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Abstract: The study proposes an outlier refinement methodology for automatic distortion rectification
of wide-angle and fish-eye lens camera models in the context of streamlining vision-based tasks.
The line-members sets are estimated in a scene through accumulation of line candidates emerging
from the same edge source. An iterative optimization with an outlier refinement scheme was applied
to the loss value, to simultaneously remove the extremely curved outliers from the line-members
set and update the robust line members as well as estimating the best-fit distortion parameters with
lowest possible loss. The proposed algorithm was able to rectify the distortions of wide-angle and
fish-eye cameras even in extreme conditions such as heavy illumination changes and severe lens
distortions. Experiments were conducted using various evaluation metrics both at the pixel-level
(image quality, edge stretching effects, pixel-point error) as well as higher-level use-cases (object
detection, height estimation) with respect to real and synthetic data from publicly available,
privately acquired sources. The performance evaluations of the proposed algorithm have been
investigated using an ablation study on various datasets in correspondence to the significance
analysis of the refinement scheme and loss function. Several quantitative and qualitative comparisons
were carried out on the proposed approach against various self-calibration approaches.

Keywords: automatic distortion rectification; wide-angle lens; fish-eye lens; advanced
driver-assistance system (ADAS); video-surveillance; vision tasks

1. Introduction

The usage of wide-angle camera lenses in vision-based applications demands greater precision in
terms of image projection geometry such as distortion compensation and maintaining pixel consistency.
There appears to be a plethora of challenges involved in the context of employing wide-angle lens
models for applications such as advanced driver-assistance system (ADAS) and video surveillance.

1.1. Challenges

The image projections from the wide-angle and fish-eye lens are generally affected by the radial
distortions and thereby create a scenario of severe pixel inconsistencies along the edges which depend
on the properties of the lens such as horizontal FOV, curvature, etc. [1,2]. This indeed influences the
performance of the lens employed in various metric-based tasks such as height estimation and single
metrology, and even in geometrical tasks such as camera localization, stereo-vision, etc. This analogy
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can be observed in Figure 1, where a self-calibrated camera frame is used for streamlining various
vision-based tasks in scenarios of diverse vision applications.

Figure 1. Effects of larger FOV distortions on high-end vision-based tasks. (a) Metric-based tasks and
(b) feature/appearance-based tasks.

The flexibility of handling diverse lens models is another major concern in the formulation of a
robust self-calibration technique. The presence of various larger FOV lens models such as fish-eye
(165◦ < FOV < 190◦), wide-angle (120◦ < FOV < 150◦), and super wide-angle (160◦ < FOV < 180◦)
impose severe challenges in determination of distortion parameters for each class and compensating
the specific lens models automatically. The variations in lens models and real-time scenarios are
depicted in Figure 2.

The fish-eye and wide-angle lens models are manufactured with a basic notion of the coverage
area that the lens can capture. In accordance with that, the lens usually possesses severe distortions
due to which the scene aspects on the image plane tend to deviate from the factual representation of
a 3D real-world plane. Under such circumstances, the calibration is very important to retrieve the
distortion-rectified scene while simultaneously preserving the automatic sense of adaptability without
the involvement of any chessboards or objects. Self-calibration totally depends on the scene aspects
such as lines, curves, points at infinity, edge candidates, special elements, etc. Several methodologies
have been proposed to get past these challenges to formulate robust self-calibration techniques [3–5] but
they still get severely caught off with inevitable real-world scenarios such as variation in illuminations,
shadow castings, different timings in the day and night, and scenes with limited scene attributes to
rely on.
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Figure 2. Real-time challenging scenarios: (a) fish-eye model (165◦ < FOV < 190◦); (b) wide-angle
(120◦ < FOV < 150◦); (c) super wide-angle (160◦ < FOV < 180◦).

1.2. Purpose of Study

The primary purpose of this work is to develop a flexible automatic distortion rectification
methodology that can refine the outliers simultaneously, optimizing the best-fit parameters with
minimum error possible. As an underlying investigation, the study has been incorporated by
streamlining the distortion-rectified frames for acquiring better performance on tasks such as object
detection and fixed monocamera-based height estimation. The two main aspects that this work
clearly studies are how the proposed system can be robust towards various real-time scenarios
with diverse challenges, and how the streamlining of vision tasks can be done with respect to
the distortion-rectified frames. The main contributions are as follows: (1) Proposing an iterative
optimization with refinement of the outliers from the pool of robust line-member set; (2) formulating
plumbline angular cumulative loss over refined line-member set and investigating the significance
through an ablation approach; (3) validating the proposed system with respect to quantitative (accuracy,
processing time, practical significance) and qualitative (adaptability, practical significance) aspects
on diverse real/synthetic, public and private datasets with respect to ADAS and video-surveillance
applications. The scope of this study is targeting the high-end vision-based applications such as
intelligent transportation, video surveillance, and advanced driver-assistant systems (ADAS).

