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Abstract: To effectively find the direction of non-circular signals received by a uniform linear array
(ULA) in the presence of non-negligible perturbations between array elements, i.e., mutual coupling,
in colored noise, a direction of arrival (DOA) estimation approach in the context of high order statistics
is proposed in this correspondence. Exploiting the non-circularity hidden behind a certain class
of wireless communication signals to build up an augmented cumulant matrix, and carrying out a
reformulation of the distorted steering vector to extract the angular information from the unknown
mutual coupling, by exploiting the characteristic of mutual coupling, i.e., a limited operating range
and an inverse relation of coupling effects to interspace, we develop a MUSIC-like estimator based
on the rank-reduction (RARE) technique to directly determine directions of incident signals without
mutual coupling compensation. Besides, we provide a solution to the problem of coherency between
signals and mutual coupling between sensors co-existing, by selecting a middle sub-array to mitigate
the undesirable effects and exploiting the rotation-invariant property to blindly separate the coherent
signals into different groups to enhance the degrees of freedom. Compared with the existing robust
DOA methods to the unknown mutual coupling under the framework of fourth-order cumulants
(FOC), our work takes advantage of the larger virtual array and is able to resolve more signals
due to greater degrees of freedom. Additionally, as the effective aperture is virtually extended,
the developed estimator can achieve better performance under scenarios with high degree of mutual
coupling between two sensors. Simulation results demonstrate the validity and efficiency of the
proposed method.

Keywords: fourth-order cumulants (FOC); non-circularity; mutual coupling; rank-reduction (RARE)

1. Introduction

Direction of arrival (DOA) estimation, an important research area of sensor array signal processing,
has attracted a large amount of attention because of its wide applications to electromagnetic, acoustic,
seismic sensing, etc [1–6]. However, non-negligible interaction between sensors, i.e., mutual coupling,
makes prevailing DOA estimation algorithms invalid since extra unknowns are introduced. Weiss
and Friedlander [7] first discuss the structure of the mutual coupling matrix (MCM) in uniform linear
and circular arrays and estimated the DOAs and mutual coupling coefficients in an iterative way.
This work is followed by Sellone et al. whose approach is more robust to the detrimental effects and
does not need a preliminary estimate [8]. Both schemes suffer from high computational complexity,
which is inevitable given their reliance on multidimensional search processes. To circumvent the
adverse effects of mutual coupling, the technique in [9,10] uses a subset of auxiliary sensors to
make the “middle sub-array” mutual coupling free, and prevalent super-resolution algorithms
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can be directly applied the middle sub-array to resolve the DOAs. The main merit of these kind
methods is the lower computational complexity due to not requiring any iterations but the degrees
of freedom (DOFs) is reduced since only the middle sub-array is utilized. In a departure from
middle sub-array methods [9,10], a recently proposed subspace-based method [11] takes advantage of
the whole array by reparameterizing the actual array response and, hence improves the estimation
accuracy. Recently, some novel sparsity inducing algorithms are developed to have robustness to
the electromagnetic nuisance. Liu and Zhou first deal with the issue via the perspective of sparse
Bayesian learning [12]. `1-SVD is applied in [13] in conjunction with transforming the steering vector
with mutual coupling, which is favorable for sparse recovery. Chen et al investigate the problem of
off-grid DOA estimation with coupling effects, and adopt the `p-norm-based technique [14] and the
relevance vector machine [15], respectively, to handle different cases, reducing amount of computation
while preserving satisfactory estimation performance. Taking advantage of the uncorrelation between
signals, Wang et al. address the issue from the perspective of group sparsity reconstruction of a long
vector with mitigated noise components, and bring about an even better estimation accuracy and
resolution [16].

The aforementioned work provides the solutions following the second-order statistics (SOS) and
is unable to work properly in spatial colored noise if the noise covariance matrix is not available
in advance. Since high-order statistics are insensitive to colored noise and can inherently enhance
the DOFs [17–19], some study has been devoted to the suppression of unknown mutual coupling
and colored noise using fourth-order cumulants (FOC) [20–24]. However, there are many additional
pseudo-estimates in [20] which may affect the estimation performance, especially for the case where
the true DOAs do not lie on the pseudo-peaks, while only the middle sub-array is utilized in [21]
reducing the array aperture. Though promising results are shown in [22] and its follow up work [23,24],
the array aperture in the former is fixed to a part of the physical aperture while the extended aperture
is presented in the latter but still constraint to the middle sub-array, which gives rise to incomplete
analysis and mining of statistical information implicated in the higher-order moments.

Recently, non-circularity embedded into wireless communication signals has been exploited to
enhance DOFs for DOA estimation in the context of second-order statistics [25–37]. However, little
work has been done on leveraging non-circularity in high-order moments to combat the unknown
mutual coupling. To fill this gap, in this correspondence, a new FOC-based approach is proposed
for the direction finding of non-circular signals in the presence of the deleterious effects between
sensors. Making use of the characteristic of mutual coupling, such as a limited operating range and an
inverse relation of coupling effects to interspace, to parameterize the steering vector, as well as the
non-circularity of the observations to form a virtual array, we develop a MUSIC-like estimator by means
of the rank-reduction (RARE) property to resolve the DOA estimates without any calibration process.
Additionally, we introduce a solution to the problem of coherent signal estimation in the presence
of mutual coupling between sensors, mitigating the detrimental effects via a middle sub-array and
enhancing the DOFs through blind separation of the coherent signals into different groups. Compared
with the existing FOC-based methods [21–24], in our proposed method, the DOFs as well as the
effective aperture are further improved and hence, better accuracy and resolution can be obtained.
Additionally, we discuss the identifiability of DOA estimation which has not been done in previous
work, and the theoretical analysis shows that the work in this submission has an essential advantage in
identifying more sources compared with [21–24] if the array has a relatively strong coupling between
sensors.

