenario 2-2. UAV–Euclidean distance.

(c) Scenario 2-3. UAV–FIFO. (d) Scenario 2-3. UAV–Euclidean distance.

Figure 12. Displacement—Scenario 2.

(a) Scenario 1-2. UAV–FIFO. (b) Scenario 1-2. UAV–Euclidean distance.

Figure 13. Cont.

Sensors 2020, 20, 907 16 of 24

(c) Scenario 1-3. UAV–FIFO. (d) Scenario 1-3. UAV–Euclidean distance.

Figure 13. Exploration order—Scenario 1.

(a) Scenario 2-2. UAV–FIFO. (b) Scenario 2-2. UAV–Euclidean distance.

(c) Scenario 2-3. UAV–FIFO. (d) Scenario 2-3. UAV–Euclidean distance.

Figure 14. Exploration order—Scenario 2.

Sensors 2020, 20, 907 17 of 24

Table 4. Exploration time.

Simulation Scenario 1 Scenario 2

Two UAVs–FIFO 2:30:32 3:00:17
Two UAVs–Euclidean distance 2:24:56 2:27:58

Three UAVs–FIFO 3:44:25 2:08:09
Three UAVs–Euclidean distance 3:54:17 1:56:08

Table 5. Exploration order.

Scenarios UAV Number Exploration Order

Scenario 1

Three UAV - Euclidean Distance
UAV 1 1 2 4 7 16 15 14 20 23 27 31 35 34 39 44 43
UAV 2 3 6 9 11 12 22 21 24 29 28 33 37 40 41
UAV 3 5 10 8 19 18 13 17 26 25 30 32 38 36 42

Two UAV - Euclidean Distance
UAV 1 1 3 6 9 7 10 11 14 16 13 23 19 22 28 30 31 33 37 34 40 43 42
UAV 2 2 5 4 8 12 17 21 24 20 15 18 25 27 26 29 32 35 38 39 36 41 44

Three UAV - FIFO
UAV 1 1 2 6 8 11 15 18 21 23 26 30 33 35 37 41 44
UAV 2 3 5 9 12 14 16 19 22 25 28 31 34 39 40 42
UAV 3 4 7 10 13 17 20 24 27 29 32 36 38 43

Two UAV - FIFO
UAV 1 1 2 5 7 8 10 12 15 17 19 21 23 25 27 29 31 33 35 37 39 41 42 44
UAV 2 3 4 6 9 11 13 14 16 18 20 22 24 26 28 30 32 34 36 38 40 43

Scenario 2

Three UAV - Euclidean Distance
UAV 1 1 4 5 7 12 16 17 20 24 26 30 33 35 41 43 45 47 53 55 59 61 52 65
UAV 2 2 6 9 13 15 18 19 23 25 28 32 34 38 39 40 44 51 56 60 50 63
UAV 3 3 8 10 11 14 22 21 27 29 31 36 37 42 46 48 49 54 58 57 62 64

Two UAV - Euclidean Distance
UAV 1 1 4 3 7 8 9 13 12 15 21 18 22 23 24 27 28 31 32 34 37 41 46 49 51 55 57 59 54 43 61 63 64 36 40
UAV 2 2 5 6 11 10 14 16 17 19 20 25 26 29 30 33 35 39 42 44 47 52 53 56 58 48 60 50 45 62 65 38

Three UAV - FIFO
UAV 1 1 2 5 8 11 16 18 20 23 27 30 33 35 37 40 43 46 49 53 56 58 62 65
UAV 2 3 6 9 13 15 19 22 25 28 31 34 38 42 45 47 50 54 57 60 63
UAV 3 4 7 10 12 14 17 21 24 26 29 32 36 39 41 44 48 51 52 55 59 61 64

Two UAV - FIFO
UAV 1 1 2 5 6 8 10 12 14 16 18 20 22 24 26 29 31 33 35 36 38 40 42 44 46 48 50 52 54 56 58 59 62 64
UAV 2 3 4 7 9 11 13 15 17 19 21 23 25 27 28 30 32 34 37 39 41 43 45 47 49 51 53 55 57 60 61 63 65

Table 6. Displacement order.