The paper is organized as follows. Section 2 extensively discusses the previous works and their
characteristics regarding the automatic distortion rectification. Section 3 elaborates on the proposed
outlier refinement enabling the automatic distortion rectification process. Section 4 is dedicated
to investigating the significance of proposed aspects with respect to various datasets and metrics.
Section 5 illustrates the experimental design and evaluation metrics employed in the study. Section 6
reports the outcomes and corresponding discussions based on employed data and evaluations. Finally,
Section 7 concludes the paper with a summary.
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2. Literature Review

2.1. Automatic Distortion Rectification

In the literature, there are a plethora of studies that were designed to deal with radial distortion
rectification via autocalibration of the camera systems [6–8]. Most of these simply followed the
approach of employing the calibration object such as a checkerboard or circular patterns [9]. In practice,
these camera systems tend to suffer from the variations in the weather conditions with respect to
overheating or cold [10,11]. In situations as such, the calibration of the camera must be done to adjust
the intrinsic parameters. Automatic distortion rectification, being a more practical approach, can come
in handy in such circumstances. Especially, lens models such as fish-eye and wide-angle camera
systems demand a better algorithm that can rectify the radial distortions.

Few works like Zhang et al. [12] and Barreto et al. [13] proposed their version of approaches in
solving this problem through autocalibration of the visual sensor using scene attributes. However,
their approaches demand a specific set of the environment such as precise structured lines (presence
of at least three orthogonal straight lines). Brown et al. [14] was the first study to coin the term
plumbline, specifying the usage of scene geometry for retrieving the camera’s intrinsic parameters.
Additionally, this study specified the radial distortions using the polynomial lens distortion model.
Later, the one-parameter rational model was proposed by [15,16] which were extensively used in
the automatic camera calibration. In literature, the variants of plumbline approaches were used,
among which employing of vanishing points to calibrate the camera yielded better results [17].
Yet, their approach was not able to handle wide-angle lens models with heavy distortions.

2.2. Previous Works

The automatic distortion rectification problem can typically be resolved using two main
methodologies such as traditional and deep-learning approaches. In the traditional approach,
various geometrical aspects are exploited to estimate the distortion parameters of the lens. On the other
hand, deep-learning approaches estimate the distortion parameters through learned radial distortion
values and image samples. Though there are various algorithms in the above two portfolios, there exist
some limitations which make the algorithm venerable towards various real-world conditions.

In the past decade, few remarkable studies were proposed in the context of automatic rectification
of wide-angle and fish-eye lens models. A few studies were formulated to explore the arithmetic
approach on the line curvatures to estimate the distortions [4]. A few others exploited the scene
lines to estimate the parameters with intense iterative optimizations [3,5] within parametric Hough
spaces, and a few employed the semiautomatic algebraic approach of tracing line segments over the
curved lines for estimating distortions [18]. The semiautomatic study proposed by Alvarez et al. [18]
heavily requires user-interaction in the line tracing approach, which is not appropriate for real-time
usage. Although Bukhari et al. [4] was able to rectify the distortions with reliable performance
for nonsevere distortion cases, it suffers from longer processing times and deformed outputs in
the case of heavy distortions. The Hough parametric space approaches from Aleman et al. [3]
and Santana et al. [5] were able to rectify the wide-angle and fish-eye lens models with reasonable
performance. However, the heavy dependency on hyper-parameters and disability to handle samples
acquired using low-quality camera sensors under low-light conditions make it less reliable for ADAS
and video surveillance applications. Although, the algorithm proposed by Kakani et al. [19,20] was
able to rectify multiple lens models which include a wide-angle and fish-eye lens. Yet, the schematic
includes model-specific empirical γ-residual rectification factor for heavy fish-eye distortions with
FOV > 165◦. The design of this factor requires a certain amount of prior knowledge about the lens
models from an optical perspective.

CNN deep-learning approaches such as Bogdan et al. [21] and Lopez et al. [22] cannot rectify the
distortion samples with illumination changes, and certain higher distortion ranges cannot be handled
with consistency. Additionally, deep GANs such as Liao, Kang et al. [23] are used for generating
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corresponding rectified samples for a distorted image. Yet, the trained distortions are confined to
certain ranges such as <−10−5. Another GAN-based architecture proposed by Park et al. [24] was able
to rectify the synthetic distorted samples as well as real sensor data within a specified distortion range.
However, in the context of heavy distortion ranges, the model fails to rectify the samples. The major
concern regarding these learning approaches is that the training examples must cover almost all the
sensor types and ranges of the distortions in order to develop a model that can best rectify all the
possible sensor units. In reality, this is not quite possible with the currently available advancements.
This raises an issue of using only a certain sensor type and distortion range for a specific application
such that one can attain the best performance using learning-based methodologies on that sensor unit.
This must be done with each and every sensor unit in correspondence to the use-case that has to be
deployed on the rectified frames. Due to this ambiguity, the present proposed work ruled out the
learned method in performance evaluations. The details of the summarized state-of-the-art automatic
distortion rectification techniques are stated in Table 1.

Table 1. Insights of traditional and learning-based automatic distortion rectification methods.

Algorithm Method Dataset Limitations

Alvarez et al. [18] 2D Euclidean distance
Synthetic dataset

with symmetrical patterns

Semiautomatic. Not robust for
real-time usage

(illumination changes, etc.)

Bukhari et al. [4] Circular arcs algebra
Synthetic dataset

with salient point GT

Severe stretching along the edges.
Long processing time for
heavy distortion samples

Aleman et al. [3] Hough parametric space
A private dataset
using Nikon D90

Unstable outputs for larger
FOV lens camera samples.