The rest of the paper is organized as follows. In Section 2, the array model is discussed,
when non-circular data observed by a sensor array with mutual coupling is constructed. In Section 3,
we first develop a MUSIC-like method to directly determine the DOA estimates in conjunction with
the non-circularity, but also isolate the mutual coupling effects, then discuss an even more challenging
scenario where non-circular signals from one user in the uplink channel are coherent to each other,
provide a solution to separate the coherent signals into different groups with the help of the middle
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array that is coupling-free, and then perform a DOA estimation in each coherent group via the
forward–backward spatial smoothing (FBSS) technique. The estimation performance in terms of
identifiability and computational complexity is analyzed in Section 4. Simulation results in Section 6
show the significant improvement of the proposed method. Finally, some concluding remarks are
given in Section 7.

Throughout this submission, the following notations will be adopted: the operators (·)T , (·)∗,
(·)H , (·)+, | · |, E[·], det{·}, ⊗, ◦, and ‖ · ‖2 denote the operation of transpose, conjugate, conjugate
transpose, pseudo-inverse, modulus, expectation, determinant, Kronecker product, Khatri–Rao (KR)
product, and Euclidean (`2) norm, respectively. The symbol diag{z1, · · · , zN} represents a diagonal
matrix with diagonal entries z1, · · · , zN , blkdiag{Z1, Z2} symbolizes a block diagonal matrix with
diagonal entries Z1 and Z2, Toeplitz {·} represents a symmetric Toeplitz matrix constructed by a vector
in the brace, and cum{z1, z2, z3, z4} symbolizes a cumulant calculated from data z1, z2, z3, and z4. The
symbol IK stands for an identity matrix of size K× K. The symbol Z(a : b, c : d) refers to a constructed
sub-matrix by the entries from a to b-th row and c to d-th column of Z, and the symbol Z(a, b) denotes
the entry in the a-th row and b-th column of Z.

2. Problem Formulation

2.1. Strictly Second-Order Non-Circular Signals

For a signal s(t), if its elliptic covariance is E[s2(t)] = ρejφE[|s(t)|2] = ρejφσ2
s 6= 0, where

φ is the deterministic non-circularity phase, and ρ is non-circularity rate satisfying 0 < ρ ≤ 1,
then we say s(t) is non-circular. The special case ρ = 1 is common in wireless communications,
and the received baseband signals satisfying such a condition is referred to as strictly second-order
non-circular, like amplitude modulation (AM), binary phase shift keying (BPSK), amplitude shift
keying (ASK), offset quadrature phase shift keying (OQPSK), and pulse amplitude modulation
(PAM), etc. [25–28,30,38,39]. To aid the understanding of such a particular class of signals, we
take the baseband signal of BPSK or ASK modulation as an example. In the framework of DOA
estimation, the analog received BPSK or ASK modulated signals are bandpass filtered and down
converted to baseband, the in-phase and quadrature components are matched-filtered, sampled,
and paired to obtain complex signal s(t) that can be factorized into s(t) = ejϕs0(t) where s0(t) is
a real-valued symbol and ϕ is an arbitrary phase shift, due to the initial phase of the transmitted
carrier, that can be different for each signal but constant with time. Therefore, the baseband signal
s(t) at the receiver side is complex-valued. This model has been used by numerous authors who
have studied DOA estimation of non-circular signals [25–28,30,38,39]. Examining the covariance
and elliptic covariance of s(t), one gets E [s(t)s∗(t)] = E

[
ejϕs0(t)e−jϕs0(t)

]
= E[s2

0(t)] = σ2
s and

E [s(t)s(t)] = E
[
ejϕs0(t)ejϕs0(t)

]
= ej2ϕE[s2

0(t)] = ej2ϕσ2
s 6= 0. By the definition of non-circular signal,

one can readily find that ρ = 1 and φ = 2ϕ, i.e., the baseband signal of BPSK or ASK modulation
is strictly non-circular, and the non-circularity phase is twice as much as the initial phase. For the
case of the received baseband signals with unknown modulation, one can resort to two kinds of
classification approaches to identify the modulation of the signals. One class is the likelihood-based
approach [40–42] and the other is the so-called feature-based approach [43–48]. If the signals are
recognized as non-circular, such as BPSK, ASK, OQPSK, or PAM, the proposed method in the sequel is
applicable, otherwise it fails to work. The research on modulation classification is beyond the scope of
this manuscript, so we assume that the modulation of the received baseband signals is known a priori
or can be recognized by using existing classification approaches if not specified, and the signals to be
dealt with are strictly second-order non-circular.

2.2. Array Model for Non-Circular Signals

Consider narrowband non-circular signals s0,i(t) in the far filed impinge on an M-elements
uniform linear array (ULA) from N different angles θi, i = 1, 2, · · · , N, and the mutual coupling
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between sensors cannot be neglected, then at the time index t the corresponding array observation can
be expressed as

x(t) =
N

∑
i=1

Ca(θi)ej φi
2 s0,i(t) + n(t) = CAΨs0(t) + n(t) (1)

where a(θ) =
[
1, β(θ), · · · , βM−1(θ)

]T
∈ CM is the steering vector, β(θ) = ej 2πd

λ sin θ , λ, and d are
the carrier wavelength and the spacing between adjacent sensors, respectively, C denotes the MCM
quantifying the degrees of electromagnetic coupling among elements, A =

[
a(θ1), · · · , a(θN)

]
is the

array manifold, Ψ = diag
{

ej φ1
2 , · · · , ej φN

2

}
, s0(t) =

[
s0,1(t), · · · , s0,N(t)

]T
∈ RN , and n(t) is the noise

following Gaussian distribution but spatially colored. In addition, it is assumed that A is unambiguous,
i.e., the steering vectors {a(θi)}N

i=1 are linearly independent for any set of distinct {θi}N
i=1.