Scenarios UAV Number Exploration Order

Scenario 1

Three UAV - Euclidean Distance

UAV 1
1 2 4 7 4 10 16 15 10 4 7 14 9 12 20 23 12 9 7 4 10 15 18 21 27 18 15 10 8 17 29 31 35 34 31 29 28 32 39 44
39 36 43 36 32 28 25 13 7 5 3 1

UAV 2
1 3 6 9 6 11 12 9 7 8 10 16 19 22 19 21 18 15 10 8 13 24 13 17 29 28 17 13 14 9 12 23 30 33 26 14 13 17 28 32
37 31 35 38 40 34 31 29 28 32 36 41 39 32 28 17 8 4 2

UAV 3
1 2 5 2 4 10 8 10 16 19 18 15 10 8 13 17 13 14 26 14 24 25 13 14 26 30 26 14 13 17 28 32 28 29 31 35 38 34
31 37 32 36 32 37 31 34 40 42 40 34 31 29 17 8 4 7 5 3

Two UAV - Euclidean Distance

UAV 1
1 3 6 9 6 5 7 8 10 8 7 11 7 14 7 4 12 16 12 4 5 6 9 13 9 6 5 4 12 16 20 23 20 16 12 11 19 15 22 25 28 25 14
15 19 30 19 15 14 25 31 25 22 26 29 33 37 32 34 40 34 32 37 33 39 43 39 33 37 32 34 40 42 40 34 32 30 19
11 4 5 3 1

UAV 2
1 2 5 4 5 8 5 4 12 17 21 24 21 20 16 12 11 15 7 8 10 18 10 8 14 25 14 7 4 12 16 20 23 27 20 16 12 11 15 26 29
30 32 35 38 35 32 37 33 39 36 41 44 36 33 29 19 11 4 2

Three UAV - FIFO

UAV 1
1 2 5 2 3 6 8 6 11 6 8 4 5 9 15 18 21 15 12 14 8 6 11 20 23 13 8 4 5 10 17 26 17 10 9 15 24 30 33 21 15 9 10 17
26 35 26 17 10 9 12 18 21 24 30 37 36 41 44 41 36 30 24 15 9 5 4

UAV 2
1 3 6 3 1 2 5 9 12 14 7 5 10 16 10 9 12 19 22 14 7 5 10 16 25 16 10 5 7 14 22 28 22 14 7 5 10 16 25 31 25 16 10
5 7 12 15 21 27 34 32 39 40 32 27 33 30 36 42 36 30 24 15 9 5 2

UAV 3
1 3 4 7 5 10 5 4 8 13 8 4 5 10 17 10 5 4 8 13 20 13 8 14 12 15 24 21 27 21 18 19 22 29 22 19 18 21 27 32 27 33
30 36 30 24 15 9 10 16 25 31 38 25 16 10 9 15 21 27 34 43 34 27 21 18 12 7 4 3

Two UAV - FIFO

UAV 1
1 2 5 7 8 7 10 6 12 6 4 5 8 15 8 9 17 9 8 11 19 13 10 14 21 14 10 7 8 15 23 15 8 9 16 25 16 9 5 7 13 20 27
20 13 11 15 22 29 22 15 8 9 16 25 31 25 16 9 8 15 22 29 33 35 29 34 30 37 30 34 29 33 39 33 35 41 35 29 34
30 36 42 44 42 36 30 23 15 8 5 4 3 1

UAV 2
1 3 4 6 4 5 9 8 11 13 10 14 6 4 5 9 16 9 8 11 18 11 13 20 13 11 15 22 15 8 7 10 14 24 14 6 4 5 9 17 26 17 9
5 7 13 20 28 20 13 11 15 23 30 23 15 8 9 17 26 32 26 17 9 8 15 22 29 34 30 36 30 23 15 8 9 16 25 31 38 25 16
9 8 15 22 29 33 40 33 29 34 30 36 43 36 30 23 15 8 5 2

Sensors 2020, 20, 907 18 of 24

Table 6. Cont.