Heavy hyperparameter-dependent

Santana et al. [5]
Iterative optimization
of Hough transforms

Wide angle lens
distortion image

Lacking robustness towards
blurred images and low-light

conditions

Kakani et al. [19]

Straightness cost
constraint loss with

model-specific
empirical γ-residual
rectification factor

Real data with
varying distortion ranges

120◦ < FOV < 200◦

Synthetic distorted
KITTI samples

Requires prior model-specific
knowledge to deal with

γ-residual rectification factors

Bogdan et al. [21]
Dual CNN network
on radial distortions

Panoramic images
of the SUN360 dataset

Fails to rectify samples in
illumination changes,
motion blur samples

Lopez et al. [22]
CNN Parameterization

for radial distortions
SUN360 panorama

dataset

Network can only undistort
in cropped mode rising

an issue of pixel loss ≥30%

Park et al. [24]
U-Net-based GAN

for radial distortions
Real and synthetic
distortion dataset

Cannot handle heavy distortions
FOV > 160◦

Liao, Kang et al. [23]
U-Net-based GAN

for radial distortions
Synthetic dataset with

distortion ranging

Limited distortion ranges
(cannot handle

distortions <−10−5)

This study focuses mostly on the drawbacks encountered in our previous work [19] and proposes
a solution to handle heavy distortions without having to use any model-specific residual factors.
Especially, this work introduces the outlier refinement scheme in conjunction with the plumbline
angular loss function that makes the whole system more robust to outliers and thereby able to handle
heavy distortions FOV > 190◦. The significance of the novel aspects—such as loss aggregation over
line-member sets—of the outlier refinement scheme was extensively tested through ablation study,
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and the corresponding results are discussed in Section 4. The major difference between our previous
work [19] and the current study is as follows:

• The segregation of robust line candidates was done on the basis of threshold heuristics in the
previous work [19], which made some outliers raise some complications while dealing with heavy
distortions FOV > 165◦, thereby creating a need for model-specific residual factors.

• Unlike [19], the current study employs an iterative outlier refinement scheme which basically
considers the aggregation of robust line members into a set and iterating the sets over
the plumbline angular loss constraint. The loss over the cumulative line-member sets and
corresponding estimated distortion parameters are used to eliminate the outliers, thereby using
the new set of robust line candidates to update parameters for distortion rectification.

• The current plumbline angular loss constraint with respect to optimization scheme is analogous to
that of [19], but the optimization is altered to consider the loss over the cumulative line-member
sets to estimate the distortion parameters with simultaneous outlier elimination.

3. Outlier-Refinement-Enabled Distortion Estimation

3.1. Lens Distortion Parameter Modeling

In this study, the distortion estimation and optimization procedures were followed as per the odd
polynomial lens-distortion model with up to two distortion coefficients D1, D2 as per the design in our
previous work [19], which maps rectified pixel coordinates to the distorted pixel coordinates, as shown
in Equation (1) below.

rdist = rundist + D1 · r3
undist + D2 · r5

undist,
rdist = rundist

(
1 + D1 · r2

undist + D2 · r4
undist

)
,

(1)

where r(radius) =
√
(a− a0)

2 + (b− b0)
2, (a, b) is a point coordinate, (a0, b0) is the image center,

and D1, D2, · · ·DN are distortion coefficients.

3.2. Plumbline Angular Loss Estimation

The plumbline angular loss is estimated on the robust line-member set, the line members are
extracted using parameter-free edge drawing algorithm [25]. Line members emerging from the same
edge sources are further filtered based on length threshold heuristics. The line-member set was formed
with the elements as line members emerging from same edge. There exists several line-member sets
which are to be considered to calculate the cumulative loss on a whole.

The image Iwxhx3 represents an image and n̄ denotes the number of line-member sets within the
image I. The collection of all line-member sets as a matrix Ln̄×4, where each line-member set consists
of several line members. Each line member is a 4-tuple (x0, y0, x1, y1), where (x0, y0) represent the
starting point and (x0, y0) represent the ending points of the line member. The grouped line members
are collected as

lki =


(x0,1, y0,1, x1,1, y1,1)

(x0,2, y0,2, x1,2, y1,2)
...(

x0,k, y0,k̄, x1,k, y1,k

)
 , (2)

Ln̄×4 =



lk1×4
lk2×4

...

...
lkn̄×4


, (3)
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where k ∈ 1, 2, . . . .n̄, for instance, lki = l23 indicates that this is the second line-member set and it
consists of three line members.

The angular plumbline error α can be estimated through the function A (l1, l2) which computes
the angular difference between the line members in a set as shown below:

A (l1, l2) =

{
∆α

360− ∆α if ∆α > 180
, (4)

∆α = |α1 − α2| , (5)

αi = arctan 2 (y1 − y0, x1 − x0) . (6)

The angular plumbline error α with respect to all N line members is estimated, and an individual
line member errors LE for the ith element of the line-member set is calculated by applying cross-entropy
of the angular plumbline error:

LEi×n = − 1
N


|∆αi,i+1| log |∆αi,i+1| , |∆αi,i+2| log |∆αi,i+2| , . . . ,∣∣∆αi,i+k

∣∣ log
∣∣∆αi,i+k

∣∣ , |∆αi+1,i+2| log |∆αi+1,i+2|
|∆αi+1,i+3| log |∆αi+1,i+3| , . . . ,∣∣∆αi+1,i+k−1

∣∣ log
∣∣∆αi+1,i+k−1

∣∣ , . . . ,∣∣∆αi+k−2,i+k−1+n̄
∣∣ log

∣∣∆αi+k−2,i+k−1+n̄
∣∣

 , (7)

where k = |LEi×n̄|, i.e, the length of ith row

SE =

(
∑
|LE1|
1 LE1

|LE1|
,

∑
|LE2|
1 LE2

|LE2|
, . . . ,

∑
|LEn̄ |
1 LEn

|LEn̄|

)
, (8)

where SE (line-member set errors) is a row vector of length n̄, which represents the average of the ith
line-member set.