As described in [9–11,49–51], one can sufficiently model the perturbed ULA by taking the
electromagnetic characteristic of mutual coupling, such as a limited operating range and an inverse
relation of coupling effects to interspace, into consideration. To be specific, If the mutual coupling acting
on two sensors covers P interelement spacing at most such that the resultant MCM has finite non-zero
coefficients, then the resultant MCM is banded symmetric Toeplitz, which can be formulated as

C = Toeplitz
{[

1, c1, · · · , cP−1, 01×(M−P)

]}
(2)

where 0 < |c1|, |c2|, · · · , |cP−1| < c0 = 1 are the mutual coupling coefficients.
Since the incident signals follow strictly second-order non-circularity, they are deterministic and

non-Gaussian, and the FOC matrices from the observation blocks can be given by

Cx1 = cum
{

x∗(t), xT(t), x∗(t), xT(t)
}

(3)

Cx2 = cum
{

x(t), xT(t), x(t), xT(t)
}

(4)

whose entries in the [(k1 − 1) M + k2]-th row and the [(l1 − 1) M + l2]-th column, k1, k2, l1, l2 =

1, 2, · · · , M, are defined as

Cx1 ((k1 − 1) M + k2, (l1 − 1) M + l2)

= cum{x∗k1
(t), xl1(t), x∗k2

(t), xl2(t)}

= E[x∗k1
(t)x∗k2

(t)xl1(t)xl2(t)]− E[x∗k1
(t)x∗k2

(t)]

× E[xl1(t)xl2(t)]− E[x∗k1
(t)xl1(t)]E[x

∗
k2
(t)xl2(t)]

− E[x∗k1
(t)xl2(t)]E[x

∗
k2
(t)xl1(t)] (5)

Cx2 ((k1 − 1) M + k2, (l1 − 1) M + l2)

= cum{xk1(t), xl1(t), xk2(t), xl2(t)}
= E[xk1(t)xk2(t)xl1(t)xl2(t)]− E[xk1(t)xk2(t)]

× E[xl1(t)xl2(t)]− E[xk1(t)xl1(t)]E[xk2(t)xl2(t)]

− E[xk1(t)xl2(t)]E[xk2(t)xl1(t)] (6)

where xm(t) is the m-th entry of x(t). Substituting Equation (1) into Equations (3) and (4), and utilizing
the properties of high-order statistics [CP1]–[CP5] in [18], one can proceed to

Cx1 = cum
{
(CAΨs0(t))

∗ , (CAΨs0(t))
T , (CAΨs0(t))

∗ ,

(CAΨs0(t))
T
}
+ cum

{
n∗(t), nT(t), (n(t))∗ , (n(t))T

}
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= cum

{
N

∑
p=1

(
Ca(θp)

)∗ e−j
φp
2 s∗0,p(t),

N

∑
m=1

(Ca(θm))
T

×ej φm
2 s0,m(t),

N

∑
q=1

(
Ca(θq)

)∗ e−j
φq
2 s∗0,q(t),

N

∑
n=1

(Ca(θn))
T ej φn

2 s0,n(t)

}

=
N

∑
p=1

N

∑
q=1

N

∑
m=1

N

∑
n=1

(
ej

φp+φq
2
(
Ca(θp)

)
⊗
(
Ca(θq)

))∗ (
ej φm+φn

2 (Ca(θm))

⊗ (Ca(θn)))
T cum{s∗0,p(t), s0,m(t), s∗0,q(t), s0,n(t)}

=
N

∑
i=1

((Ca(θi))⊗ (Ca(θi)))
∗ ((Ca(θi))⊗ (Ca(θi)))

T

cum{s0,i(t), s0,i(t), s0,i(t), s0,i(t)}

=
N

∑
i=1

γi ((Ca(θi))⊗Ca(θi))
∗ ((Ca(θi))⊗Ca(θi))

T

= ((CA) ◦ (CA))∗ Cs ((CA) ◦ (CA))T (7)

Cx2 = cum
{
(CAΨs0(t)) , (CAΨs0(t))

T , (CAΨs0(t)) ,

(CAΨs0(t))
T
}
+ cum

{
n(t), nT(t), (n(t)) , (n(t))T

}
= cum

{
N

∑
p=1

Ca(θp)ej
φp
2 s0,p(t),

N

∑
m=1

(Ca(θm))
T

×ej φm
2 s0,m(t),

N

∑
q=1

Ca(θq)ej
φq
2 s0,q(t),

N

∑
n=1

(Ca(θn))
T ej φn

2 s0,n(t)

}

=
N

∑
p=1

N

∑
q=1

N

∑
m=1

N

∑
n=1

(
ej

φp+φq
2
(
Ca(θp)

)
⊗
(
Ca(θq)

))
×
(

ej φm+φn
2 (Ca(θm))⊗ (Ca(θn))

)T
cum{s0,p(t),

s0,m(t), s0,q(t), s0,n(t)}

=
N

∑
i=1

ej2φi ((Ca(θi))⊗ (Ca(θi))) ((Ca(θi))

⊗ (Ca(θi)))
T cum{s0,i(t), s0,i(t), s0,i(t), s0,i(t)}

=
N

∑
i=1

ej2φi γi ((Ca(θi))⊗ (Ca(θi))) ((Ca(θi))⊗ (Ca(θi)))
T

= ((CA) ◦ (CA))Ψ2CsΨ2 ((CA) ◦ (CA))T (8)

where γi , cum {s0,i(t), s0,i(t), s0,i(t), s0,i(t)} and Cs , diag {γ1, · · · , γN} ∈ RN×N .
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3. Proposed Non-Circular FOC-Based Estimator

To increase the effective aperture as well as the DOFs, one can design an augmented cumulant
matrix, of size 2M2 × 2M2, as

Cx =

[
Cx1 C∗x2
Cx2 C∗x1

]

=

[
((CA) ◦ (CA))∗ Ψ−2

((CA) ◦ (CA))Ψ2

]
Cs

[
((CA) ◦ (CA))∗ Ψ−2

((CA) ◦ (CA))Ψ2

]H

. (9)

DOA Estimation Without Mutual Coupling Compensation

The augmented matrix Cx has the following factorization through the singular value
decomposition (SVD)