Scenarios UAV Number Exploration Order

Scenario 2

Three UAV - Euclidean Distance

UAV 1
1 4 5 2 3 7 12 11 16 17 11 7 3 2 4 8 10 14 20 14 10 8 4 2 3 7 12 15 17 16 18 24 18 19 26 30 33 35 34 36 41
43 42 45 47 46 47 48 53 48 47 51 55 59 61 59 54 51 47 46 44 52 44 50 57 62 65 63 62 57 49 46 42 41 36 31
28 24 18 16 11 7 6 2 1

UAV 2
1 2 3 6 2 4 8 9 13 9 8 4 2 6 7 11 15 11 16 18 19 23 19 25 24 28 32 34 38 34 36 39 37 40 37 36 41 42 44 46
45 51 48 51 55 51 48 53 56 54 55 60 55 51 47 46 50 57 49 57 50 57 50 57 49 57 62 63 62 57 49 46 42 41 39 37
34 32 29 25 19 17 15 12 7 6 2

UAV 3
1 3 7 3 2 4 8 10 8 4 2 3 7 11 7 3 2 4 8 10 14 10 8 4 2 3 7 11 15 22 21 15 11 17 11 7 3 2 4 8 10 14 20 27 20
14 10 8 4 2 3 7 11 16 18 24 29 28 31 36 37 36 41 42 46 45 48 45 46 49 47 51 54 58 54 51 47 49 57 62 57 50
57 50 52 64 50 44 42 41 36 31 28 24 18 16 11 7 3

Two UAV - Euclidean Distance

UAV 1
1 4 1 3 7 3 2 4 5 8 5 9 13 8 5 4 2 3 7 10 12 15 12 21 12 15 18 15 22 18 17 23 24 23 27 28 31 32 34 37 33 35
39 41 46 41 44 49 51 49 52 55 53 57 59 54 51 47 44 41 43 41 46 48 60 61 63 64 63 61 60 48 46 41 39 35 36 40
36 33 31 28 24 18 15 12 11 7 3 1

UAV 2
1 2 4 5 4 2 3 6 3 7 11 10 14 10 7 3 1 4 5 9 16 9 5 4 2 3 7 10 14 17 14 10 7 3 2 4 5 9 16 19 16 9 5 4 2 3
7 10 12 20 12 10 7 3 2 4 5 9 16 19 25 19 16 9 5 4 2 3 7 10 14 18 26 29 28 27 30 33 35 39 42 41 44 47 49 52
53 56 53 57 58 57 53 51 47 48 60 50 45 62 65 50 45 41 39 38 35 30 27 23 17 14 10 7 3 2

Three UAV - FIFO

UAV 1
1 2 5 2 4 8 4 2 3 7 9 11 16 18 11 9 12 20 12 9 7 3 2 4 8 14 23 14 8 4 2 3 7 9 11 16 22 27 26 30 33 30 35 37
36 40 36 39 36 38 41 40 41 38 41 40 41 40 41 38 43 46 45 49 45 46 53 50 56 50 53 58 50 45 47 51 55 62 55
51 47 49 56 61 56 49 56 61 64 65 64 61 56 49 45 42 41 38 32 28 24 18 11 9 7 5 2 1

UAV 2
1 3 2 3 2 3 2 4 6 2 3 7 9 13 9 7 3 2 4 8 15 8 4 2 3 7 9 13 19 22 16 11 9 7 3 2 4 8 15 25 15 8 4 2 3 7 9 11 18
24 28 26 31 26 21 16 11 9 7 3 2 4 8 15 25 29 34 29 25 15 8 4 2 3 7 9 11 18 24 28 32 38 41 42 45 47 44 42 46
50 45 47 51 54 52 57 54 60 63 60 54 51 47 44 42 41 40 36 33 30 26 21 16 11 9 7 5 2