The mean cumulative loss SMCE which computes the mean errors of a line-member set given by
Ln̄×4 as follows:

SMCE (Ln̄×4) =
∑
|SE|
1 SE
|SE| , (9)

where |SE| is the cardinal set of all line-member set errors.
This overall error loss must be minimized such that we can accomplish two things in one-shot:

• By minimizing error and refining the accumulated line-member set such that the unwanted curves
and outliers in the image can be pruned.

• Additionally, through minimizing the error equation, we can estimate the distortion parameter.

3.3. Refinement Optimization Scheme

The Levenberg–Marquardt (LM) optimization, which was employed in the current study,
estimates the best fit parameters with simultaneous outlier elimination, where the camera lens
parameters are initial with default initial guess:

Params =



fx

fy

cx

cy

D1

D2


. (10)



Sensors 2020, 20, 894 8 of 23

Let fx, fy, cx, cy, D1, D2 represent the focal length of x (in pixels), the focal length of y (in
pixels), the x position of the camera center, the y position of the camera center, and the distortion
parameters, respectively.

rn̄×1 =



r1×1

r2×1
...
...

rn̄×1


; xn̄×1 =


x1×1

x2×1
...

xn̄×1

 ; yn̄×1 =


y1×1

y2×1
...

yn̄×1

 , (11)

where r′n̄×1 is the column vector of radial distortions for each line member within the line-member set

given by Ln̄×4, and r′i×1 =
√

x′2i×1 + y′2i×1 in which x′i×1, y′i×1 are the corresponding x and y coordinates
of the ith radial distortion—i ∈ {1, 2, . . . n̄}.

xi =
x′i(

1 + D1r2
i + D2r4

i
) , yi =

y′i(
1 + D1r2

i + D2r4
i
) , (12)

where undistorted xi and yi points are mapped using the distorted parameters D1 and D2 with respect

to ri, resulting in distorted points x′i and y′i. In addition, Pts1 =

[
Ln̄×[1,2]

]
Ln̄×[3,4]

]
2n̄×2

1

represent the

matrix of undistorted start and end points of the line-member set.

Ln̄×[1,2]
1 = xi × fx + cx =


(x0,1, y0,1)

(x0,2, y0,2)
...

(x0,n̄, y0,n̄)


1

, (13)

Ln̄×[3,4]
1 = yi × fy + cy =


(x1,1, y1,1)

(x1,2, y1,2)
...

(x1,n̄, y1,n̄)


1

. (14)

Let Ln̄×4 represent a matrix for the set of line members of an image, where lki is the matrix formed
by all the line members. The overall mean cumulative line-member set error (SMCE) in the image is
estimated using the initial parameters and line members Ln̄×4

0:

Ln̄×4
0 =


lk1×4
lk2×4

...
lkn̄×4

 ; lki =


(x0,1, y0,1, x1,1, y1,1)

(x0,2, y0,2, x1,2, y1,2)
...

(x0,k, y0,k, x1,k, y1,k)

 . (15)

The parameters are used to refine the outliers by eliminating unwanted set of line members with
respect to minimum error and then an iterative process of elimination takes place to see if the error
is getting minimized further by eliminating unwanted outliers ith line member and forming new
line-member set l(k−1)i for distortion estimation as shown below:

ErrLn̄×4
0 = SMCE

(
D1, D2, I, Ln̄×4

0
)

; (16)
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l(k−1)i =


(x0,1, y0,1, x1,1, y1,1)

(x0,2, y0,2, x1,2, y1,2)
...

(x0,k−1, y0,k−1, x1,k−1, y1,k−1)

 . (17)

Similarly, Ln̄,(j−1)×4 is the submatrix formed by removing the outliers and retaining j− 1
line members from the nth line-member set; thereby, the error ErrLn̄,(j−1)×4 corresponding
to the outlier refinement can be estimated simultaneously such that the sequence of
submatrices Ln̄,(1)×4, Ln̄,(2)×4, . . . Ln̄,(j−1)×4 and their corresponding line-member set errors
ErrLn̄,(1)×4

, ErrLn̄,(2)×4
, . . . ErrLn̄,(j−1)×4

are formed:

Ln̄,(j−1)×4 =



lk1×4
lk2×4
lk3×4
·
·

lk(j−1)×4


,

ErrLn̄,(j−1)×4 = SMCE
(

D1, D2, I, Ln̄,(j−1)×4

)
.

(18)

The final line-member sets containing refined line members with minimum error are elected for
the distortion parameter estimation. The election process of robust line-member set (ELS) is depicted
in the Figure 3.