Cx = UΣVH (10)

where Σ = diag {λ1, · · · , λ2M2} is composed of 2M2 singular values that can be sorted in descending
order as λ1 ≥ · · · ≥ λN > λN+1 = · · · = λ2M2 = 0. The matrix Us , U(:, 1 : N) collects the singular
vectors corresponding to the N largest singular values, while Un , U(:, N + 1 : 2M2) contains the
rest of the singular vectors corresponding to the 2M2 − N zero singular values. It is known that Us

spans the signal subspace, while its orthogonal space, namely the noise subspace, is spanned by Un,
thus one has ∥∥∥∥∥∥

[
e−jφi ((Ca(θi))⊗ (Ca(θi)))

∗

ejφi (Ca(θi))⊗ (Ca(θi))

]H

Un

∥∥∥∥∥∥
2

2

= 0, for i = 1, 2, · · · , N. (11)

However, due to the unknown C one cannot directly obtain the DOA estimates of the desired
non-circular signals via 1-D search for making Equation (11) hold. For the purpose of decoupling the
angular information from the electromagnetic impact between sensors of the ULA, we reparameterize
the distorted steering vector as [11]

Ca(θ) = T(θ)α (12)

where

T(θ) = blkdiag {T1, T2, T3} ∈ CM×(2P−1) (13)

α =
[
µ1, · · · , µP−1, τ(θ), α1, · · · , αP−1

]T
∈ C2P−1 (14)

with

T1 = diag
{

1, β(θ), · · · , βP−2(θ)
}
∈ C(P−1)×P−1) (15)

T2 =
[

βP−1(θ), · · · , βM−P(θ)
]T
∈ CM−2P+2 (16)

T3 = diag
{

βM−P+1(θ), · · · , βM−1(θ)
}
∈ C(P−1)×P−1) (17)

µl = 1 +
P−1

∑
k=1

ckβk(θ) +
l−1

∑
k=1

ckβ−k(θ) (18)

αl = 1 +
P−1

∑
k=1

ckβ−k(θ) +
P−1−l

∑
k=1

ckβk(θ) (19)
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and

τ(θ) = 1 +
P−1

∑
k=1

ck

(
βk(θ) + β−k(θ)

)
. (20)

It should be noted that τ(θ) in Equation (14) is generally not equal to zero, otherwise “blind
angles” cannot be identified [11]. Substituting Equation (12) back to Equation (11), one has∥∥∥∥∥∥

[
e−jφi ((T(θi)α)⊗ (T(θi)α))

∗

ejφi (T(θi)α)⊗ (T(θi)α)

]H

Un

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥
[

e−jφi ((T(θi)⊗ T(θi)) (α⊗ α))∗

ejφi (T(θi)⊗ T(θi)) (α⊗ α)

]H

Un

∥∥∥∥∥∥
2

2

=
∥∥∥υHT̄H(θi)Un

∥∥∥2

2

= υHT̄H(θi)UnUH
n T̄(θi)υ

= υHM(θi)υ = 0 (21)

where υ ,
[
e−jφi (α⊗ α)H , ejφi (α⊗ α)T

]T
∈ C2(2P−1)2

, T̄(θi) ,

blkdiag
{
(T(θi)⊗ T(θi))

∗ , T(θi)⊗ T(θi)
}
∈ C2M2×2(2P−1)2

, and M(θi) , T̄H(θi)UnUH
n T̄(θi) ∈

C2(2P−1)2×2(2P−1)2
.

It is clear that T̄H(θ)Un is of size 2(2P− 1)2 × (2M2 − N). If 2(2P− 1)2 ≤ 2M2 − N, generally
speaking, then the matrix T̄H(θ)Un has a full row rank and M(θ) has a full rank accordingly.
Nevertheless, for some special cases that θ is exactly the same with any one of the N true angles, i.e.,
θ = θi, i = 1, · · · , N, the expression in Equation (21) becomes zero. Since υ 6= 0, Equation (21) is valid
only when M(θ) is singular that it takes as a zero-value determinant. As a result, the DOA estimation
is now dependent on the determinant of M(θ). Since M(θ) does not contain any mutual coupling
coefficients, det {M(θ)} is insensitive to the nuisances. Therefore, one can estimate the bearings as

θ̂ = arg min
θ

det {M(θ)} . (22)

4. Performance Analysis

In this section, the identifiability as well as the computational complexity of the proposed method
is discussed, with a comparison of the existing work in the context of FOC, e.g., Liu’s [21] and Liao’s [24]
approaches.

4.1. Identifiability of DOA Estimation

As 2(2P − 1)2 ≤ 2M2 − N makes M(θ) be of full rank, which is a necessary condition of the
proposed algorithm, one can deduce that N ≤ 2M2 − 2(2P− 1)2, which implies that the maximum
DOFs of the developed estimator are 2M2 − 2(2P− 1)2. By contrast, existing methods cannot estimate
as many sources as our technique. Liao’s method is based on ESPRIT and as a result, the upper
bound of estimation identifiability depends on the dimension of signal subspace. It is known that
the signal subspace produced by Liao’s method has a size of M(M − 2P + 1) × N, and there are
also (M− 2P + 2)(M− 2P + 1)− 2(M− 2P + 1) = (M− 2P)(M− 2P + 1) linearly dependent rows
due to the property of the middle sub-array. Therefore, the row dimension of the signal subspace is
2P(M− 2P + 1), in other words, Liao’s method can estimate up to 2P(M− 2P + 1) signals. In Liu’s
method, only the middle sub-array utilized, which means the extended aperture by FOC is 2(M−
2P + 2)− 1 elements. Therefore, Liu’s method can handle at most 2(M− 2P + 1) DOAs. It is evident
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that the proposed method has the largest estimation capacity among the three algorithms, followed by
Liao’s method and then Liu’s method. Consequently, Liu’s method suffers from the reduced effective
aperture. Besides, if the coupling between sensors is prominent, i.e., P is large, or equivalently M is
not sufficiently large, then the size of the middle sub-array will be very small. For instance, if P = M

2
and N = 4, Liu’s method is not valid. This is because the effective array aperture [18] is 3 elements in
this case, and at most 2 DOAs can be estimated.

