
sensors

Article

BeiDou Satellite Positioning Method Based on IoT
and Edge Computing

Lina Wang 1,2,* and Rui Qiu 1

1 School of Computer and Communication Engineering, University of Science and Technology Beijing,
Beijing 100083, China; s20170652@xs.ustb.edu.cn

2 Shunde Graduate School, University of Science and Technology Beijing, Foshan 528300, China
* Correspondence: wanglina@ustb.edu.cn

Received: 25 November 2019; Accepted: 4 February 2020; Published: 7 February 2020
����������
�������

Abstract: The BeiDou navigation satellite system (BDS) developed by China can provide users with
high precision, as well as all-weather and real-time positioning and navigation. It can be widely used
in many applications. However, new challenges emerge with the development of 5G communication
system and Internet of Things (IoT) technologies. The BDS needs to be suitable for the large-scaled
terminal scenario and provides higher positioning precision. In this paper, a BeiDou differential
positioning method based on IoT and edge computing is proposed. The computational pressure on
the data center is offloaded to the edge nodes when the massive positioning requests of IoT terminals
need to be processed. To ensure the load balancing of the edge nodes, the resource allocation of the
terminal positioning requests is performed with the improved genetic algorithm, thereby reducing
the service delay of the entire edge network. Moreover, the optimized unscented Kalman filter based
on the edge node (EUKF) algorithm is used to improve the positioning precision of IoT terminals.
The results demonstrate that the proposed positioning method has better positioning performance
which can provide the real-time positioning service for the large-scale IoT terminals.

Keywords: Beidou navigation satellite; edge computing; load balancing; internet of things;
pseudo-range difference

1. Introduction

The BeiDou navigation satellite system (BDS) is a self-developed global navigation satellite
system in China [1–3]. It has been widely used in military, civil navigation, intelligent monitoring and
transportations, and marine fields, etc. [4,5]. However, challenges still remain in the BDS with the
development of the 5G networking technologies and application requirements. The 5G communication
system supports efficient access and management of large-scale Internet of Things (IoT) terminals [6].
Consequently, the BDS needs the rapid response time and high positioning precision to promote its
development and competitiveness.

Differential positioning is the most widely used positioning algorithm and relies on centralized
approaches. The reference station transmits the received satellite observations to the data center. Then,
the data center processes the received data and computes correction information by eliminating the
errors of the satellite orbit, clock, and ionosphere. The correction information can be transmitted to the
terminals in real-time through satellites, digital broadcasting, and mobile communication system [7].
However, this method is easy to cause traffic overload and signal congestion in high-throughput
and large-scale IoT terminals scenario. The data center cannot effectively process terminal requests
in real-time.

Sensors 2020, 20, 889; doi:10.3390/s20030889 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s20030889
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/3/889?type=check_update&version=2

Sensors 2020, 20, 889 2 of 17

Recently, there are a lot of researches to solve the problems of computational pressure and
bandwidth constraints in the data center [8–11]. The authors of [8] proposed a method for broadcasting
real-time kinematic (RTK) positioning data to mobile terminals through mobile communication
networks, which can expand the scope of positioning service by the data center. Compared with cloud
computing based on the data center, edge computing could undoubtedly reduce latency, which is very
important for real-time service [9]. The authors of [10] investigated the task offloading problems of
the ultra-dense network. To minimize the task duration, a scheme to offload the task on edge cloud
or process locally was proposed. However, this method does not consider the terminals with more
complex mobility. The authors of [11] designed an application-aware workload allocation scheme for
edge computing-based IoT to minimize the response time of IoT application. It chooses cloudlet as
the computing node. Since processing several types of IoT applications requires stronger computing
ability, whereas the edge nodes do not need more.

Edge computing adds processing ability of task computing and data analyses to the network
edge devices. Here, the main functionality of the edge nodes is data offloading, processing, and
computing. Edge computing mainly has these benefits: It can reduce the computing load of the data
center, it reduces the pressure of network bandwidth, improves the data processing efficiency of the
IoT terminals, and it provides users with high reliability and low latency positioning service [12].

This paper proposes a BeiDou satellite positioning method based on IoT and edge computing,
which can provide real-time, low latency, and high precision positioning service for massive IoT
terminals. In this method, the upgraded cellular base stations are used as the edge nodes to offload
the computational pressure on the data center. Additionally, the differential correction information
is calculated and broadcast in real-time. To cope with the multi-access IoT terminals, an improved
genetic task allocation algorithm is formulated, which minimizes the service delay while ensuring the
load balancing of edge nodes. Then, the optimized unscented Kalman filter based on the edge node
(EUKF) algorithm is used to improve the positioning precision of IoT terminals.

The remainder of this article is organized as follows. Section 2 introduces the pseudo-range
differential positioning algorithms. Section 3 presents the proposed positioning method based on
IoT and edge computing. The improved GA is used to address the load balancing issue and reduce
the positioning delay. In addition, the optimized EUKF algorithm is used to improve the positioning
precision. Section 4 provides the simulation results and analyses. Finally, the conclusions are drawn in
Section 5.

2. Algorithm Principle

According to the difference of correction information from the reference stations, differential
positioning can be divided into position differential positioning, pseudo-range differential positioning,
and carrier phase differential positioning [13].

Pseudo-range differential positioning is most widely used and can meet the positioning and
navigation requirements of general IoT terminals. In short, the reference station receiver r measures
the pseudo-ranges Pr of all visible satellites, and calculates the corrections information according to the
known position coordinate. Then, it broadcasts the corrections information of all satellites to the data
center. The IoT terminals select an optimal set of four satellites to measure pseudo-ranges and the
approximate coordinates of users, send the approximate coordinates to the data center, and receive the
pseudo-range corrections from the nearest reference station. Finally, the corrected position coordinate
is obtained according to the pseudo-range corrections [14,15]. The differential positioning based on the
data center is shown in Figure 1.

The satellite position coordinate (xs, ys, zs) can be calculated by the received ephemeris data.
The precise coordinate of the reference station (xr, yr, zr) can be obtained by the static positioning of
the receiver after a long time. The geometric distance from reference station r to satellite s is given in
Equation (1).

Rs
r =

√
(xr − xs)2 + (yr − ys)2 + (zr − zs)2, (1)

Sensors 2020, 20, 889 3 of 17

Sensors 2020, 20, 889 3 of 19

Figure 1. Differential positioning based on the data center.

The satellite position coordinate ()s s sx , y , z can be calculated by the received ephemeris data.

The precise coordinate of the reference station (), ,r r rx y z can be obtained by the static

positioning of the receiver after a long time. The geometric distance from reference station r to
satellite s is given in Equation (1).

() () ()2 2 2s s s s
r r r rR x x y y z z= − + − + − , (1)

The pseudo-range is the measurement distance between the satellite and the receiver. Due to the
influences of satellite ephemeris, clock, ionosphere, and troposphere, there is a measurement error.
The observation equation of pseudo-range is given in Equation (2).

s s s
r r r r r r rR c t c t I Tρ δ δ δρ ε= + − + + + + , (2)

where s
rρ represents the pseudo-range from the reference station receiver r to the satellite s , rtδ

and stδ are the receiver clock error and the satellite clock error, rI and rT are the ionosphere error

and the troposphere error, rδρ is the satellite ephemeris error, εr is the pseudo-range measurement
noise, c is the speed of light. The parameters in Equation (2) all represent the length quantity.

The pseudo-range correction of the reference station s
rρΔ is the difference between the pseudo-

range measurement value and the geometric distance, given in Equation (3).

s s s
u u u u u u uR c t c t I Tρ δ δ δρ ε= + − + + + + , (3)

The pseudo-range observation equation of the IoT terminal receiver u is given in Equation (4).

s s s
u u u u u u uR c t c t I Tρ δ δ δρ ε= + − + + + + , (4)

Combined with the pseudo-range correction of reference station, the corrected pseudo-range
observation equation is expressed as Equation (5).

() () () () ()

s s s
cu u r

s
u u r u r u r u r u rR c t t I I T T

ρ ρ ρ
δ δ δρ δρ ε ε

= − Δ

= + − + − + − + − + −
, (5)

Under the condition of a short baseline, the ephemeris error between the two receivers is almost
constant, namely u rδρ δρ≈ . Other correlated errors, such as ionospheric and tropospheric errors,

Figure 1. Differential positioning based on the data center.