UAV 3
1 3 7 3 2 4 8 10 8 4 2 3 7 11 7 3 2 4 8 10 14 10 8 4 2 3 7 11 15 22 21 15 11 17 11 7 3 2 4 8 10 14 20 27
20 14 10 8 4 2 3 7 11 16 18 24 29 28 31 36 37 36 41 42 46 45 48 45 46 49 47 51 54 58 54 51 47 49 57 62 57
50 57 50 52 64 50 44 42 41 36 31 28 24 18 16 11 7 3

Two UAV - FIFO

UAV 1

1 2 3 5 6 3 2 4 8 4 2 3 6 10 9 12 9 6 3 2 4 8 14 8 4 2 3 6 9 11 16 11 12 18 12 13 20 13 9 6 3 2 4 8 15 22 15
8 4 2 3 6 9 11 16 24 16 11 9 6 3 2 4 8 15 22 26 22 15 8 4 2 3 6 9 11 16 24 29 28 31 33 31 35 36 38 35 34 40
42 44 42 46 45 48 45 50 45 44 47 52 47 48 49 54 49 48 47 52 56 57 53 58 53 48 49 54 59 54 49 48 53 58 62 64
61 57 52 47 44 42 40 34 30 27 23 16 11 9 6 3 1

UAV 2

1 3 1 4 7 2 3 6 9 11 9 13 9 6 3 2 4 8 15 8 4 2 3 6 9 11 17 12 19 12 9 6 3 2 4 8 14 21 14 8 4 2 3 6 9 11 16
23 16 17 25 24 23 27 28 27 30 27 23 16 11 9 6 3 2 4 8 15 22 26 32 26 22 15 8 4 2 3 6 9 11 16 23 27 30 34 37
39 37 41 37 34 40 43 42 45 44 47 44 45 49 45 46 51 46 45 48 53 48 45 46 51 55 50 45 48 53 48 53 57 60 61
57 53 48 49 54 59 63 65 63 59 54 49 45 46 43 40 34 30 27 23 16 11 9 6 3 2

4.2. Cube View and Temperature Caption

In addition to performing the mapping honeycomb in a hexagonal shape, further information can
be generated for rescue teams. With the RGB-D sensor, a cube view can be generated. Figure 15 shows
the Scenario 1 cube projection (Figure 8a), while Figure 16 shows the honeycomb map.

A cutout of 41 and 44 hexagons from the generated map of Figure 16, and the location of these
hexagons in the simulator, are shown in Figure 17. In Section 3.1.7, the TransformRGB-D Algorithm 1
shows how RGB-D points are converted into 3D cubes.

In Figure 16, red lines (continuous or dashed) indicate the temperature reading above a reference
value. Then, a fire-spot photo was recorded. Figure 18 shows the caption of hexagon 14 in Scenario 1.

Sensors 2020, 20, 907 19 of 24

Figure 15. Three-dimensional cube view.

Figure 16. Honeycomb-map simulation—Scenario 1, three UAVs, Euclidean distance algorithm.

Sensors 2020, 20, 907 20 of 24

(a) Three-dimensional cube view—hexagons 41 and 44.

(b) V-REP scenario 1—hexagons 41 and 44.

Figure 17. Clipping of hexagons 41 and 44 of Figure 16.

Figure 18. Fire-spot—hexagon 14 of Scenario 1.

Sensors 2020, 20, 907 21 of 24

5. Discussion

Topological mapping reduces information processing compared to metric mappings. The graph
structure allows the execution of generic algorithms, such as the Dijkstra algorithm, used in trajectory
planning. The data presented in Section 4 show the behavioral differences in the simulations
considering number of UAVs, and algorithms in the definition of places to be explored, besides
environment characteristics. By comparing the simulations, we verified that traffic in the hexagons
was reduced when there was an algorithm change (FIFO for Euclidean Distance), as can be seen in
Table 1. When comparing the change in UAV number, there was a slight increase in the maximum
traffic value and exploration time, as can be seen in Table 4. When Scenario 2 is analyzed, the variation
in the number of UAVs from two to three, in both FIFO and Euclidean Distance algorithms, reduces
the exploration time. Already in Scenario 1 the opposite occurs. This happens due to the characteristics
of the scenarios, where Scenario 2 has wide passages and more space for maneuvers, while Scenario 1
is composed of rooms and narrow doors, which influences the processing to avoid collisions in this
points that were bottlenecks on the map. To decrease these values, an algorithm that considers not only
Euclidean distance, but also the arrangement of UAVs and hexagons as a whole, should be evaluated.