4.2. Computational Complexity

Next, we compare the major computations of the proposed estimator, Liao’s and Liu’s
methods, which involve in the fourth-order statistical matrices construction, SVD, and spectral
search. For Liao’s approach, the main calculation cost is to form M − 2P + 2 FOC matrices
of the same size M × M and to perform the SVD of the augmented M(M − 2P + 2) × M
cumulant matrix, which requires O

(
9(M− 2P + 2)M2L + M3(M− 2P + 2)

)
flops where L is the

number of snapshots. Here, a flop stands for a complex-valued floating point multiplication
operation. Liu’s technique constructs one (M − 2P + 2)2 × (M − 2P + 2)2 cumulant matrix,
implements its SVD, and one-dimensional MUSIC spectral search, respectively, and it thus needs
O
(

9(M− 2P + 2)4L + (M− 2P + 2)6 + 180
δ ((M− 2P + 2)2 + 1)((M− 2P + 2)2 − N)

)
flops in total

where δ is the sampling grid spacing. By comparison, the proposed scheme establishes two
M2 ×M2 cumulant matrices, carries out SVDs of the augmented 2M2 × 2M2 matrix, and executes a
one-dimensional spectral search on determinants of a 2 (2P− 1)2 matrix. The resulting flops taken
in our work are in order of O

(
18M4L + 8M6 + 1440

δ (2P− 1)6
)

. As in general L is relatively large,
say several thousands, the proposed method has the highest computational complexity among the
three algorithms, followed by Liao’s approach and then Liu’s technique.

5. Solution to the Case of Coherent Signals

It should be noted that the aforementioned method is applicable to incident signals being
independent, and the coherency between signals may lead to severe performance degradation or even
total failure due to the rank deficiency. This motivates us to provide a solution to the knotty problem,
i.e., multiple groups of coherent signals received by a tightly coupled ULA in colored noise, and another
direction finding algorithm based on FOC is proposed in this section, exploiting rotation-invariant
property to blindly separate the coherent signals into different groups, and then resolving the DOAs in
each coherent group via rank restoration techniques such as FBSS.

First, in order to mitigate the unknown mutual coupling, one can extract the
observations of the middle sub-array by x̃(t) = Wx(t) where the selection matrix W =[
0(M−2P+2)×(P−1), IM−2P+2, 0(M−2P+2)×(P−1)

]
.

Consider that there are K groups of signals from K users sensed by the sensor array deployed
at the base station where the k-th group has Pk signals that are coherent to each other, but the signals
from different groups are independent. Referring to [52–54], the array observation with a shrinking
size can be rewritten as

x̄(t) = ĀΓ̃s(t) + n̄(t) (23)

where Ā = JA, Γ̃ = DΓ with D = diag{µ(θ1), µ(θ2), · · · , µ(θN)}, µ(θi) = cP−1 + · · ·+ βP−1(θi)+ · · ·+
cP−1β2P−2(θi), and Γ = blkdiag{α1, · · · , αK} with αk =

[
αk1, · · · , αkPk

]T
collecting fading coefficients.

Let Ã = ĀΓ̃ = [b1, · · · , bK], being the so-called generalized array manifold, where bk =

[a(θk1), · · · , a(θkPk)] α̃k is the generalized steering vector, one can get four cumulant matrices as follows
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Ξ1 , cum
{

x̄1(t), x̄∗1(t), x̄(t), x̄H(t)
}

= cum

{
K

∑
m=1

Ã(1, m)ej φm
2 s0,m(t),

K

∑
p=1

Ã∗(1, p)e−j
φp
2 s∗0,p(t),

K

∑
n=1

bnej φn
2 s0,n(t),

K

∑
r=1

bH
r e−j φr

2 s∗0,r(t)

}

=
K

∑
m=1

K

∑
n=1

K

∑
p=1

K

∑
r=1

ej
φm−φp+φn−φr

2 Ã(1, m)Ã∗(1, p)bnbH
r cum

{
s0,m(t), s∗0,p(t), s0,n(t), s∗0,r(t)

}
=

K

∑
i=1

∣∣Ã(1, i)
∣∣2 bib

H
i cum

{
s0,i(t), s∗0,i(t), s0,i(t), s∗0,i(t)

}
=

K

∑
i=1

γi
∣∣Ã(1, i)

∣∣2 bib
H
i

= ÃC̃sÃ
H (24)

Ξ2 , cum
{

x̄2(t), x̄∗1(t), ¯x(t), x̄H(t)
}

= cum

{
K

∑
m=1

Ã(2, m)ej φm
2 s0,m(t),

K

∑
p=1

Ã∗(1, p)e−j
φp
2 s∗0,p(t),

K

∑
n=1

bnej φn
2 s0,n(t),

K

∑
r=1

bH
r e−j φr

2 s∗0,r(t)

}

=
K

∑
m=1

K

∑
n=1

K

∑
p=1

K

∑
r=1

ej
φm−φp+φn−φr

2 Ã(2, m)Ã∗(1, p)bnbH
r cum

{
s0,m(t), s∗0,p(t), s0,n(t), s∗0,r(t)

}
=

K

∑
i=1

Ã(2, m)

Ã(1, m)

∣∣Ã(1, i)
∣∣2 bib

H
i cum

{
s0,i(t), s∗0,i(t), s0,i(t), s∗0,i(t)

}
=

K

∑
i=1

γi
Ã(2, m)

Ã(1, m)

∣∣Ã(1, i)
∣∣2 bib

H
i

= ÃD̃C̃sÃ
H (25)

Ξ3 , cum
{

x̄1(t), x̄∗1(t), x̄(t), x̄T(t)
}

= cum

{
K

∑
m=1

Ã(1, m)ej φm
2 s0,m(t),

K

∑
p=1

Ã∗(1, p)e−j
φp
2 s0,p(t),

K

∑
n=1

bnej φn
2 s0,n(t),

K

∑
r=1

bT
r ej φr

2 s0,r(t)