The pseudo-range is the measurement distance between the satellite and the receiver. Due to the
influences of satellite ephemeris, clock, ionosphere, and troposphere, there is a measurement error.
The observation equation of pseudo-range is given in Equation (2).

ρs
r = Rs

r + cδtr − cδts + δρr + Ir + Tr + εr, (2)

where ρs
r represents the pseudo-range from the reference station receiver r to the satellite s, δtr and

δts are the receiver clock error and the satellite clock error, Ir and Tr are the ionosphere error and the
troposphere error, δρr is the satellite ephemeris error, εr is the pseudo-range measurement noise, c is
the speed of light. The parameters in Equation (2) all represent the length quantity.

The pseudo-range correction of the reference station ∆ρs
r is the difference between the pseudo-range

measurement value and the geometric distance, given in Equation (3).

ρs
u = Rs

u + cδtu − cδts + δρu + Iu + Tu + εu, (3)

The pseudo-range observation equation of the IoT terminal receiver u is given in Equation (4).

ρs
u = Rs

u + cδtu − cδts + δρu + Iu + Tu + εu, (4)

Combined with the pseudo-range correction of reference station, the corrected pseudo-range
observation equation is expressed as Equation (5).

ρs
cu = ρs

u − ∆ρs
r

= Rs
u + c(δtu − δtr) + (δρu − δρr) + (Iu − Ir) + (Tu − Tr) + (εu − εr)

, (5)

Under the condition of a short baseline, the ephemeris error between the two receivers is almost
constant, namely δρu ≈ δρr. Other correlated errors, such as ionospheric and tropospheric errors,
are in the first order range, namely Iu ≈ Ir, Tu ≈ Tr. The measurement noise can be neglected, εu ≈ εr.
Then, the corrected pseudo-range observation equation can be expressed as Equation (6).

ρs
cu = Rs

u + cδtu =

√
(xu − xs)2 + (yu − ys)2 + (zu − zs)2 + cδtu, (6)

There are four unknown numbers in Equation (6), that is the IoT terminal position coordinate
(xu, yu, zu) and the receiver clock error δtu. The precise coordinate of the IoT terminal can be calculated
by the least square method, as long as four or more satellites are observed at the same time.

Sensors 2020, 20, 889 4 of 17

However, this method centralizes the positioning request processing of IoT terminals to the data
center, thereby resulting in the traffic overload. Therefore, edge computing is introduced into the
positioning method. The edge nodes are used to offload the computing pressure on the data center,
thereby providing effective and real-time positioning service.

3. Proposed Positioning Method Based on IoT and Edge Computing

3.1. Positioning System Architecture

The development of 5G communication technologies lays a foundation for the integration of
navigation and communication. At the architecture level, navigation and communication equipment
are integrated into one device. The base station in the cellular network is upgraded to serve as
a reference station to observe navigation satellite signals. Combined with the existing and under
construction continuous operation reference stations, the edge computing network is formed to provide
navigation and positioning service for the IoT terminals. According to incomplete statistics, as of the
beginning of 2017, China has established more than 6000 continuous operation reference stations.

Edge computing is a technology which conducts calculation at the network edge through a small
data center closer to the terminals. The edge is the immediate first hop from the IoT device but not
the IoT node itself, such as IoT gateways and base stations [16–19]. As an important part of the IoT,
the base stations play a bridge role. It connects the IoT terminals and the cloud service. The continuous
operation reference station situated at the IoT terminal side serves as an edge node which can provide
high-precision positioning service with low latency, real-time interaction, mobility support, security,
privacy for numerous deployed, and geographically dispersed IoT nodes.

The positioning system architecture based on IoT and edge computing has three layers, that is
the cloud layer, edge layer, and things layer, shown in Figure 2. The cloud layer includes a cloud
server and data center. The edge layer includes a continuous operation reference station and base
station network. The things layer includes IoT terminals and sensors. The edge layer and things layer
participate in the positioning, whereas the cloud layer does not participate in the positioning, but only
does the data collection, analysis, and processing work.

IoT node: The IoT node consists of sensors, devices, and terminals. The terminal initiates the
positioning request. The GPS sensor measures the satellite signal and sends the measurement data to
the edge node. The edge node calculates according to certain rules and policies. Finally, the terminal
user obtains the positioning result.

Edge node: Edge node, which is equivalent to the small data center, can provide computing and
storage resources to meet the positioning service requirements of various IoT terminals. The edge node
can perform data preprocessing, simple data analysis and prediction, and send aggregated results to
the cloud servers or IoT terminals. The edge nodes can communicate with each other, connect into
the edge computing network, and carry out distributed computing. According to the approximate
coordinate of the positioning terminal, the edge node dynamically generates the differential correction
information to provide users with real-time and high-precision positioning results.

Cloud: The cloud uses the collected data by the IoT terminals. It can provide core service for
the IoT terminals that include historical data analyses, data storage, and user behavior prediction.
The location-based service can provide users with a more intelligent service based on the analysis
results. The cloud service includes IoT terminal users tracking, configuration, analysis, reporting,
authentication, and authorization service [20].

The BDS positioning method based on IoT and edge computing aims to solve the high time
delay problem of centralized computing in the data center. The base station is used as the edge
node to calculate the differential correction information. When the terminal initiates the positioning
request, the nearest edge node receives the positioning request and calculates the differential correction
information, and sends the final result to the terminal for positioning calculation.

Sensors 2020, 20, 889 5 of 17

Sensors 2020, 20, 889 5 of 19

location-based service can provide users with a more intelligent service based on the analysis results.
The cloud service includes IoT terminal users tracking, configuration, analysis, reporting,
authentication, and authorization service [20].

Figure 2. Positioning system architecture based on IoT and edge computing.

The BDS positioning method based on IoT and edge computing aims to solve the high time delay
problem of centralized computing in the data center. The base station is used as the edge node to
calculate the differential correction information. When the terminal initiates the positioning request,
the nearest edge node receives the positioning request and calculates the differential correction
information, and sends the final result to the terminal for positioning calculation.

3.2. Positioning Method

The IoT terminals send positioning requests and each terminal will choose the nearest edge node
for positioning calculation. This scheme does not consider the load balancing problem of edge nodes,
which will lead to overload and delay the increase of some edge nodes. Additionally, it is difficult to
respond to the sudden changes in terminal requests. In view of numerous IoT terminals and the
uneven geographical distribution, it is easy to obtain the optimal load balancing results and minimize
the service delay by formulating the link scheduling problems. The final differential correction
information result is sent to the IoT terminal by the nearest edge node through the Internet, and the
accurate positioning result of the terminal can be obtained in a short time.

The edge computing network can be represented by a weighted directional graph ()G V ,E=

, where { }1 i mV v , ,v , ,v=   is the set of edge nodes, and { }1 2 1, i , j m ,mE e , ,e , ,e −=   is the set

of edge links. The edge link between iv and iv is i , je , and the communication delay of i , je is i , jτ
. Each edge node is granted with computing ability ir . The set of positioning request tasks is

{ }1 k nU u , ,u , ,u=   . The service delay processed by the whole computing task U in the edge

computing network can be expressed as Equation (7).

i
k ,i i , j i , j

i

Cd max t x
r

τ
 

= + + 
 

, (7)

where iC is the request capacity on the edge node iv , i

i

C
r

 is the computation time on the edge node

iv . It can also indicate the waiting time of the task ku . k ,it is the transmission delay from the IoT

Satellites

IoT
terminals

Edge nodes

Satellites signal

Correction information

Edge link

Figure 2. Positioning system architecture based on IoT and edge computing.

3.2. Positioning Method

The IoT terminals send positioning requests and each terminal will choose the nearest edge node
for positioning calculation. This scheme does not consider the load balancing problem of edge nodes,
which will lead to overload and delay the increase of some edge nodes. Additionally, it is difficult to
respond to the sudden changes in terminal requests. In view of numerous IoT terminals and the uneven
geographical distribution, it is easy to obtain the optimal load balancing results and minimize the
service delay by formulating the link scheduling problems. The final differential correction information
result is sent to the IoT terminal by the nearest edge node through the Internet, and the accurate
positioning result of the terminal can be obtained in a short time.