ELS =


i f min

(
ErrLn̄×4, ErrLn̄,(j−1)×4

)
= ErrLn̄,(j−1)×4 Ln̄,(j−1)×4

Otherwise Ln̄×4,

(19)

where j ∈ {1, 2, . . . i}; i ∈ {1, 2, . . . n̄}.

Figure 3. Outlier refinement scheme based on line-member set aggregations.
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4. Ablation Study

Practical Significance Analysis

The ablation study serves as a practical significance analysis investigating the novel aspects
introduced in this work. Additionally, this study differentiates the method using straightness loss
constraint on individual line candidates [19] from the proposed method of cumulative set aggregation
loss and refinement scheme. This investigation will assist in understanding the real significance of
using these aspects in the proposed system and their influence on the output performance:

• Quantitative: Investigation of proposed cumulative set aggregation loss and refinement scheme
with respect to image quality, edge stretching, pixel-point error, and processing time on distorted
KITTI dataset and distortion center benchmark.

• Qualitative: Investigation of proposed cumulative set aggregation loss and refinement scheme
with respect to real-time adaptability and feasible undistortion on severe distortions (FOV: 140◦

and 165◦) with respect to private CV Lab Larger FOV real dataset.

The three Figures 4–6 illustrated below depict the quantitative and qualitative significance analysis
of the proposed novel elements over various public and private datasets with respect to diverse metrics.
The clear influence of the proposed elements such as cumulative set aggregation loss and refinement
scheme can be observed in the qualitative analysis depicted in Figure 6. The following acronyms
are used: B—Baseline; B + RO—Baseline + Refined optimization scheme; B + SC—Baseline + Set
cumulative aggregation; B + RO + SC—Baseline + Refined optimization scheme + Set cumulative
aggregation. Various combinations were used in the ablation study to mainly understand the practical
significance of the proposed elements. The clear explanation of the combinations is as follows:

• B: Uses the basic straightness loss constraint between line members (without outlier refinement)
to estimate distortion parameters.

• B + RO: Uses the basic straightness loss constraint between line members (with outlier refinement)
to estimate distortion parameters.

• B + SC: Uses the basic straightness loss constraint over set cumulative line-member sets (without
outlier refinement) to estimate distortion parameters.

• B + SC + RO: Uses the basic straightness loss constraint over set cumulative line-member sets
(with outlier refinement) to estimate distortion parameters.

Figure 4. Quantitative: Significance of proposed cumulative set aggregation loss and refinement
scheme with respect to image quality, edge stretching, and processing time on distorted KITTI dataset.
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Figure 5. Quantitative: Significance of proposed cumulative set aggregation loss and refinement
scheme with respect to pixel-point error and processing time on distortion center benchmark dataset.

Figure 6. Qualitative: Significance of proposed cumulative set aggregation loss and refinement scheme
with respect to severe distortions.

5. Experiments and Evaluations

5.1. Pixel Quality and Consistency Experiments

The experiments were carried out to examine the pixel quality and consistency of the rectified
image and low-level image-quality metrics were considered accordingly. The synthetic distorted KITTI
dataset using [26,27] was employed to evaluate the rectified image with respect to GT (distortion-free
KITTI sample). The accuracy of the distortion-rectified image can be evaluated in two different ways
such as image quality metrics, peak signal-to-noise ratio (PSNR); structural similarity index (SSIM);
spectral, spatial, and sharpness metric (S3); local phase coherence sharpness index (LPC-SI); and pixel
consistency metrics such as pixel-point error (PPE). The subsections below illustrate the individual
significance of each evaluation method present in both strategies.
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5.1.1. Image Quality Evaluations

The image quality of the distortion-rectified image must be preserved, and it can be validated
using comparative measures with respect to original distortion-free samples in terms of similarly and
noise aspects.

• Peak Signal-to-Noise Ratio (PSNR): The pixel consistency of the output (undistorted image) with
respect to the original distortion-free image can be assessed using PSNR value. The mathematical
measure is directly proportional to the quality of the output, i.e., if the PSNR value is high,
the signal information in the output image corresponding to that of the distortion-free image is
high and vice versa.

• Structural Similarity Index (SSIM): SSIM is one of the most prominent metrics, which is analogous
to human visual perception. The fundamental blocks in the estimation of SSIM are luminance (L),
contrast (C), and structural difference (S), which are calculated using the combinations of mean,
standard deviation, and covariance [28].

• Spectral spatial sharpness (S3): The S3 metric was proposed by [29] and is best suited to examine
the sharpness of an image without the reference ground truth. This metric can be retrieved from
the pixel properties of the image in terms of spectral and spatial attributes. First, the color image
is converted to grayscale and then S1 and S2 are extracted from the grayscale image. The metric
S1 represents the spectral sharpness map which is the local magnitude spectrum slope; and the
metric S2 represents the spatial sharpness map which is the local total variation. The geometric
mean of these S1 and S2 is termed as final sharpness map S3, which is the overall perceived
sharpness of the entire image.

• Local phase coherence sharpness index (LPC-SI): This metric was introduced by [30] to evaluate
the sharpness of an image from a different perspective rather than using edge, gradient,
and frequency content. This sharpness metric quantifies the sharpness of an image with strong
local phase coherence.