}

=
K

∑
m=1

K

∑
n=1

K

∑
p=1

K

∑
r=1

ej
φm−φp+φn+φr

2 Ã(1, m)Ã∗(1, p)bnbT
r cum

{
s0,m(t), s0,p(t), s0,n(t), s0,r(t)

}
=

K

∑
i=1

ejφi
∣∣Ã(1, i)

∣∣2 bib
T
i cum {s0,i(t), s0,i(t), s0,i(t), s0,i(t)}

=
K

∑
i=1

γiejφi
∣∣Ã(1, i)

∣∣2 bib
T
i

= ÃΨC̃sΨÃT (26)

Ξ4 , cum
{

x̄2(t), x̄∗1(t), x̄(t), x̄T(t)
}

= cum

{
K

∑
m=1

Ã(2, m)ej φm
2 s0,m(t),

K

∑
p=1

Ã∗(1, p)e−j
φp
2 s0,p(t),

K

∑
n=1

bnej φn
2 s0,n(t),

K

∑
r=1

bT
r ej φr

2 s0,r(t)

}

=
K

∑
m=1

K

∑
n=1

K

∑
p=1

K

∑
r=1

ej
φm−φp+φn+φr

2 Ã(2, m)Ã∗(1, p)bnbT
r cum

{
s0,m(t), s0,p(t), s0,n(t), s0,r(t)

}
=

K

∑
i=1

ejφi
Ã(2, m)

Ã(1, m)

∣∣Ã(1, i)
∣∣2 bib

T
i cum {s0,i(t), s0,i(t), s0,i(t), s0,i(t)}

=
K

∑
i=1

γiejφi
Ã(2, m)

Ã(1, m)

∣∣Ã(1, i)
∣∣2 bib

T
i
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= ÃΨD̃C̃sΨÃT (27)

where x̄1(t) and x̄2(t) are the first and second columns of x̄(t), respectively.
Then, one can take the eigen-decomposition to Ξ2Ξ+

1 and Ξ4Ξ+
3 respectively to work out the

scaled generalized steering vectors. To see how it works, one can perform the following operations:

Ξ2Ξ+
1 Ã = ÃD̃C̃sÃ

H
(

ÃC̃sÃ
H
)+

Ã

= ÃD̃C̃sÃ
H
(

ÃH
)+

C̃−1
s Ã+Ã

= ÃD̃C̃s

(
Ã+Ã

)H
C̃−1

s

= ÃD̃ (28)

where in the third equality we have used the identity Ã+Ã = IK since Ã is of full column rank. Through
eigen-decomposition, one has Ξ2Ξ+

1 = ẼsΣ̃sẼ
H
s , where Ẽs contains the eigenvectors of Ξ2Ξ+

1 while
Σ̃s is a diagonal matrix comprising eigenvalues. Equivalently, one can deduce that Ξ2Ξ+

1 Ẽs = ẼsΣ̃s.
As a result, it is natural to reveal Ẽs = ÃΛ, where Λ is an arbitrary diagonal matrix with nonzero
entries, and Σ̃s = D̃. Following the same principle, one can also obtain the eigenvectors of Ξ4Ξ+

3 as the
scaled generalized steering vectors. Denoting ũk and ŭk are the the eigenvectors of Ξ2Ξ+

1 and Ξ4Ξ+
3 ,

respectively, one can get a more robust estimate of the scaled generalized steering vectors by averaging
them, i.e.,

b̃k , βbk =
1
2
(ũk + ŭk) . (29)

Then one can perform FBSS to b̃k to recover the rank deficiency

B f b
k =

1
2q

q

∑
i=1

[
Wib̃kb̃H

k WH
i + J

(
Wib̃kb̃H

k WH
i

)∗
J
]

(30)

where Wi =
[
0m×(i−1), Im, 0m×(q−i)

]
is the selection matrix for the i-th sub-array, with m = M− 2P +

3− q being is the number of sensors in each sub-array, and J ∈ Rm×m is the exchange matrix. For the
k-th group of coherent signals, one now can apply ESPRIT to B f b

k to determine the DOA estimates.

Remark 1. The parameter q plays a significant role in rank restoration since rank
(

B f b
k

)
after FBSS becomes

1+ 2q, and it also restricts the DOFs and effective aperture for estimation by m = M− 2P+ 3− q. We consider
two extreme cases to discuss the choices of q. If q =

⌈
Pi
2

⌉
, i = 1, 2 · · · , K, i.e., q achieves its lower bound, then

one barely restores the rank deficiency with the maximum number of sensors after FBSS, but this may cause not
all coherent signals to be detected, especially at low signal-to-noise ratio (SNR) or for few snapshots. On the
other hand, If q = M− 2P + 2− Pi, i.e., q achieves its upper bound, then one restores the rank deficiency with
an excessive number of times of FBSS, but this may cause biased estimates due to only one dimensional noise
subspace being available. To our empirical knowledge and simulation results, the proposed method performs
well when q is selected appropriately between the two bounds. However, the optimum choice of q is still an
open problem and no theoretical guidance for the selection has been provided. A plausible way to choose the

“optimal” q is to check whether B f b
k induced by q has the largest discrepancy between the Pi largest eigenvalues

and the m− Pi smallest eigenvalues, in which case B f b
k can be considered to have the largest SNR. Therefore,

the optimal q can be obtained by finding B f b
k with the largest discrepancy between the signal and the noise

subspaces. Although this method for choosing optimal q is completely ad-hoc, it seems to be very simple and
effective from simulations.
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Remark 2. A cumulant requires many more computations than a covariance and, hence, the proposed
FOC-based estimator of non-circular signals against mutual coupling works well on condition that the observation
window is sufficiently long and the target is (quasi-) stationary. We attempted to implement the proposed method
in a testbed composed of a Virtex-7 series FPGA and a TMS320C6x series DSP, but found that it is infeasible
to complete the DOA estimation within a time less than the scale of milliseconds in the case of M = 8 and
L = 2000 due to the cumbersome calculations of cumulants and the SVD of the augmented cumulant matrix
Cx, of size 16× 16. As a result, for some applications, like maneuverable targets, the coherence time of such
cumulants is quite short, and it is hard and even unlikely to realize the proposed algorithm by the prevailing
hardware available in the market. On the other hand, for some applications that expect not much real-time
quality, such as radio, hydrological, or meteorological environment monitoring where the incident signals have
cyclostationarity, cumulant-based signal selective algorithms can be implemented for location estimation of
far-field signals; the price to be paid is the need for the large number of computations and large data lengths for
reliable estimation of the cumulants.