The edge computing network can be represented by a weighted directional graph G = (V, E),
where V = {v1, . . . , vi, . . . , vm} is the set of edge nodes, and E =

{
e1,2, . . . , ei, j, . . . , em−1,m

}
is the set of edge

links. The edge link between vi and vi is ei, j, and the communication delay of ei, j is τi, j. Each edge node
is granted with computing ability ri. The set of positioning request tasks is U = {u1, . . . , uk, . . . , un}.
The service delay processed by the whole computing task U in the edge computing network can be
expressed as Equation (7).

d = max
[

Ci
ri

+ tk,i + τi, jxi, j

]
, (7)

where Ci is the request capacity on the edge node vi,
Ci
ri

is the computation time on the edge node vi.
It can also indicate the waiting time of the task uk. tk,i is the transmission delay from the IoT terminal k
to the nearest edge node vi. If the task uk is transmitted from edge node vi to v j and calculated at the
edge node v j, let xi, j = 1. Otherwise xi, j = 0, the task uk is calculated at the nearest edge node vi.

Considering the mobility of the IoT terminal and the limited-service scope of edge nodes,
the computing result backhaul delay can be expressed as Equation (8).

db =

 t′k,i, t′k,i ≤ ε

t′k,i + τi, j, t′k,i > ε
, (8)

where ε is the service range of the edge node vi. If the IoT terminal k is within the coverage of edge
computing node vi, the differential correction information is transmitted from the edge computing node
vi to the IoT terminal k. Otherwise, it is transmitted by the nearest edge node v j to the IoT terminal k.

The service delay of positioning request in the edge computing network is equal to the maximum
delay of all IoT terminals. To achieve the goal of minimum delay of positioning request, it is necessary
to minimize the objective function d. Hence, the objective function of the task allocation problem can
be formulated as follows.

Sensors 2020, 20, 889 6 of 17

min
i∈V,k∈U

{
max

[
Ci
ri

+ tk,i + τi, jxi, j + db

]}
, (9)

When positioning tasks are assigned among the edge nodes, each positioning request should
be allocated to the nearest edge node to minimize the service delay. Positioning task assignment is
initialized by assigning all positioning requests to the nearest edge node.

Due to the uneven distribution of terminals’ geographical location and the different computing
ability of each edge node, the initialization of positioning requests may cause overload of some
edge nodes.

Reallocating the positioning requests on edge nodes to ensure load balancing can reduce the
service delay of the whole system and maximize the throughput of the system. After the terminal
positioning request is initialized, the average calculation time of the edge nodes is selected as the
threshold. Then, the positioning requests exceeding the thresholdϕ are reallocated. On each edge node,
there is the capacity ∆Ci used for the reallocated positioning requests. The task allocation problem can
be represented as Equation (10).

min
i∈V,k∈U

{
max

[
ϕ+

∆Ci
ri

+ τi, jxi, j + db

]}
, (10)

Currently widely used task allocation algorithms include genetic algorithm (GA) and ant colony
algorithm (ACA). The ACA is more complex and requires a longer running time, so it is not suitable
for real-time positioning in this paper. The GA [21] based on natural selection can solve large-scale
combinatorial optimization problems and perform a parallel search. It has been proved to have robust
search capabilities and could jump out local search space to achieve optimal solutions in global space.
The best solution or secondary solutions are achieved by repeating employing three genetic operations,
selection, crossover, and mutation. The improved GA proposed by this paper is used to redistribute
positioning requests beyond the threshold ϕ to ensure the minimum service delay of the system.
In order to reduce the execution time of the GA, the first generation of the chromosome is initialized as
a solution space on the edge node whose calculation time is lower than the threshold ϕ. The hybrid
selection method is used as a chromosome selection strategy. First, the top 20% best individuals are
selected into the next generation directly, and set cp = 0.2. Then, the roulette algorithm is used as a
selection operation for the remaining 80% individuals. The roulette algorithm is as follows.

(1) Calculate the fitness value of each individual fk.
(2) Calculate the probability of the selected individual k.

Pk =
fk

n∑
k=1

fk
, (11)

(3) Calculate the accumulation probability of an individual k.

Qk =
k∑

i=1

Pk, (12)

(4) Determine whether an individual is selected. Generate the random number between [0,1].
If r < Q1, select the individual 1. If Qk−1 < r ≤ Qk, select the individual k.

The crossover operator is the most important step in the genetic algorithm. It can determine the
global search ability of the algorithm. The individuals selected by the selection operation have high
adaptability. Randomly select two of the above-mentioned individuals for crossover operation. Judge
the generated random number rand and crossover probability pc = 0.6. If the crossover probability pc

is large, the crossover operation is performed on two individuals to generate better individuals.

Sensors 2020, 20, 889 7 of 17

The mutation operation affects the diversity and local search ability of the population. In this
paper, a single point mutation method is used to select one of the edge nodes randomly for gene
mutation when the individual performs mutation operation. This randomness can enhance the local
search ability of the algorithm, accelerate its convergence speed when the algorithm approaches the
optimal solution, and reduce the immature convergence of the algorithm.

The above method reasonably assigns each positioning request to an edge node which calculates
the differential correction information. It can effectively reduce positioning delay and provide real-time
positioning services for terminals.

The load balancing degree of the edge computing network is measured by the standard deviation
of task processing time (TSD) on each node [22]. For a good and stable load balancing performance,
TSD should be low.

TSD =

√√
1
n

n∑
i=1

(
Ti − T

)2
, T =

1
n

n∑
i=1

Ti, (13)

where i is the edge node, Ti is the task processing time on the edge node i, T is the mean value of
the time. Load balancing and service delay of the edge computing network affect the effectiveness of
the task allocation algorithm.

The task allocation algorithm for the whole system is shown in Algorithm 1.

Algorithm 1: The Task Allocation Algorithm

1. Input: List of terminals positioning requests and list of edge nodes
2. Output: Minimum service delay
3. Initialize V, E, U, ri
4. Calculate ϕ and ∆Ci for i ∈ V
5. For all i in edge nodes, i ∈ V
6. Initialize ∆Ci, cp, pc, CHROMOSOME, ITERATION
7. Initialize the first generation chromosome
8. While iteration < ITERATION do
9. Calculate fitness fk of each chromosome in the previous generation
10. Calculate natural selection probability Pk
11. Copy top 20% best individuals into next generation directly
12. The roulette algorithm is used to selection operation for the remaining individuals
13. Crossover operator
14. Mutation operator
15. Calculate the optimal allocation scheme and task processing time in this iteration
16. Generate the next generation chromosomes
17. End While
18. End For
19. Calculate service delay of the whole system
20. Return the optimal solution of service delay

After performing the task assignment algorithm, all terminals’ positioning requests are assigned
to an edge node which is recorded as the master station. In the 5G scenario, there are lots of base
stations used as edge nodes. The differential correction information of the approximate coordinates of
the IoT terminal is calculated by using the master station in combination with at least two auxiliary
stations around the IoT terminal [23]. Since the approximate coordinate of the IoT terminal (x′u, y′u, z′u)
is between several meters and ten meters apart from the real coordinate (xu, yu, zu), the differential
correction information of the approximate coordinates can be used to correct the pseudo-range
observation to obtain accurate IoT terminal positioning results.

The 5G base station has a high density of stations, which is easily affected by multipath effects,
resulting in a large noise of the observed signals. When the master station chooses the auxiliary station
for calculation, auxiliary stations need to have good health, and the dilution of precision (DOP) is
small and evenly distributed around the IoT terminal. DOP indicates the space distribution feature
of the satellite when the receiver observes. The DOP value is smaller, the accuracy of navigation
and positioning is higher. Otherwise, the navigation and positioning accuracy in the region becomes
worse [24]. Position dilution of precision (PDOP), which is a measure of X, Y, Z position geometry,

Sensors 2020, 20, 889 8 of 17

is generally less than three to obtain better positioning results [25]. If there are n available auxiliary
stations in the edge computing network, the differential correction information ∆ρs

mi of auxiliary i
relative to master station m is given in Equation (14).

∆ρs
mi = ∆Rmi + c∆δtmi + ∆δρmi + ∆Imi + ∆Tmi + ∆εmi, (14)

For the approximation u′ of the IoT terminal, the single difference between the master station m
and u′ can be expressed as Equation (15).

∆ρs
mi = ∆Rmi + c∆δtmi + ∆ρmi + ∆Imi + ∆Tmi + ∆εmi, (15)

Equation (15) can represent a linear function of the difference between the coordinates of the
master station m and u′.