On UAV displacement in the simulated scenario, Tables 2 and 3 exhibited a strong reduction
in UAV movement when increasing the number of UAVs and changing the algorithm of choosing
hexagons to explore. For Scenario 1, the change in the number of UAVs in the FIFO algorithm showed
31.63% reduction in average displacement per UAV. For the Euclidean distance algorithm, the reduction
was 21.21%. By changing the simulation with two UAVs to three, and the FIFO algorithm for the
Euclidean distance algorithm, reducing displacement in the scenario reached 42.52%; the same analysis
for Scenario 2 showed a displacement decrease of 37.7%. This saves both energy and exploration time .

6. Conclusions

This work presented an environment mapping method inspired by how bees build their hives.
Since only one bee constructs and occupies the space of a honeycomb, a topological map was
constructed so that UAVs involved in the mapping process behaved similarly to bees. The definition of
which honeycomb the UAV should map depends on a metric. The performed simulations considered
two metrics to define which honeycomb should be mapped, FIFO and Euclidean Distance. In addition,
simulations were performed by changing the number of UAVs. This demonstrated that setting the
exploration order has direct impact on the number of offsets and a UAV in the environment, considering
its position on the map. This can result in saving both energy and exploration time. Generating RGB-D
and thermal-reading information enables rescuers to be prepared for obstacles and dropped objects,
but also life-threatening elements such as high temperatures.

Future Work

Improvements in the definition of the spaces to be explored can be made, with metrics that
consider not only distance from the initial hexagon (Euclidean distance), but also UAV location and
environmental characteristics. In addition, in identifying points that may endanger the life of the
rescue team, the use of gas or other toxic-element sensors may be applied. There is still the challenge
of gathering this information and processing it with the use of game theory and machine learning. So
far, each UAV works independently; however, it is not identified when a failure occurs with another
one. A way of detecting failures and generating contingency plans needs to be implemented in future
work. In this work, the representation of the hexagons is made in a projection of the x and y axes. In
future work, the z axis will be added, so that this representation has several layers.

Author Contributions: R.d.R. developed the software and contributed to methodology, investigation, data
curation, formal analysis, resourses, validation and writing (original draft). M.A.W. contributed to resourses,
project administration, supervision, validation and writing (review and editing). T.B., J.L.L. and A.I.P.N.P.
contributed to conceptualization, resourses and supervision. All authors have read and agreed to the published
version of the manuscript.

Sensors 2020, 20, 907 22 of 24

Funding: This research was funded by the Federal University of Technology (UTFPR), Federal Institute of
Education, Science and Technology (IFPR) and Polytechnic of Bragança (IPB).

Acknowledgments: We would like to thank UTFPR and IFPR for their support in providing the equipment to
run the simulations.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

AD Adjacent Degree
ED Euclidean Distance
EKF Extended Kalman Filter
FIFO First-In–First-Out
GPS Global Positioning Systems
IMU Inertial Measurement Unit
IR Infrared
JCBB Join-compatibility Branch and Bound
PTAM Parallel Tracking and Mapping
PTAMM Parallel Tracking and Multiple Mapping
RGB-D Red, Green, Blue and depth
SLAM Simultaneous Localization and Mapping
SPF Stigmergic Potential Field
UAV Unmanned Aerial Vehicle
UGV Unmanned Ground Vehicle
VSLAM Visual SLAM

References

1. Thrun, S. Robotic Mapping: A Survey; Research paper; School of Computer Science, Carnegie Mellon
University: Pittsburgh, PA, USA, 2002.