5.1.2. Pixel-Point Error Evaluation

The pixel-point error was calculated by estimating the distance between the ground truth pixel
point location and the refined image pixel point. For this experiment, the synthetic distortion center
benchmark dataset [4] was utilized as shown in the Figure 7 below:

Figure 7. Pixel-point error calculation on distortion center synthetic dataset [4].

5.2. High-Level Metrics: ADAS and Video-Surveillance Experiments

This subsection elaborates on the essential usage of wide-angle and fish-eye lens models with
proposed automatic distortion rectification techniques to yield better performance in the ADAS,
video-surveillance-based vision tasks. In the ADAS context, the state-of-the-art (SOTA) pretrained
models were employed to evaluate the proposed algorithm in terms of object detection on real and
synthetic data. In the video-surveillance tasks, the height estimation using fixed camera intrinsics
from [31] was employed to evaluate the proposed algorithm. The datasets used in this study
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were collected at Computer Vision Laboratory, Inha University, among which some are publicly
available [31] and few were stated in our previous works [19].

5.2.1. Datasets Used

The datasets utilized in the experiments were of three types:

• Public-Synthetic dataset: The publicly available KITTI dataset was synthetically modified using
open-sourced distortion induction codes [26]. This dataset can be used to quantitatively measure
the performance of distortion rectification algorithms and high-level metrics.

• Private-Real dataset: This dataset has been collected using various cameras with diverse lens
models such as fish-eye (190◦) and wide-angle (120◦). This real dataset tests the robustness of the
rectification algorithms with respect to the object detection scenarios.

• Public- and Private-Real dataset: This dataset has been collected using various cameras with
diverse lens models such as super wide-angle (150◦) and wide-angle (120◦). This real dataset
tests the robustness of the rectification algorithms with respect to the height estimation and
metric-level information.

5.2.2. Object Detection Using Pretrained Models

Various pretrained models were employed, such as YOLOv3 (pretrained on PASCAL VOC)
and SSD (pretrained on MS COCO), as object detectors. These experiments were carried out on
diverse lens models such as fish-eye (190◦) and wide-angle (120◦). The qualitative comparisons were
made between various automatic rectification algorithms with respect to detection along the edges.
Additionally, for the quantitative measure, the distorted KITTI data samples are rectified using various
algorithms alongside the proposed method, and the detection mean average precision (mAP) scores
were recorded. The major intent of investigating the proposed algorithm against various algorithms
on SOTA pretrained object detectors is to validate the improved performance on rectified frames in
streamlining (deploying) object detection tasks. In normal raw samples, the detection accuracy drops
due to the distortions along the edges and using SOTA object detectors on those frames would not
help, as shown in Figure 8:

Figure 8. Performance of pretrained state-of-the-art (SOTA) models on different larger FOV
raw samples: (a) Pretrained YOLOv3 on 190◦ fish-eye sample (car undetected along the edge);
(b) Pretrained SSD on 120◦ wide-angle sample (person undetected along the edge).

5.2.3. Height Estimation on Fixed Monocamera Sensor

The height estimation is considered a metric-based task, as the pixel distribution in the image
plays a vital role in deciding the metric information. For a fixed camera setup, the experiments
were designed on the basis of estimating the intrinsic using walking humans metrology, proposed by
Li, Shengzhe et al. [31], employing the Computer Vision Lab’s video-surveillance dataset collected at
Inha University.
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During this study, we modified the previous height estimation method [31] such that the rectified
pixel points are retrieved and used to initiate the pixel locations of the walking human (top and
bottom) for intrinsic-based height estimation. The modified phenomenon is illustrated in Figure 9,
where the objects are not deformed as they are in the raw distortion samples. The camera sensors used
in evaluating the algorithm under this portfolio are wide-angle lens cameras. They are employed to
capture all the data, as specified in [31], and the subjects used in that study were used in our study as
well to maintain the consistency in the ground truth. The height estimation errors in cm is used as a
metric for better comparison.

Figure 9. Retrieval of distortion-rectified reference pixel correspondences for better accuracy:
(a) Top and bottom reference points in distorted case; (b) Corresponding top and bottom rectified
reference points in rectified case.

6. Results and Discussions

6.1. Pixel Quality and Consistency

The consistency in the pixel information, especially regarding the stretching issue, was clearly
investigated, as shown in Figure 10 below. The stretching along the edges caused the inconsistency in
the case of traditional OpenCV and Santana et al. [5]. Due to the refinement of outliers, the stretching
was significantly reduced in the proposed method.

Figure 10. Qualitative analysis: pixel quality and consistency.
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6.1.1. Quantitative Analysis: Image Quality

The proposed method was able to rectify the random synthetic distortions, and the average image
quality scores in terms of similar metrics and spectral context seem to be high compared to that of the
manual and automatic methods. The corresponding results are illustrated in Table 2.

Table 2. Qualitative analysis: image quality metrics on synthetic distorted dataset.