Remark 3. For the case of wideband signals, one can divide the observations at each channel into some (possibly
overlapping) segments, where for each segment, a number of frequency sub-bands are computed by the short-time
Fourier transform (STFT). The idea of frequency-domain processing is to decouple the wideband model into a
multitude of narrowband models, and then at each frequency subband one can apply the proposed method to
obtain M( f , θ) constructed by Equation (21). In the frequency-domain approach, the final step is to combine
M( f , θ) at various frequencies to obtain a DOA spectrum fusion, that is, θ̂ = arg min

θ
∑ f∈Bd

det {M(θ)}

where Bd ⊂
[
0, 1

2

]
is the discrete normalized frequency band of the received signals. The combination in the

spectrum fusion equation follows the principle of incoherent signal subspace method (ISSM) in [55]. By contrast,
our solution is inapplicable to the focusing-based approaches [56,57], which is another category of DOA
estimation algorithms for wideband signals, since initial DOA estimates required therein cannot be obtained by
conventional beamforming in the presence of unknown mutual coupling.

Remark 4. The array perturbations, such as mutual coupling, gain-phase errors, and sensor location
uncertainties, can be calibrated by placing signal sources at known positions, which is the so-called active
calibration [58–65]. However, the process of measuring the array manifold including various perturbations
can be time consuming and expensive, and it is inconvenient or even infeasible to make the calibration source
available in some cases. In addition to the deployment of signals of opportunity, keeping the calibration effective is
another essential issue. Plenty of factors contribute to the variation of array response over time: gradual changes
in the behaviors of the sensor itself, the electronic circuitry, and the analog-to-digital converter (due to thermal
effects, aging of components, etc.), changes in the electromagnetic environment (e.g., metal objects beside an
antenna array cause a distortion of the beam pattern), and changes in the sensor locations (e.g., an antenna array
mounted on the vibrating wing of an aircraft or a hydrophone array towed behind a ship). The active calibration
scheme has its inherent shortcomings that are difficult to be overcome and, hence, in this paper we resort to the
self-calibration solution that is not reliant on the array manifold measurement as well as the calibration sources
whose positions are known in advance.

Remark 5. The received data can be prewhitened with a square-root of the covariance matrix of the colored noise,
and then the covariance matrix of colored noise is reduced to an identity matrix accordingly, i.e., the colored
noise becomes “isotropic”. It should be noted that this operation relies on a prerequisite that the noise covariance
matrix is available in advance. Generally speaking, noise in the internal circuitry of the antenna elements is
slowly time-varying, and the prewhitening technique works well if the colored noise is wide-sense stationary
over a period of time. However, this prerequisite may not hold in some scenarios. For instance, in wireless
communication systems, the cell sites equipped with antenna arrays always receive signals from users, so the
noise covariance matrix cannot be obtained separately; the reverberation noise in sonar has a fast time-variance
due to the underwater dynamic media, so the noise covariance matrix at the next moment varies dramatically
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from that at the previous moment. As a result, the prewhitening technique is invalid under these adverse
circumstances while fourth-order cumulants can handle such challenges.

6. Simulation Results and Discussion

In this section, numerous simulations are offered to assess the performance of the proposed
non-circular FOC method that exploits the non-circular structure via actual steering vector
reparameterization. Specifically, we compare our solution with its circular counterparts, Liu’s [21]
and Liao’s approaches [24] that are based on the FOC. A ULA with half-wavelength spacing
between adjacent elements is considered. Similar to the settings in [39], it is assumed that the BPSK
modulated incident signals are statistically independent and have identical power. The noise is
assumed to be spatially-colored Gaussian and the (m, n)-th entry of the covariance matrix is given

by R(m, n) = σ2
n0.85|m−n|ej π|m−n|

16 [66,67]. The signal-to-noise ratio (SNR) is defined as 10 log10(σ
2
s /σ2

n).
The accuracy of the DOA estimate is measured from 1000 Monte Carlo runs in terms of the root mean
square error (RMSE) which is defined as

RMSE =

√√√√ 1
1000N

1000

∑
n=1

N

∑
i=1

(θ̂
(n)
i − θi)2 (31)

where θ̂
(n)
i is the estimate of θi for the n-th trial, and N is the number of signals.

We first assumed that four independent sources from [−23◦,−6◦, 14◦, 36◦] impinging on a
ten-element array with mutual coupling where P = 3 with c1 = −0.1545 + 0.4755j, c2 = 0.1618−
0.1176j. From Figure 1, it can be seen that with the increase of the two variables, the SNR and the
number of snapshots, the RMSE of the DOA estimates declines slowly for all three methods and then
stabilizes for certain SNR or snapshot values due to the manifold error resulting from the unknown
mutual coupling, whereas Liao’s method has a relatively large and constant error at approximately
1.57◦. It is evident that our solution is superior to Liu’s method and Liao’s method, particularly
at low SNRs as well as small snapshot sizes, since a larger array aperture has been utilized for in
our algorithm. Between the other two approaches, one can tell that in this scenario, Liu’s method
generally outperforms Liao’s method and achieves similar performance to our method in moderate
conditions (i.e., SNR≥ −7dB or the number of snapshots is larger than 3500) at a cost of computation.
This demonstrates that when the ULA has sufficient sensors and the degree of coupling is not high
(i.e., P is small), Liu’s method performs well. In contrast, Liao’s method has a clear advantage over
Liu’s for SNR lower than −10dB or for less than 2000 snapshots.