2. Saeedi, S.; Trentini, M.; Seto, M.; Li, H. Multiple-Robot Simultaneous Localization and Mapping: A Review.
J. Field Robot. 2016, 33, 3–46, doi:10.1002/rob.21620. [CrossRef]

3. Nazzi, F. The hexagonal shape of the honeycomb cells depends on the construction behavior of bees. Sci. Rep.
2016, 6, 28341, doi:10.1038/srep28341. [CrossRef] [PubMed]

4. Dhiman, N.K.; Deodhare, D.; Khemani, D. Where am I? Creating spatial awareness in unmanned ground
robots using SLAM: A survey. Sadhana 2015, 40, 1385–1433. [CrossRef]

5. Douglas, D.H.; Peucker, T.K. Algorithms for the Reduction of the Number of Points Required to Represent a
Diditized Line or its Caricature. Cartographica 1973, 10, 112–122. [CrossRef]

6. Jelinek, A. Vector Maps in Mobile Robotics. Acta Polytech. CTU Proc. 2015, 2, 22–28. [CrossRef]
7. Reimer, A. Cartographic Modelling for Automated Map Generation. Ph.D. Thesis, Technische Universiteit

Eindhoven., Eindhoven, The Netherlands, 2015.
8. Stachniss, C. Coordinated multi-robot exploration. In Robotic Mapping and Exploration; Springer: Berlin,

Germany, 2009; pp. 43–71.
9. Mahendran, A.; Dewan, A.; Soni, N.; Krishna, K.M. UGV-MAV Collaboration for Augmented 2D Maps.

In AIR ’13, Proceedings of the Conference on Advances in Robotics; ACM: New York, NY, USA, 2013; pp. 1–6,
doi:10.1145/2506095.2506116. [CrossRef]

10. Michael, N.; Shen, S.; Mohta, K.; Mulgaonkar, Y.; Kumar, V.; Nagatani, K.; Okada, Y.; Kiribayashi, S.;
Otake, K.; Yoshida, K.; et al. Collaborative mapping of an earthquake-damaged building via ground and
aerial robots. J. Field Robot. 2012, 29, 832–841. [CrossRef]

11. Dewan, A.; Mahendran, A.; Soni, N.; Krishna, K.M. Heterogeneous UGV-MAV exploration using integer
programming. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Tokyo, Japan, 3–7 November 2013; pp. 5742–5749.

https://doi.org/10.1002/rob.21620
http://dx.doi.org/10.1002/rob.21620
https://doi.org/10.1038/srep28341
http://dx.doi.org/10.1038/srep28341
http://www.ncbi.nlm.nih.gov/pubmed/27320492
http://dx.doi.org/10.1007/s12046-015-0402-6
http://dx.doi.org/10.3138/FM57-6770-U75U-7727
http://dx.doi.org/10.14311/APP.2015.1.0022
https://doi.org/10.1145/2506095.2506116
http://dx.doi.org/10.1145/2506095.2506116
http://dx.doi.org/10.1002/rob.21436

Sensors 2020, 20, 907 23 of 24

12. McCune, R.R.; Madey, G.R. Agent-based Simulation of Cooperative Hunting with UAVs. In Proceedings of
the Agent-Directed Simulation Symposium, Society for Computer Simulation International, San Diego, CA,
USA, 7–10 April 2013; p. 8.

13. Williams, R.; Konev, B.; Coenen, F., Multi-agent Environment Exploration with AR.Drones. In Advances
in Autonomous Robotics Systems, Proceedings of the 15th Annual Conference, TAROS 2014, Birmingham, UK,
1–3 September 2014; Mistry, M., Leonardis, A., Witkowski, M., Melhuish, C., Eds.; Springer International
Publishing: Cham, Switzerland, 2014; pp. 60–71. doi:10.1007/978-3-319-10401-0_6. [CrossRef]

14. Loianno, G.; Thomas, J.; Kumar, V. Cooperative localization and mapping of MAVs using RGB-D sensors.
In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Washington,
DC, USA, 26–30 May 2015; pp. 4021–4028.

15. Rogers, J.G.; Baran, D.; Stump, E.; Young, S.; Christensen, H.I. Cooperative 3D and 2D mapping with
heterogenous ground robots. In SPIE Defense, Security, and Sensing; International Society for Optics and
Photonics: Bellingham, WA, USA, 2012; p. 838708.