Image Quality
Metrics

Distortion Rectification Algorithm

Traditional OpenCV Bukhari et al. [4] Santana et al. [5] Proposed Method

PSNR [in dB.] 8.75 13.61 17.5 19

SSIM [in %] 22.9 30.3 43.2 47.2

S3 [↓ 0∼1 ↑] 0.44 0.34 0.41 0.51

LPC-SI [↓ 0∼1 ↑] 0.78 0.82 0.86 0.92

6.1.2. Quantitative Analysis: Pixel-Point Error

The pixel-point error calculations were made using difference of distances from two pixel points in
the rectified image distortion center and given GT distortion center on difference samples. The average
pixel-point errors were calculated against [5,18] algorithms and the results are stated in Table 3 below.
The average pixel-point error in the case of Alvarez et al. [18] and Santana et al. [5] appears to be higher
for the examples that have higher variations in the distortion center. The filtering of line-member set for
robust line candidate selection influences the proposed method to attain lower average pixel-point error.
For the better understanding of quantitative analysis, the average pixel-point errors of all the three
methods are indicated in bold.

Table 3. Quantitative analysis: pixel-point error metrics on synthetic distorted dataset.

Synthetic Distortion
Pixel-Point (GT)

Pixel-Point Errors on Distortion-Rectified Samples [in px.]

Alvarez et al. [18] Santana et al. [5] Proposed Method

Easy
(330,250) 21.3 14.1 10.1

Medium
(360,280) 17.0 18.4 15.9

Hard
(390,310) 49.5 39.9 28.8

Average point error [in px.] 29.2 24.1 18.3

6.2. High-Level Metrics: ADAS Use-Case

The data samples utilized in the experiments were mainly ADAS-centered and are heavily
distorted in terms of field-of-view and real-time challenges. The performance analysis was carried out
both qualitatively and quantitatively against various automatic distortion rectification methodologies.

6.2.1. Qualitative Performance Analysis

The performance comparisons were carried out between original samples, Aleman et al. [3],
Santana et al. [5], and the proposed method with respect to two pretrained models on 3 different
cameras. The results were depicted in Figures 11–15 to illustrate the case-by-case scenario robustness of
object detection. The objects such as person, car, truck, motorbike, and bus were successfully detected
in the case of rectified samples using the proposed method. Although the same pretrained detector
was employed on all the SOTA-rectified frames, the proposed method frame yields best performance.
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Figure 11. Pretrained YOLOv3 object detection on various rectified 190◦ fish-eye frames: car detected
along the edge in the proposed rectified algorithm.

Figure 12. Pretrained YOLOv3 object detection on various rectified 190◦ fish-eye frames: van detected
along the edge in the proposed rectified algorithm.

Figure 13. Pretrained YOLOv3 object detection on various rectified 190◦ fish-eye frames: motorbike
detected along the edge in the proposed rectified algorithm.
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Figure 14. Pretrained YOLOv3 object detection on various rectified 190◦ fish-eye frames: bus detected
along the edge in the proposed rectified algorithm.

Figure 15. Pretrained SSD object detection on various rectified 120◦ wide-angle frames: person detected
in the proposed rectified algorithm frame.

6.2.2. Quantitative Performance Analysis

The quantitative analysis has been carried out using the synthetic distorted KITTI dataset on
various rectified algorithms—Aleman et al. [3], Santana et al. [5], and the proposed method—alongside
distortion-free and randomly distorted samples. The SOTA pretrained YOLOv3 and SSD were
employed to detect the objects in the scene, and comparisons were done with respect to various cases.
The corresponding quantitative analysis in terms of mAP is depicted in Figure 16. The pretrained
SSD achieved 72.4 mAP on rectified samples using the proposed method, which is higher than the
distorted an other rectified samples. Similarly, pretrained YOLOv3 achieved 79.8 mAP on proposed
method rectified samples, which is greater than the distorted and other rectified samples. The rectified
samples used in the streamlining of trained detectors must perform well in order to improve the
detection accuracy, and this must be validated using distortion-free samples for proper analysis.
The original samples are considered as a ground-truth benchmark such that the algorithm which can
produces better rectified samples can therefore be streamlined on to pretrained detectors for better
accuracy. This phenomenon proves that the rectified samples using the proposed method are more
pixel-consistent and preserved the object characteristics through stretch-free rectification compared to
the other rectification algorithms.
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Figure 16. SOTA pretrained YOLOv3 and SSD were employed to detect the objects in the scene on
distorted KITTI samples rectified with various algorithms.

6.3. High-Level Metrics: Video-Surveillance Use-Case

The quantitative and qualitative analysis was carried out on various samples retrieved from
different camera systems. Primarily, the comparisons were carried out between the use cases where
the inevitability of distortion is high. Both the quantitative and qualitative analyses were dealt
with using experiments where the distortions were rectified and thereby the intrinsic estimation
and height calculations were performed. This process was done for both cases—the distortion
rectification process proposed in this study as well as the manual rectification following the approach
of Li, Shengzhe et al. [32]. The accuracy in height measurements was estimated with a straightforward
method of retrieving errors between the estimated and available ground truth.

The results corresponding to the camera IDs 03, 04, and 08 are depicted in Figures 17–19,
respectively, as they spread-over the samples retrieved from both indoor and outdoor. The distortion
effect was nullified using both the rectification methods, and the rectified pixel points were used for the
further process of estimating the heights of all 11 subjects recorded using a similar camera ID. The red
plot line represents the height error values in the case of manual rectification, where the distortions
are not completely rectified and that resembles a concave effect due to inappropriate estimation of
distortion parameters. The blue plot line represents the error in height estimations in case of the
rectification using proposed method.