∆ρs
mu′ =

∂∆ρ
∂x

(x′u − xm) +
∂∆ρ
∂y

(y′u − ym) = a1(x′u − xm) + a2(y′u − ym), (16)

Similarly, for auxiliary stations 1 and 2, we have{
∆ρs

m1 = a1(x1 − xm) + a2(y1 − ym)

∆ρs
m2 = a1(x2 − xm) + a2(y2 − ym)

, (17)

The coordinates of the master station and the auxiliary station are known, and the pseudo-range
single difference can be calculated by the observation data, and the solution coefficient is given in
Equation (18). [

a1

a2

]
=

[
x1 − xm y1 − ym

x2 − xm y2 − ym

]−1[
∆ρs

m1
∆ρs

m2

]
, (18)

Using Equation (16), we have

∆ρs
mu′ = a1(x′u − xm) + a2(y′u − ym)

=
[

x′u − xm y′u − ym
][x1 − xm y1 − ym

x2 − xm y2 − ym

]−1[
∆ρs

m1
∆ρs

m2

]
, (19)

Then, the corrected pseudo-range observation equation of terminal u is represented as
Equation (20).

ρs
cu = ρs

u − ∆ρs
mu′

= Rs
u + c(δtu − δt′u) + (δρu − δρ′u) + (Iu − I′u) + (Tu − T′u) + (εu − ε′u)

, (20)

Eliminate errors with a strong spatial correlation, such as ionosphere, troposphere, satellite orbit,
and clock errors. The IoT terminal approximate coordinate is (x′u, y′u, z′u), and the geometric distance
to satellite is given in Equation (21).

R′u =

√
(x′u − xs)2 + (y′u − ys)2 + (z′u − zs)2, (21)

According to the approximate coordinate of the IoT terminal, the distance difference can be
expressed by the coordinate difference. Since the distance between the two coordinates is very close,
the higher derivative of Taylor expansion is almost zero, and only the first derivative is retained.
The error equation of the corrected pseudo-range observation equation is given in Equation (22).

vs
uu′ = ex∆x + ey∆y + ez∆z + cδtu +

(
Rs

u′ − ρ
s
u + ∆ρs

mu′
)
, (22)

Sensors 2020, 20, 889 9 of 17

The number of satellites is n, the corresponding error equations is given in Equation (23).

V = AδX + L, (23)

where

A =


e1

x e1
y e1

z 1
e2

x e2
y e2

z 1
...

...
...

...
en

x en
y en

z 1

, δX =


∆x
∆y
∆z

cδtu

, L =


R1

u′ − ρ
1
u + ∆ρ1

mu′

R2
u′ − ρ

2
u + ∆ρ2

mu′
...

Rn
u′ − ρ

n
u + ∆ρn

mu′

, (24)

When four or more satellites are observed, the least square solution can be obtained by the
weighted least square, where the mean value of L is 0 and the variance matrix is Q.

∆x
∆y
∆z

cδtu

 =
(
ATQ−1A

)−1
ATQ−1L, (25)

The covariance matrix of the least squares estimator is var(δXLS) =
(
ATQ−1A

)−1
. Finally,

the accurate coordinate of the IoT terminal is obtained.
xu

yu

zu

 =


x′u + ∆x
y′u + ∆y
z′u + ∆z

, (26)

The flowchart of the BeiDou positioning method based on IoT and edge computing is shown in
Figure 3.

Sensors 2020, 20, 889 10 of 19

The covariance matrix of the least squares estimator is () () 11T
LSvar X A Q Aδ

−−= . Finally, the

accurate coordinate of the IoT terminal is obtained.

'
u u

'
u u

'
u u

x x x
y y y
z z z

 + Δ 
   = + Δ  
   + Δ   

, (26)

The flowchart of the BeiDou positioning method based on IoT and edge computing is shown in
Figure 3.

Figure 3. The flowchart of the BeiDou positioning method based on IoT and edge computing.

3.3. Optimized Positioning Method

The least squares method described above is simple in calculation and the positioning results at
each time are independent of each other, so the positioning error is large and unstable. Unscented
Kalman filter (UKF) [26] is a recursive algorithm which is suitable for nonlinear systems and has the
advantages of small calculation and high positioning accuracy. The UKF algorithm reduces the
influence of errors on positioning accuracy through filters, enabling accurate target tracking.

Consider a nonlinear system as follows:

()
()

1 1

1 1

k k k

k k k

X f X ,W
Z h X ,V

− −

− −

=
 =

, (27)

where f represents a nonlinear state function and h represents a nonlinear measurement

function. kW and kV are mutually independent white noises with the mean of 0 and covariance

matrices kQ and kR , respectively.

Start

End

Receive satellite signal and calculate the coordinates of visible satellites

Initialize positioning request allocation according to the nearest principle

Calculate the service delay threshold φ in edge network

Is edge node overloaded?

Using the improved GA to redistribution positioning requests beyond the threshold

Calculate the optimal minimum service delay

Calculate the differential correction information of the approximate coordinates

Is the user in the service range of the edge
node?

Send the calculation results to the edge node closest to the user

Calculate the accurate positioning results of the user

Y

Y

N

N

Figure 3. The flowchart of the BeiDou positioning method based on IoT and edge computing.

Sensors 2020, 20, 889 10 of 17

3.3. Optimized Positioning Method

The least squares method described above is simple in calculation and the positioning results at
each time are independent of each other, so the positioning error is large and unstable. Unscented
Kalman filter (UKF) [26] is a recursive algorithm which is suitable for nonlinear systems and has
the advantages of small calculation and high positioning accuracy. The UKF algorithm reduces the
influence of errors on positioning accuracy through filters, enabling accurate target tracking.

Consider a nonlinear system as follows:{
Xk = f (Xk−1, Wk−1)

Zk = h(Xk−1, Vk−1)
, (27)

where f represents a nonlinear state function and h represents a nonlinear measurement function.
Wk and Vk are mutually independent white noises with the mean of 0 and covariance matrices Qk
and Rk, respectively.

In order to ensure the unbiasedness of the estimation, the initial value of the filtering is

X̂ = EX0

P0 = E
[(

X0 − X̂0
)(

X0 − X̂0
)T

] , (28)

The core of UKF is unscented transformation, which uses sigma points to approximate the
Gaussian distribution of nonlinear systems, and the obtained mean and covariance have higher
precision. The n-dimensional random variable X with mean X and covariance PXX can be approximated
by sigma points. 

χ(0) = X
χ(i) = X +

(√
(n + λ)PXX

)
(i)

, i = 1, 2, . . . , n

χ(i) = X −
(√

(n + λ)PXX
)
(i−n)

, i = n + 1, n + 2, . . . , 2n
, (29)

The corresponding weights of the sigma points are given in Equation (30).
W(0)

m = λ
n+λ

W(0)
c = λ

n+λ + 1− α2 + β

W(i)
m = W(i)

c = λ
n+λ , i = 1, 2, . . . , 2n

, (30)

where m is the mean and c is the covariance.
Calculate the sigma points at time k− 1.

χ̃
(0)
k−1 = X̂k−1

χ̃
(i)
k−1 = X̂k−1 +

√
n + λ

(√
Pk−1

)
(i)

, i = 1, 2, . . . , n

χ̃
(i)
k−1 = X̂k−1 −

√
n + λ

(√
Pk−1

)
(i−n)

, i = n + 1, n + 2, . . . , 2n

, (31)

Calculate one-step prediction at time k.

χ
∗(i)
k/k−1 = f

[
χ
(i)
k−1

]
, i = 0, 1, 2, . . . , 2n

X̂k/k−1 =
2n∑

i=0
W(i)

m χ
∗(i)
k/k−1

Pk/k−1 =
2n∑

i=0
W(i)

c

[
χ
∗(i)
k/k−1 − X̂k/k−1

][
χ
∗(i)
k/k−1 − X̂k/k−1

]T
+ Qk−1

, (32)

Sensors 2020, 20, 889 11 of 17

Calculate one-step prediction sigma points at time k.

χ
(0)
k/k−1 = X̂k/k−1

χ
(i)
k/k−1 = X̂k/k−1 +

√
n + λ

(√
Pk/k−1

)
(i)

, i = 1, 2, . . . , n

χ
(i)
k/k−1 = X̂k/k−1 −

√
n + λ

(√
Pk/k−1

)
(i−n)

, i = n + 1, n + 2, . . . , 2n

Z(i)
k/k−1 = h

[
χ
(i)
k/k−1

]
, i = 0, 1, 2, . . . , 2n

Ẑ(i)
k/k−1 =

2n∑
i=0

W(i)
m Z(i)

k/k−1

, (33)

Update the filter value.