16. Stipes, J.; Hawthorne, R.; Scheidt, D.; Pacifico, D. Cooperative localization and mapping. In Proceedings
of the 2006 IEEE International Conference on Networking, Sensing and Control, Ft. Lauderdale, FL, USA,
23–25 April 2006; pp. 596–601.

17. Wu, M.; Huang, F.; Wang, L.; Sun, J. Cooperative Multi-Robot Monocular-SLAM Using Salient Landmarks.
In Proceedings of the 2009 International Asia Conference on Informatics in Control, Automation and Robotics,
Bangkok, Thailand, 1–2 February 2009; pp. 151–155, doi:10.1109/CAR.2009.22. [CrossRef]

18. Chellali, R. A distributed multi robot SLAM system for environment learning. In Proceedings of the 2013
IEEE Workshop on Robotic Intelligence in Informationally Structured Space (RiiSS), Singapore, 16–19 April
2013; pp. 82–88, doi:10.1109/RiiSS.2013.6607933. [CrossRef]

19. Schuster, M.J.; Brand, C.; Hirschmuller, H.; Suppa, M.; Beetz, M. Multi-robot 6D graph SLAM connecting
decoupled local reference filters. In Proceedings of the 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 5093–5100,
doi:10.1109/IROS.2015.7354094. [CrossRef]

20. Makarenko, A.A.; Williams, S.B.; Bourgault, F.; Durrant-Whyte, H.F. An experiment in integrated exploration.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne,
Switzerland, 30 September–4 October 2002; Volume 1, pp. 534–539, doi:10.1109/IRDS.2002.1041445.
[CrossRef]

21. Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [CrossRef]
22. Aryo, D. Dijkstra Algorithm. MATLAB Central File Exchange. 2020. Available online: https://www.

mathworks.com/matlabcentral/fileexchange/36140-dijkstra-algorithm (accessed on 2 January 2020)
23. Fukushima, H.; Kon, K; Matsuno, F. Model Predictive Formation Control Using Branch-and-Bound

Compatible With Collision Avoidance Problems. IEEE Trans. Robot. 2013, 29, 1308–1317,
doi:10.1109/TRO.2013.2262751. [CrossRef]

24. Gan, S. K.; Fitch, R.; Sukkarieh, s. Real-time decentralized search with inter-agent collision avoidance.
In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, St Paul, MN, USA,
14–19 May 2012; pp. 504–510, doi:10.1109/ICRA.2012.6224975. [CrossRef]

25. Morgan, D.; Chung, S.; Hadaegh, F. Model Predictive Control of Swarms of Spacecraft Using Sequential
Convex Programming. J. Guid. Control Dyn. 2014, 37, 1–16, doi:10.2514/1.G000218. [CrossRef]

26. Pamosoaji, A. K.; Hong, K. A Path-Planning Algorithm Using Vector Potential Functions in Triangular
Regions. IEEE Trans. Syst. Man Cybern. Syst. 2013, 43, 832–842, doi:10.1109/TSMCA.2012.2221457. [CrossRef]

27. Bekris, K.E.; Grandy, D.K.; Moll, M.; Kavraki, L.E. Safe distributed motion coordination for second-order
systems with different planning cycles. Int. J. Robot. Res. 2012, 31, 129–150, doi:10.1177/0278364911430420.
[CrossRef]

28. Zhou, Y.; Hu, H.; Liu, Y.; Ding, Z. Collision and Deadlock Avoidance in Multirobot Systems: A Distributed
Approach. IEEE Trans. Syst. Man Cybern. Syst. 2017, 47, 1712–1726, doi:10.1109/TSMC.2017.2670643.
[CrossRef]