In the second scenario, we further appraise the performance of the algorithm in this submission
under stronger mutual coupling. More precisely, we consider the case of P = 4 with c1 = −0.1545 +
0.4755j, c2 = 0.1618− 0.1176j, c3 = 0.0211 + 0.0651j. The corresponding RMSEs versus SNR and
snapshot size are illustrated in Figure 2. It can be seen that the proposed approach performs the
best over the entire range of SNR values and the moderate numbers of snapshots. Nevertheless,
a performance degradation appears for less than 2000 snapshots mainly because Equation (12) is
guaranteed to hold under strong coupling effects only for sufficiently large samples. Contrary to
the performance in the first scenario, Liu’s method is strictly inferior to Liao’s method for all SNRs.
As analyzed in Section 4.1, the size of the middle sub-array adopted by Liu’s method is M− 2P+ 2 = 4,
and the size of the noise subspace is 7× 3, which is much smaller than the 200× 196 noise subspace of
the proposed method and the 24× 4 signal subspace of Liao’s method. Due to the fact that a consistent
estimate of a small subspace requires a sufficiently large number of snapshots, Liu’s method has
relatively large errors for a moderate number of snapshots, even at high SNRs.
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Figure 1. Root mean square error (RMSE) of the direction of arrival (DOA) estimates of four signals
when M = 10 and P = 3. (a) The number of snapshots is 5000. (b) signal-to-noise ratio (SNR)= 0 dB.

Next, we change the number of sensors to M = 8. The other settings are kept the same as in the
second scenario. As discussed in Section 4.1, Liu’s approach fails to work in this example as the number
of sensors in the middle sub-array becomes M− 2P + 2 = 2, and up to two DOAs can be identified,
but actually N = 4 signals should be estimated herein. However, the developed algorithm in this
submission and Liao’s method can still work under this more challenging scenario. The resultant
RMSEs versus SNR and the number of snapshots are depicted in Figure 3. One can observe that the
proposed solution significantly outperforms Liao’s method. This can be mainly attributed to the fact
that Liao’s method can only utilize the signal subspace with a size of 8× 4, whereas the proposed
method exploits the noise subspace with a larger size of 128× 124 and achieves a lower RMSE for
the DOA estimates. However, as in the second scenario, the performance of our method deteriorates
quickly and becomes inferior to Liao’s method when the number of snapshots is low. It has been
shown in the literature that ESPRIT-like algorithms have clear advantages over MUSIC-like algorithms
in terms of estimation errors and robustness to array manifold perturbations in the limited snapshots
situation [68]. In our simulations, it was found that at least 2000 snapshots is required to sufficiently
characterize the properties of FOC, especially when mutual coupling is relatively strong. It is thus
reasonable that Liao’s method (ESPRIT-like) offers better performance than the proposed method
(MUSIC-like) when the number of snapshots is lower than 2000.
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Figure 2. RMSE of the DOA estimates of four signals when M = 10 and P = 4. (a) The number of
snapshots is 5000. (b) SNR = 0 dB.

Then, we verify the proposed scheme for the more challenging scenario where coherency
between signals and mutual coupling between sensors coexist. Consider that three groups of
coherent signals, three paths per group, from [−47◦,−24◦,−9◦], [−70◦, 30◦, 60◦], and [8◦, 23◦, 45◦]
impinging on a ten-element coupled ULA with P = 2 and c1 = −0.1545 + 0.4755j. The fading
amplitudes of the coherent signals were [1, 0.9, 0.8], [1, 0.7, 0.6], and [1, 0.7, 0.4], while the fading phases
were [48.74◦, 121.15◦, 35.66◦], [9.35◦, 251.47◦, 103.56◦], and [130.21◦, 16.88◦, 319.69◦], respectively.
The number of times of FBSS is q = 2, and the SNR and number of snapshots are fixed at 15 dB
and 5000. Figure 4 illustrates the DOA estimates from 50 independent trials by the developed method
in such a harsh case. The solid lines mark the true DOAs. It can be seen that each DOA is correctly
determined, and our solution performs satisfactorily.
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Figure 3. RMSE of the DOA estimates of four signals when M = 8 and P = 4. (a) The number of
snapshots is 5000. (b) SNR = 0 dB.
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Figure 4. DOA estimates of 50 independent trials using the proposed method, M = 10, P = 2,
SNR = 15 dB, and 5000 snapshots.
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In the last experiment, the computational complexity of the three algorithms versus the number of
snapshots is examined. The searching step-size in the MUSIC-like methods is set as 0.1◦, and the number
of snapshots varies from 1000 to 10, 000. Suppose that the number of sensors in the ULA M = 10,
the coupling length P = 3, and the number of independent signals N = 2. It can be observed from
Figure 5 that our method costs the highest computation, followed by Liao’s method, while Liu’s
method is most computationally efficient, which supports the analysis in Section 4.2.
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Figure 5. Computational complexity versus the number of snapshots, M = 10, P = 3, and N = 2.

7. Conclusions

This paper has addressed the problem of DOA estimation of non-circular signals with ULAs under
the coexistence of unknown mutual coupling and colored noise. A new MUSIC-like approach in the
context of FOC is developed to offer superior performance over the existing techniques. The proposed
algorithm makes efficient use of the extended array observations and enables us to deal with DOA
estimation without a priori knowledge of mutual coupling between sensors. In addition, a solution
to coherent signals with mutual coupling between sensors is introduced, by the middle sub-array
to suppress the electromagnetic nuisance and blind separation of coherent signals to enhance DOFs.
Compared with the previous work, our solution is able to handle more signals and achieve more
accurate DOA estimates even with relatively stronger mutual coupling. A series of simulation results
verify the validity and efficiency of the proposed method.
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