P(XZ)k/k−1 =
2n∑

i=0
W(i)

c

[
χ
(i)
k/k−1 − X̂k/k−1

][
Z(i)

k/k−1 − Ẑk/k−1

]T

P(ZZ)k/k−1 =
2n∑

i=0
W(i)

c

[
Z(i)

k/k−1 − Ẑk/k−1

][
Z(i)

k/k−1 − Ẑk/k−1

]T
+ Rk

Kk = P(XZ)k/k−1P−1
(ZZ)k/k−1

X̂k = X̂k/k−1 + Kk
[
Zk − Ẑk/k−1

]
Pk = Pk/k−1 −KkP(ZZ)k/k−1KT

k

, (34)

Combining the positioning model based on IoT and edge computing, an unscented Kalman filter
based on the edge node (EUKF) is proposed in this paper. Considering the limited computing ability
of the IoT terminal, the edge nodes are used to calculate the positioning results and sent to the IoT
terminals. In order to improve the positioning accuracy, multiple edge nodes around the IoT terminals
are used for coordinated positioning, and the positioning result is transmitted by the master station to
the IoT terminal.

Independent filtering estimation of the IoT terminals is conducted by each edge node. The states
of the N edge nodes are estimated as X̂1, X̂2, . . . , X̂N, and the corresponding estimated error covariances
P11, P22, . . . , PNN. The final filtered result can be expressed as Equation (35).

X̂ f = A1X̂1 + A2X̂2 + · · ·+ ANX̂N, (35)

The combined measurement update can be expressed as

X̂k = X̂k/k−1 +
∑
i

Kik
[
Zik − Ẑi,k/k−1

]
Pk = Pk/k−1 −

∑
i

KikP(ZZ)i,k/k−1KT
ik

, (36)

Each recursion of the EUKF uses the edge node around the master station to correct the
measurement error. The error covariance matrix can be expressed as Equation (37).

P(ZZ)i,k/k−1 =
2n∑

i=0

W(i)
c

[
Z(i)

k/k−1 − Ẑk/k−1

][
Z(i)

k/k−1 − Ẑk/k−1

]T
+ AiRik, (37)

where Ai is a weighted matrix, which can be determined by the distance from the edge node to the IoT
terminal and the confidence of the edge node. The weighted matrix Ai is given in Equation (38).

Ai = diag(a1, a2, . . . , an), (38)

The error covariance directly affects the gain of the filter, and the filter gain can be expressed as
Equation (39).

Kik = P(XZ)i,k/k−1P−1
(ZZ)i,k/k−1, (39)

Sensors 2020, 20, 889 12 of 17

If the distance from the edge node to the IoT terminal is far and the confidence of the edge node
is low, the value of Ai is large, and the filter gain is correspondingly reduced, thereby reducing the
influence of system error on the positioning accuracy.

The state vector of the IoT terminal is given in Equation (40).

X =
[
x, y, z,

.
x,

.
y,

.
z,

..
x,

..
y,

..
z, cδtu

]T
, (40)

Equation (40) includes the terminal’s three-dimensional position coordinate, velocity, acceleration,
and receiver clock difference. The equation of state for the IoT terminal is given in Equation (41).

Xk+1 = ΦXk + Wk, (41)

where

Φ =


Φx O3 O3 O3

O3 Φy O3 O3

O3 O3 Φz O3

O3 O3 O3 1

, Φx =


1 T T2/2
0 1 T
0 0 1

, (42)

where T indicates the adoption time. According to the above model, the position coordinates of the IoT
terminal can be solved.

4. Results and Analysis

In this paper, OEM6® Family Firmware is used to receive satellite data. NovAtel Connect provides
a graphical interface for establishing communication, controlling, and monitoring the operation of the
NovAtel receiver. The receiver software can track satellites indicator, dilution of precision, positioning
results, etc. The satellite position coordinates and the positioning result of the IoT terminal can calculate
by the ephemeris and observation data collected by the receiver.

The observation of the visible satellites is shown in Figure 4. During the observation period,
the number of the visible satellites meets the basic requirements of positioning calculation. The PDOP
representing the geometric distribution of the satellites in the sky is shown in Figure 5. The PDOP
value is less than three, therefore the accurate positioning results can be calculated using the observed
satellite data.

This paper uses MATLAB for simulations. According to the average coverage of a 5G, the base
station is 500 m, 20,000 base stations in Beijing are selected as edge nodes. Assume that the edge nodes
have the same computing power, and the terminals’ positioning requests are generated randomly.
The parameters of GA are set as follows: cp = 0.2, pc = 0.6. The number of chromosomes is 100 and
the number of iterations is 100. Use the real data collected by the NovAtel receiver to calculate the
positioning results of the IoT terminals.
Sensors 2020, 20, 889 14 of 19

Figure 4. The number of visible satellites.

Figure 5. PDOP.

4.1. Positioning Accuracy

According to the observed satellite ephemeris data and pseudo-range information, the satellite
position coordinates are calculated. The IoT terminals use the above-mentioned difference
positioning algorithm based on IoT and edge computing to solve the terminals’ precise coordinates.

Figure 6 shows the root mean of square error of the differential positioning method based on the
data center and edge computing, respectively. It can be seen from Figure 6a that the average
positioning error based on the data center is 0.96268 m. Additionally, the average error based on edge
computing is 0.95511 m, as shown in Figure 6b. The accuracy of the two methods is similar, but the
average positioning error based on edge computing has 0.00757 m improvement. The result
demonstrates that the proposed positioning method in this paper can provide the accurate
positioning services for large-scale IoT terminals.

(a) (b)

0 500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6

8

10

12

Time/s

Th
e

nu
m

be
r o

f v
is

ib
le

 s
at

el
lit

es

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6

Time/s

P
D

O
P

0 1 2 3 4 5 6 7 8 9 10

x 105

0

1

2

3

4

5

6

7

Number of IoT terminals

R
oo

t m
ea

n
of

 s
qu

ar
e

er
ro

r/m

Based on data center
Average error

0 1 2 3 4 5 6 7 8 9 10

x 105

0

1

2

3

4

5

6

7

Number of IoT terminals

R
oo

t m
ea

n
of

 s
qu

ar
e

er
ro

r/m

Based on edge computing
Average error

Figure 4. The number of visible satellites.

Sensors 2020, 20, 889 13 of 17

Sensors 2020, 20, 889 14 of 19

Figure 4. The number of visible satellites.

Figure 5. PDOP.

4.1. Positioning Accuracy

According to the observed satellite ephemeris data and pseudo-range information, the satellite
position coordinates are calculated. The IoT terminals use the above-mentioned difference
positioning algorithm based on IoT and edge computing to solve the terminals’ precise coordinates.

Figure 6 shows the root mean of square error of the differential positioning method based on the
data center and edge computing, respectively. It can be seen from Figure 6a that the average
positioning error based on the data center is 0.96268 m. Additionally, the average error based on edge
computing is 0.95511 m, as shown in Figure 6b. The accuracy of the two methods is similar, but the
average positioning error based on edge computing has 0.00757 m improvement. The result
demonstrates that the proposed positioning method in this paper can provide the accurate
positioning services for large-scale IoT terminals.

(a) (b)

0 500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6

8

10

12

Time/s

Th
e

nu
m

be
r o

f v
is

ib
le

 s
at

el
lit

es
0 500 1000 1500 2000 2500 3000 3500 4000

0

1

2

3

4

5

6

Time/s
P

D
O

P

0 1 2 3 4 5 6 7 8 9 10

x 105

0

1

2

3

4

5

6

7

Number of IoT terminals

R
oo

t m
ea

n
of

 s
qu

ar
e

er
ro

r/m

Based on data center
Average error

0 1 2 3 4 5 6 7 8 9 10

x 105

0

1

2

3

4

5

6

7

Number of IoT terminals

R
oo

t m
ea

n
of

 s
qu

ar
e

er
ro

r/m

Based on edge computing
Average error

Figure 5. PDOP.

4.1. Positioning Accuracy

According to the observed satellite ephemeris data and pseudo-range information, the satellite
position coordinates are calculated. The IoT terminals use the above-mentioned difference positioning
algorithm based on IoT and edge computing to solve the terminals’ precise coordinates.