29. Alonso-Mora, J.; DeCastro, J.A.; Raman, V.; Rus, D.; Kress-Gazit, H. Reactive mission and motion
planning with deadlock resolution avoiding dynamic obstacles. Auton. Robot. 2018, 42, 801–824,
doi:10.1007/s10514-017-9665-6. [CrossRef]

https://doi.org/10.1007/978-3-319-10401-0_6
http://dx.doi.org/10.1007/978-3-319-10401-0_6
https://doi.org/10.1109/CAR.2009.22
http://dx.doi.org/10.1109/CAR.2009.22
https://doi.org/10.1109/RiiSS.2013.6607933
http://dx.doi.org/10.1109/RiiSS.2013.6607933
https://doi.org/10.1109/IROS.2015.7354094
http://dx.doi.org/10.1109/IROS.2015.7354094
https://doi.org/10.1109/IRDS.2002.1041445
http://dx.doi.org/10.1109/IRDS.2002.1041445
http://dx.doi.org/10.1007/BF01386390
https://www.mathworks.com/matlabcentral/fileexchange/36140-dijkstra-algorithm
https://www.mathworks.com/matlabcentral/fileexchange/36140-dijkstra-algorithm
https://doi.org/10.1109/TRO.2013.2262751
http://dx.doi.org/10.1109/TRO.2013.2262751
https://doi.org/110.1109/ICRA.2012.6224975
http://dx.doi.org/10.1109/ICRA.2012.6224975
https://doi.org/110.2514/1.G000218
http://dx.doi.org/10.2514/1.G000218
https://doi.org/10.1109/TSMCA.2012.2221457
http://dx.doi.org/10.1109/TSMCA.2012.2221457
https://doi.org/10.1177/0278364911430420
http://dx.doi.org/10.1177/0278364911430420
https://doi.org/10.1109/TSMC.2017.2670643
http://dx.doi.org/10.1109/TSMC.2017.2670643
https://doi.org/10.1007/s10514-017-9665-6
http://dx.doi.org/10.1007/s10514-017-9665-6

Sensors 2020, 20, 907 24 of 24

30. Kanehiro, F.; Hirukawa, H.; Kajita, S. OpenHRP: Open Architecture Humanoid Robotics Platform. Int. J.
Robot. Res. 2004, 23, 155–165, doi:10.1177/0278364904041324. [CrossRef]

31. Koenig, N.P.; Howard, A. Design and use paradigms for Gazebo, an open-source multi-robot simulator.
In Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
(IEEE Cat. No.04CH37566), Sendai, Japan, 28 September–2 October 2004; Volume 3, pp. 2149–2154.

32. Michel, O. WebotsTM: Professional Mobile Robot Simulation. Int. J. Adv. Robot. Syst. 2004, 1,
doi:10.5772/5618. [CrossRef]

33. Rohmer, E.; Singh, S.P.N.; Freese, M. V-REP: A versatile and scalable robot simulation framework.
In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo,
Japan, 3–7 November 2013; pp. 1321–1326, doi:10.1109/IROS.2013.6696520. [CrossRef]

34. The Mathworks, Inc. MATLAB Version 9.6.0.1114505 (R2019a). Available online: https://www.mathworks.
com/ (accessed on 2 January 2020)

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1177/0278364904041324
http://dx.doi.org/10.1177/0278364904041324
https://doi.org/10.5772/5618
http://dx.doi.org/10.5772/5618
https://doi.org/10.1109/IROS.2013.6696520
http://dx.doi.org/10.1109/IROS.2013.6696520
https://www.mathworks.com/
https://www.mathworks.com/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Map Generation
	Metric Maps
	Topological Maps
	Hybrid Maps

	Multiple Robots in Environment Mapping

	Methodology—Bioinspired Mapping Method
	Environment Exploration
	Checking If ``Not Visited Hexagon List'' Is Empty
	Getting Id/Hexagon to Explore
	Go to Hexagon
	Add Hexagon Id into ``Visited Hexagon List''
	Rotate to Angle and Check If Angle Has Adjacent Hexagon
	Add Adjacent Hexagon Id into ``Not Visited Hexagon List”
	Perform RFB-D and Temperature Reads
	Remove Id from ``Not Visited Hexagon List''

	Lock Path Resolution
	Simulation

	Results
	Scenarios and Honeycomb-Map Generation
	Cube View and Temperature Caption

	Discussion
	Conclusions
	References