The results clearly state that the method used in Li, Shengzhe et al. [32] is manual in a manner with
the intrinsic-based height estimation, which can be termed as manual distortion-rectification-guided
intrinsic-based height estimation (DR-IE) has an effect due to pixel irregularities. This inconsistency
in pixel locations and corresponding error in metric information increases with the increase in the
distortion levels. The method proposed by Li, Shengzhe et al. [32] is unable to handle such irregularities
through manual rectification. In contrast, the proposed method uses the rectified frames to get the
pixel location which has relatively low pixel inconsistency resulting in the low height estimation error
in cm. This can be clearly shown in the error plots where the height estimation errors are relatively
larger in Li, Shengzhe et al. [32] than the proposed method.
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Figure 17. Height Estimation errors using (Li, Shengzhe et al. [31] vs. proposed method) on Outdoor
camera ID.03: (a) Qualitative pixel-consistency. (b) Height estimation error plot corresponding to all
the 11 subjects.

Figure 18. Height Estimation errors using (Li, Shengzhe et al. [31] vs. proposed method) on Indoor
camera ID.04: (a) Qualitative pixel-consistency. (b) Height estimation error plot corresponding to all
the 11 subjects.

Figure 19. Height Estimation errors using (Li, Shengzhe et al. [31] vs. proposed method) on Indoor
camera ID.08: (a) Qualitative pixel-consistency. (b) Height estimation error plot corresponding to all
the 11 subjects.

The effect of the distortion-rectification-guided height estimation can be observed clearly in the
context of the wide-angle camera scenario. The below Figure 20 illustrates the robustness of the
proposed system in the presence of darkness and severe illumination changes.
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Figure 20. Robustness of proposed distortion-rectification-guided height estimation on wide-angle
camera at night time.

The overall height estimation errors with respect to various camera sensors in the context of 11
subjects have been extensively tested with the Li, Shengzhe et al. [31] result as a baseline. The proposed
method preserved the pixel consistency in the distortion-rectified image, thereby when those rectified
pixels are used for the height estimations, the errors seem to decline. These quantitative comparisons
are clearly illustrated in Table 4 below. The camera IDs 1, 2, 6, 7 were used to compare the distortion
effects on the metric height estimation because these camera sensors posses a slightly higher amount
of distortions compared to the other camera sensors used in the study. The average height estimation
errors are indicated in bold in the below table which clearly explains the effectiveness of height
estimation via the proposed automatic distortion rectification method.

Table 4. Quantitative comparison: Average height estimation errors with respect to various cameras on
11 subjects.

Subject
ID

Height Estimation Errors with Respect to Various Cameras on 11 Subjects [in cm]

Cam1 Cam2 Cam6 Cam7

Manual Automatic Manual Automatic Manual Automatic Manual Automatic

S1 0.1 0 0.1 0.2 0.1 0 0.1 0.1
S2 1 0.4 2 0.7 0.5 0.2 0.1 0.2
S3 0.1 0 0.2 0.1 1.2 0.7 0.6 0.5
S4 0.1 0 0.8 0.4 1.3 0.9 2.2 0.4
S5 4.2 1.5 0.2 0.3 3 0.6 3 1.2
S6 0.5 0.3 1.4 0.5 0.4 0.2 2.4 0.8
S7 2.6 0.7 3 0.8 0.3 0.2 0 0.1
S8 1.1 0.9 0.9 0.6 1.2 0.7 1.1 0.7
S9 2 0.6 0.3 0.2 0.4 0.3 0.9 0.8

S10 4.1 1.1 0.9 0.3 0.8 0.1 2.1 0.6
S11 2.8 1.3 1.3 0.2 1.4 0.4 0.8 0.5

Average
Errors [in cm] 1.69 0.61 1.01 0.39 0.96 0.39 1.20 0.53

7. Conclusions

An outlier refinement methodology for automatic distortion rectification of wide-angle and
fish-eye lens camera models was proposed. The novel cumulative plumbline angular loss over
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line-member set aggregation exhibits better performance in conjunction with the outlier refinement
optimization scheme. The design elements were evaluated using various metrics on real datasets
(wide-angle: 120◦ < FOV < 150◦; fish-eye: 165◦ < FOV < 190◦) and synthetic distortions on distorted
KITTI comprising of several real-time challenges and diverse distortion variations. The practical
significance of the proposed novel elements was investigated using an ablation study in accordance
with public and private datasets on image quality and pixel consistency metrics. The novel cumulative
plumbline angular loss in conjunction with outlier refinement optimization scheme exhibited better
performance in rectifying severe distortions compared to other rectification options in the ablation
study. A diverse range of experiments were conducted in relevance to the low-level metrics such as
image quality, stretching, and pixel-point error on various metrics such as PSNR, SSIM, S3, and LPC-SI.
Besides, most of the experiments were carried out in the context of streamlining vision tasks on
the rectified frames. The high-level scenarios, such as object detection in ADAS and metric height
estimation in video surveillance, were extensively exploited on the distortion-rectified frames to
validate the proposed method. Application-oriented metrics such as mean average precision (mAP)
and height estimation errors (in cm) were employed to investigate the adaptability of the proposed
method in both learning-based appearance tasks and metric-based tasks. Both the quantitative and
qualitative metrics were employed in all the streamlined experiments to examine the practical usage of
the proposed method. The rectification algorithm proposed using the outlier refinement optimization
scheme guided the streamlining vision-based tasks to achieve better accuracy.
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