Figure 6 shows the root mean of square error of the differential positioning method based on
the data center and edge computing, respectively. It can be seen from Figure 6a that the average
positioning error based on the data center is 0.96268 m. Additionally, the average error based on
edge computing is 0.95511 m, as shown in Figure 6b. The accuracy of the two methods is similar,
but the average positioning error based on edge computing has 0.00757 m improvement. The result
demonstrates that the proposed positioning method in this paper can provide the accurate positioning
services for large-scale IoT terminals.

Sensors 2020, 20, 889 14 of 19

Figure 4. The number of visible satellites.

Figure 5. PDOP.

4.1. Positioning Accuracy

According to the observed satellite ephemeris data and pseudo-range information, the satellite
position coordinates are calculated. The IoT terminals use the above-mentioned difference
positioning algorithm based on IoT and edge computing to solve the terminals’ precise coordinates.

Figure 6 shows the root mean of square error of the differential positioning method based on the
data center and edge computing, respectively. It can be seen from Figure 6a that the average
positioning error based on the data center is 0.96268 m. Additionally, the average error based on edge
computing is 0.95511 m, as shown in Figure 6b. The accuracy of the two methods is similar, but the
average positioning error based on edge computing has 0.00757 m improvement. The result
demonstrates that the proposed positioning method in this paper can provide the accurate
positioning services for large-scale IoT terminals.

(a) (b)

0 500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6

8

10

12

Time/s

Th
e

nu
m

be
r o

f v
is

ib
le

 s
at

el
lit

es

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6

Time/s

P
D

O
P

0 1 2 3 4 5 6 7 8 9 10

x 105

0

1

2

3

4

5

6

7

Number of IoT terminals

R
oo

t m
ea

n
of

 s
qu

ar
e

er
ro

r/m

Based on data center
Average error

0 1 2 3 4 5 6 7 8 9 10

x 105

0

1

2

3

4

5

6

7

Number of IoT terminals

R
oo

t m
ea

n
of

 s
qu

ar
e

er
ro

r/m

Based on edge computing
Average error

Figure 6. Average positioning errors of the positioning methods based on data center and edge
computing respectively: (a) Average positioning errors based on the data center; (b) average positioning
errors based on edge computing.

The comparisons of the positioning errors of the UKF and EUKF algorithms are shown in Figure 7,
respectively. It can be seen from Figure 7a that the average positioning error of the UKF algorithm is
0.88389 m. Additionally, the average positioning error of the EUKF algorithm is 0.87495 m, as shown in
Figure 7b. It can be known from Figures 6 and 7 that the UKF and EUKF algorithms have higher and
more stable positioning accuracy. However, the average positioning accuracy of the EUKF algorithm is
0.00894 m and it is higher than that of the UKF algorithm.

Then, the positioning errors under different environments are shown in Figure 8. The results show
that the EUKF algorithm uses the edge nodes to eliminate the system error and its positioning accuracy
is higher than that of the UKF algorithm. Comparing Figures 6b and 7b, the average positioning

Sensors 2020, 20, 889 14 of 17

error of the EUKF algorithm has 0.08016 m improvement than the positioning method based on
edge computing.

Sensors 2020, 20, 889 15 of 19

Figure 6. Average positioning errors of the positioning methods based on data center and edge
computing respectively: (a) Average positioning errors based on the data center; (b) average
positioning errors based on edge computing.

The comparisons of the positioning errors of the UKF and EUKF algorithms are shown in Figure
7, respectively. It can be seen from Figure 7a that the average positioning error of the UKF algorithm
is 0.88389 m. Additionally, the average positioning error of the EUKF algorithm is 0.87495 m, as
shown in Figure 7b. It can be known from Figures 6 and 7 that the UKF and EUKF algorithms have
higher and more stable positioning accuracy. However, the average positioning accuracy of the EUKF
algorithm is 0.00894 m and it is higher than that of the UKF algorithm.

(a) (b)

Figure 7. Positioning errors of the UKF and EUKF algorithms: (a) Positioning errors of the UKF
algorithm; (b) positioning errors of the EUKF algorithm.

Then, the positioning errors under different environments are shown in Figure 8. The results
show that the EUKF algorithm uses the edge nodes to eliminate the system error and its positioning
accuracy is higher than that of the UKF algorithm. Comparing Figures 6b and 7b, the average
positioning error of the EUKF algorithm has 0.08016 m improvement than the positioning method
based on edge computing.

(a) (b)

Figure 8. Errors of dynamic positioning: (a) Open environment; (b) ambiguous environment.

4.2. Service Delay

0 1 2 3 4 5 6 7 8 9 10

x 105

0

1

2

3

4

5

6

Number of IoT terminals

R
oo

t m
ea

n
of

 s
qu

ar
e

er
ro

r/m

UKF
Average error

0 1 2 3 4 5 6 7 8 9 10

x 105

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Number of IoT terminals

R
oo

t m
ea

n
of

 s
qu

ar
e

er
ro

r/m

EUKF
Average error

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

Time/s

R
oo

t m
ea

n
of

 s
qu

ar
e

er
ro

r/m

EUKF
UKF

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

Time/s

R
oo

t m
ea

n
of

 s
qu

ar
e

er
ro

r/m

EUKF
UKF

Figure 7. Positioning errors of the UKF and EUKF algorithms: (a) Positioning errors of the UKF
algorithm; (b) positioning errors of the EUKF algorithm.

Sensors 2020, 20, 889 15 of 19

Figure 6. Average positioning errors of the positioning methods based on data center and edge
computing respectively: (a) Average positioning errors based on the data center; (b) average
positioning errors based on edge computing.

The comparisons of the positioning errors of the UKF and EUKF algorithms are shown in Figure
7, respectively. It can be seen from Figure 7a that the average positioning error of the UKF algorithm
is 0.88389 m. Additionally, the average positioning error of the EUKF algorithm is 0.87495 m, as
shown in Figure 7b. It can be known from Figures 6 and 7 that the UKF and EUKF algorithms have
higher and more stable positioning accuracy. However, the average positioning accuracy of the EUKF
algorithm is 0.00894 m and it is higher than that of the UKF algorithm.

(a) (b)

Figure 7. Positioning errors of the UKF and EUKF algorithms: (a) Positioning errors of the UKF
algorithm; (b) positioning errors of the EUKF algorithm.

Then, the positioning errors under different environments are shown in Figure 8. The results
show that the EUKF algorithm uses the edge nodes to eliminate the system error and its positioning
accuracy is higher than that of the UKF algorithm. Comparing Figures 6b and 7b, the average
positioning error of the EUKF algorithm has 0.08016 m improvement than the positioning method
based on edge computing.

(a) (b)

Figure 8. Errors of dynamic positioning: (a) Open environment; (b) ambiguous environment.

4.2. Service Delay

0 1 2 3 4 5 6 7 8 9 10

x 105

0

1

2

3

4

5

6

Number of IoT terminals

R
oo

t m
ea

n
of

 s
qu

ar
e

er
ro

r/m

UKF
Average error

0 1 2 3 4 5 6 7 8 9 10

x 105

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Number of IoT terminals

R
oo

t m
ea

n
of

 s
qu

ar
e

er
ro

r/m

EUKF
Average error

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

Time/s

R
oo

t m
ea

n
of

 s
qu

ar
e

er
ro

r/m

EUKF
UKF

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

Time/s

R
oo

t m
ea

n
of

 s
qu

ar
e

er
ro

r/m

EUKF
UKF

Figure 8. Errors of dynamic positioning: (a) Open environment; (b) ambiguous environment.

4.2. Service Delay

The results of the service delay are shown in Figure 9. The service delay is the delay of the last IoT
terminal to complete the positioning in the entire edge network. In Figure 9a, the positioning algorithm
based on edge computing offloads the computational pressure of the data center. The differential
correction information is solved by the edge node close to the IoT terminal, which mitigates the
problem of the large calculation amount, bandwidth limitation and high throughput of the data center,
and reduces the maximum service delay for the entire system. If the nearest edge node receives the
positioning requests and calculates the differential correction information after initialization, the service
delay will increase due to the imbalance of the IoT terminals’ positioning requests, as shown in
Figure 9b. However, the edge computing network with improved GA can achieve the load balancing.
The overloaded terminal positioning request on the edge node is reallocated, and the service delay
is reduced.

Figure 10 shows the load balancing performance of the edge network before and after executing
the improved GA. It can be seen that with the increases of the number of IoT terminals, the improved
positioning algorithm can balance the IoT terminals’ positioning requests and reduce the task processing
time of the whole edge computing network.

Sensors 2020, 20, 889 15 of 17

Sensors 2020, 20, 889 16 of 19

The results of the service delay are shown in Figure 9. The service delay is the delay of the last
IoT terminal to complete the positioning in the entire edge network. In Figure 9a, the positioning
algorithm based on edge computing offloads the computational pressure of the data center. The
differential correction information is solved by the edge node close to the IoT terminal, which
mitigates the problem of the large calculation amount, bandwidth limitation and high throughput of
the data center, and reduces the maximum service delay for the entire system. If the nearest edge
node receives the positioning requests and calculates the differential correction information after
initialization, the service delay will increase due to the imbalance of the IoT terminals’ positioning
requests, as shown in Figure 9b. However, the edge computing network with improved GA can
achieve the load balancing. The overloaded terminal positioning request on the edge node is
reallocated, and the service delay is reduced.

(a) (b)

Figure 9. Service delay: (a) Comparisons of service delay among different methods; (b) service delay
before and after load balancing.

Figure 10 shows the load balancing performance of the edge network before and after executing
the improved GA. It can be seen that with the increases of the number of IoT terminals, the improved
positioning algorithm can balance the IoT terminals’ positioning requests and reduce the task
processing time of the whole edge computing network.

(a) (b)

Figure 10. Load balancing performance: (a) Task processing time standard deviation; (b) positioning
request standard deviation.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 106

0

500

1000

1500

2000

2500

Positioning requests

S
er

vi
ce

 d
el

ay
 (m

s)

Based on data center
Initialized edge network
Load balanced edge network

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 106

0

100

200

300

400

500

600

700

Positioning requests

S
er

vi
ce

 d
el

ay
 (m

s)

Initialized edge network
Load balanced edge network

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 106

0

1

2

3

4

5

6

7

8

Number of IoT terminals

Ta
sk

 p
ro

ce
ss

in
g

tim
e

st
an

da
rd

 d
ev

ia
tio

n
(m

s)

Initialized edge network
Load balanced edge network

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 106

0

20

40

60

80

100

120

140

Number of IoT terminals

P
os

iti
on

in
g

re
qu

es
t s

ta
nd

ar
d

de
vi

at
io

n

Initialized edge network
Load balanced edge network

Figure 9. Service delay: (a) Comparisons of service delay among different methods; (b) service delay
before and after load balancing.

Sensors 2020, 20, 889 16 of 19

The results of the service delay are shown in Figure 9. The service delay is the delay of the last
IoT terminal to complete the positioning in the entire edge network. In Figure 9a, the positioning
algorithm based on edge computing offloads the computational pressure of the data center. The
differential correction information is solved by the edge node close to the IoT terminal, which
mitigates the problem of the large calculation amount, bandwidth limitation and high throughput of
the data center, and reduces the maximum service delay for the entire system. If the nearest edge
node receives the positioning requests and calculates the differential correction information after
initialization, the service delay will increase due to the imbalance of the IoT terminals’ positioning
requests, as shown in Figure 9b. However, the edge computing network with improved GA can
achieve the load balancing. The overloaded terminal positioning request on the edge node is
reallocated, and the service delay is reduced.

(a) (b)

Figure 9. Service delay: (a) Comparisons of service delay among different methods; (b) service delay
before and after load balancing.

Figure 10 shows the load balancing performance of the edge network before and after executing
the improved GA. It can be seen that with the increases of the number of IoT terminals, the improved
positioning algorithm can balance the IoT terminals’ positioning requests and reduce the task
processing time of the whole edge computing network.

(a) (b)

Figure 10. Load balancing performance: (a) Task processing time standard deviation; (b) positioning
request standard deviation.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 106

0

500

1000

1500

2000

2500

Positioning requests

S
er

vi
ce

 d
el

ay
 (m

s)

Based on data center
Initialized edge network
Load balanced edge network

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 106

0

100

200

300

400

500

600

700

Positioning requests

S
er

vi
ce

 d
el

ay
 (m

s)

Initialized edge network
Load balanced edge network

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 106

0

1

2

3

4

5

6

7

8

Number of IoT terminals

Ta
sk

 p
ro

ce
ss

in
g

tim
e

st
an

da
rd

 d
ev

ia
tio

n
(m

s)

Initialized edge network
Load balanced edge network

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 106

0

20

40

60

80

100

120

140

Number of IoT terminals

P
os

iti
on

in
g

re
qu

es
t s

ta
nd

ar
d

de
vi

at
io

n

Initialized edge network
Load balanced edge network

Figure 10. Load balancing performance: (a) Task processing time standard deviation; (b) positioning
request standard deviation.

Figure 11 shows the number of iterations of 200 simulations. The average number of iterations is
43.18. The results demonstrate that the proposed positioning algorithm has better search performance
and can converge to the optimal result quickly.

Sensors 2020, 20, 889 17 of 19

Figure 11 shows the number of iterations of 200 simulations. The average number of iterations
is 43.18. The results demonstrate that the proposed positioning algorithm has better search
performance and can converge to the optimal result quickly.

Figure 11. The number of iterations of 200 simulations.

5. Conclusions

With the increasing of the IoT terminals, traditional positioning methods based on the data
center cannot provide high reliability and low latency positioning service because of high throughput
and limited bandwidth. This paper proposes a BeiDou satellite positioning method based on IoT and
edge computing, which initializes the positioning requests of the IoT terminals at the nearest edge
node and reduces the system service delay on the basis of the improved GA to ensure the load
balancing of the entire edge computing network. This method effectively reduces the calculation
pressure on the data center and improves the calculation efficiency and real-time response speed of
the system. The optimized EUKF algorithm can effectively reduce the influence of the system error
on positioning accuracy by using edge nodes, which can improve the positioning accuracy of users
and ensure the stability of positioning. The simulation results demonstrate that the proposed
positioning method based on IoT and edge computing can provide real-time and accurate positioning
services for the large-scale IoT terminals.

Author Contributions: Conceptualization, L.W.; methodology, L.W. and R.Q.; software, R.Q.; validation, L.W.
and R.Q.; formal analysis, L.W. and R.Q.; investigation, L.W. and R.Q.; resources, L.W.; data curation, R.Q.;
writing—original draft preparation, R.Q.; writing—review and editing, L.W.; supervision, L.W.; project
administration, L.W.; funding acquisition, L.W. All authors have read and agreed to the published version of
the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China under Grant No.
61701020 and the Scientific and Technological Innovation Foundation of Shunde Graduate School, USTB under
Grant No. BK19BF009.

Acknowledgments: The authors gratefully acknowledge the anonymous reviewers who read the drafts and
made many helpful suggestions.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Li, J.; Zhang, J.; Zhang, B.; Shen, B. Operation and development of BeiDou Navigation Satellite System. In
Proceedings of the 2015 International Association of Institutes of Navigation World Congress (IAIN),
Prague, Czech Republic, 20–23 October 2015; pp. 1–6.

0 20 40 60 80 100 120 140 160 180 200
0

50

100

Simulation

Th
e

nu
m

be
r o

f i
te

ra
tio

ns

0 20 40 60 80 100 120 140 160 180 200
0

50

100

Simulation

Th
e

nu
m

be
r o

f i
te

ra
tio

ns

The sorting of iterations

Figure 11. The number of iterations of 200 simulations.

Sensors 2020, 20, 889 16 of 17

5. Conclusions

With the increasing of the IoT terminals, traditional positioning methods based on the data center
cannot provide high reliability and low latency positioning service because of high throughput and
limited bandwidth. This paper proposes a BeiDou satellite positioning method based on IoT and edge
computing, which initializes the positioning requests of the IoT terminals at the nearest edge node
and reduces the system service delay on the basis of the improved GA to ensure the load balancing
of the entire edge computing network. This method effectively reduces the calculation pressure on
the data center and improves the calculation efficiency and real-time response speed of the system.
The optimized EUKF algorithm can effectively reduce the influence of the system error on positioning
accuracy by using edge nodes, which can improve the positioning accuracy of users and ensure the
stability of positioning. The simulation results demonstrate that the proposed positioning method
based on IoT and edge computing can provide real-time and accurate positioning services for the
large-scale IoT terminals.

Author Contributions: Conceptualization, L.W.; methodology, L.W. and R.Q.; software, R.Q.; validation,
L.W. and R.Q.; formal analysis, L.W. and R.Q.; investigation, L.W. and R.Q.; resources, L.W.; data curation,
R.Q.; writing—original draft preparation, R.Q.; writing—review and editing, L.W.; supervision, L.W.; project
administration, L.W.; funding acquisition, L.W. All authors have read and agreed to the published version of
the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China under Grant No. 61701020
and the Scientific and Technological Innovation Foundation of Shunde Graduate School, USTB under Grant
No. BK19BF009.

Acknowledgments: The authors gratefully acknowledge the anonymous reviewers who read the drafts and made
many helpful suggestions.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Li, J.; Zhang, J.; Zhang, B.; Shen, B. Operation and development of BeiDou Navigation Satellite System.
In Proceedings of the 2015 International Association of Institutes of Navigation World Congress (IAIN),
Prague, Czech Republic, 20–23 October 2015; pp. 1–6.

2. Han, C. The BeiDou navigation satellite system. In Proceedings of the 2014 XXXIth URSI General Assembly
and Scientific Symposium (URSI GASS), Beijing, China, 16–23 August 2014; pp. 1–3.

3. Jin, S. Preface: BeiDou Navigation Satellite System (BDS)/GNSS+: Recent progress and new applications.
Adv. Space Res. 2017, 59, 751–752. [CrossRef]

4. Ferrús, R.; Koumaras, H.; Sallent, O.; Agapiou, G.; Rasheed, T.; Kourtis, M.-A.; Boustie, C.; Gélard, P.;
Ahmed, T. SDN/NFV-enabled satellite communications networks: Opportunities, scenarios and challenges.
Phys. Commun. 2016, 18, 95–112. [CrossRef]

5. Hosseini, N.; Jamal, H.; Haque, J.; Magesacher, T.; Matolak, D.W. UAV Command and Control, Navigation
and Surveillance: A Review of Potential 5G and Satellite Systems. In Proceedings of the 2019 IEEE Aerospace
Conference, Big Sky, MT, USA, 2–9 March 2019; pp. 1–10.

6. Wang, S.; Zhao, Y.; Xu, J.; Yuan, J.; Hsu, C. Edge server placement in mobile edge computing. J. Parallel
Distrib. Comput. 2019, 127, 60–168. [CrossRef]

7. Choi, J.K.; Park, S.H.; Cho, D.J.; Seo, K.Y. Correction error generation algorithm for differential positioning
performance analysis of navigation equipment. In Proceedings of the 2008 International Conference on
Control, Automation and Systems, Seoul, Korea, 14–17 October 2008; pp. 1099–1103.

8. Kong, H.; Chen, W.; Fu, S.; Zheng, H.; Du, L.; Mao, Y. OBU Design and Test Analysis with Centimeter-Level
Positioning for LTE-V2X. In Proceedings of the 2019 5th International Conference on Transportation
Information and Safety (ICTIS), Liverpool, UK, 14–17 July 2019; pp. 383–387.

9. Mutlag, A.A.; Ghani, M.K.A.; Arunkumar, N.; Mohammed, M.A.; Mohd, O. Enabling technologies for fog
computing in healthcare IoT systems. Future Gener. Comput. Syst. 2019, 90, 62–78. [CrossRef]

http://dx.doi.org/10.1016/j.asr.2016.12.007
http://dx.doi.org/10.1016/j.phycom.2015.10.007
http://dx.doi.org/10.1016/j.jpdc.2018.06.008
http://dx.doi.org/10.1016/j.future.2018.07.049

Sensors 2020, 20, 889 17 of 17

10. Chen, M.; Hao, Y. Task Offloading for Mobile Edge Computing in Software Defined Ultra-Dense Network.
IEEE J. Sel. Areas Commun. 2018, 36, 587–597. [CrossRef]

11. Fan, Q.; Ansari, N. Application Aware Workload Allocation for Edge Computing-Based IoT. IEEE Internet
Things J. 2018, 5, 2146–2153. [CrossRef]

12. Hossain, S.A.; Rahman, M.A.; Hossain, M.A. Edge computing framework for enabling situation awareness
in IoT based smart city. J. Parallel Distrib. Comput. 2018, 122, 226–237. [CrossRef]

13. Shao, M.; Sui, X. Study on Differential GPS Positioning Methods. In Proceedings of the 2015 International
Conference on Computer Science and Mechanical Automation (CSMA), Hangzhou, China, 23–25 October
2015; pp. 223–225.

14. Kang, C. A Differential Dynamic Positioning Algorithm Based on GPS/Beidou. Procedia Eng. 2016, 137,
590–598. [CrossRef]

15. Acharya, R. Understanding Satellite Navigation; Academic Press: St. Salt Lake City, UT, USA, 2014; Chapter 8;
pp. 281–312.

16. Yousefpour, A.; Fung, C.; Nguyen, T.; Kadiyala, K.; Jalali, F.; Niakanlahiji, A.; Kong, J.; Jue, J.P. All One Needs
to Know about Fog Computing and Related Edge Computing Paradigms: A Complete Survey. J. Syst. Archit.
2019, 98, 289–330. [CrossRef]

17. Wang, L.; Teng, H.; Yu, G. Sensors Access Scheme Design Based on Internet of Things Gateways.
In Proceedings of the 2014 Fifth International Conference on Intelligent Systems Design and Engineering
Applications, Hunan, China, 15–16 June 2014; pp. 901–904.

18. Elmisery, A.M.; Rho, S.; Botvich, D. A Fog Based Middleware for Automated Compliance with OECD Privacy
Principles in Internet of Healthcare Things. IEEE Access 2016, 4, 8418–8441. [CrossRef]

19. Cicirelli, F.; Guerrieri, A.; Spezzano, G.; Vinci, A. An edge-based platform for dynamic Smart City applications.
Future Gener. Comput. Syst. 2017, 76, 106–118. [CrossRef]

20. Yassine, A.; Singh, S.; Hossain, M.S.; Muhammad, G. IoT big data analytics for smart homes with fog and
cloud computing. Future Gener. Comput. Syst. 2019, 91, 563–573. [CrossRef]

21. Dai, Y.; Lou, Y.; Lu, X. A Task Scheduling Algorithm Based on Genetic Algorithm and Ant Colony Optimization
Algorithm with Multi-QoS Constraints in Cloud Computing. In Proceedings of the 2015 7th International
Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, 26–27 August 2015;
pp. 428–431.

22. Adhikari, M.; Nandy, S.; Amgoth, T. Meta heuristic-based task deployment mechanism for load balancing in
IaaS cloud. J. Net. Comput. Appl. 2019, 128, 64–77. [CrossRef]

23. Dabove, P. The usability of GNSS mass-market receivers for cadastral surveys considering RTK and NRTK
techniques. Geod. Geodyn. 2019, 10, 282–289. [CrossRef]

24. Han, S.; Gui, Q.; Li, G.; Du, Y. Minimum of PDOP and its applications in inter-satellite links (ISL) establishment
of Walker-δ constellation. Adv. Space Res. 2014, 54, 726–733. [CrossRef]

25. Ren, D.; Li, Y.; Ma, Z. Test and analysis on the errors of GPS observation in mining field. Procedia Earth Planet.
Sci. 2009, 1, 1233–1236.

26. Kolas, S.; Foss, B.A.; Schei, T.S. Constrained nonlinear state estimation based on the UKF approach. Comput.
Chem. Eng. 2009, 33, 1386–1401. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/JSAC.2018.2815360
http://dx.doi.org/10.1109/JIOT.2018.2826006
http://dx.doi.org/10.1016/j.jpdc.2018.08.009
http://dx.doi.org/10.1016/j.proeng.2016.01.296
http://dx.doi.org/10.1016/j.sysarc.2019.02.009
http://dx.doi.org/10.1109/ACCESS.2016.2631546
http://dx.doi.org/10.1016/j.future.2017.05.034
http://dx.doi.org/10.1016/j.future.2018.08.040
http://dx.doi.org/10.1016/j.jnca.2018.12.010
http://dx.doi.org/10.1016/j.geog.2019.04.006
http://dx.doi.org/10.1016/j.asr.2014.04.020
http://dx.doi.org/10.1016/j.compchemeng.2009.01.012
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Algorithm Principle
	Proposed Positioning Method Based on IoT and Edge Computing
	Positioning System Architecture
	Positioning Method
	Optimized Positioning Method

	Results and Analysis
	Positioning Accuracy
	Service Delay

	Conclusions
	References

