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Abstract: Several approaches have been proposed for the analysis of pain-related facial expressions.
These approaches range from common classification architectures based on a set of carefully designed
handcrafted features, to deep neural networks characterised by an autonomous extraction of relevant
facial descriptors and simultaneous optimisation of a classification architecture. In the current
work, an end-to-end approach based on attention networks for the analysis and recognition of
pain-related facial expressions is proposed. The method combines both spatial and temporal aspects
of facial expressions through a weighted aggregation of attention-based neural networks’ outputs,
based on sequences of Motion History Images (MHIs) and Optical Flow Images (OFIs). Each input
stream is fed into a specific attention network consisting of a Convolutional Neural Network (CNN)
coupled to a Bidirectional Long Short-Term Memory (BiLSTM) Recurrent Neural Network (RNN).
An attention mechanism generates a single weighted representation of each input stream (MHI
sequence and OFI sequence), which is subsequently used to perform specific classification tasks.
Simultaneously, a weighted aggregation of the classification scores specific to each input stream is
performed to generate a final classification output. The assessment conducted on both the BioVid Heat
Pain Database (Part A) and SenseEmotion Database points at the relevance of the proposed approach, as
its classification performance is on par with state-of-the-art classification approaches proposed in the
literature.

Keywords: convolutional neural networks; long short-term memory recurrent neural networks;
information fusion; pain recognition

1. Introduction

An individual’s affective disposition is often expressed throughout facial expressions.
Human beings are therefore able to assess someone’s current mood or state of mind by observing his
or her facial demeanour. Therefore, an analysis of facial expressions can provide some valuable insight
about one’s emotional and psychological state. Thus, facial expression recognition (FER) has been
attracting a lot of interest from the research community in the recent decades and constitutes a steadily
growing area of research, particularly in the domains of machine learning and computer vision.
The current work focuses on the analysis of facial expressions for the assessment and recognition
of pain in video sequences. More specifically, a two-stream attention network is designed, with the
objective of combining both temporal and spatial aspects of facial expressions, based on sequences of
motion history images [1] and optical flow images [2], to accurately discriminate between neutral, low,
and high levels of nociceptive pain. The current work is organised as follows. An overview of pain
recognition approaches based on facial expressions is provided in Section 2, followed by a thorough
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description of the proposed approach in Section 3. In Section 4, a description of the datasets used for
the assessment of the proposed approach as well as the performed experiments is provided, followed
by a description of the corresponding results. The current work is subsequently concluded in Section 5
with a short discussion and description of potential future works.

2. Related Work

Recent advances in both domains of computer vision and machine learning, combined with the
release of several datasets designed specifically for pain-related research (e.g., UNBC-McMaster Shouder
Pain Expression Archive Database [3], BioVid Heat Pain Database [4], Multimodal EmoPain Database [5] and
SenseEmotion Database [6]), have fostered the development of a multitude of automatic pain assessment
and classification approaches. These methods range from unimodal approaches, characterised by
the optimisation of an inference model based on one unique and specific input signal (e.g., video
sequences [7,8], audio signals [9,10] and bio-physiological signals [11–13]), to multimodal approaches
that are characterised by the optimisation of an information fusion architecture based on parameters
stemming from a set of distinctive input signals [14–16].

Regarding pain assessment based on facial expressions, several approaches have been proposed,
ranging from conventional supervised learning techniques based on specific sets of handcrafted
features, to deep learning techniques. These approaches rely on an effective preprocessing of the input
signal (which in this case consists of a set of images or video sequences) and involves the localisation,
alignment and normalisation of the facial area in each input frame. Moreover, further preprocessing
techniques include the localisation and extraction of several fiducial points characterising specific
facial landmarks, and in some cases, the continuous extraction of facial Action Units (AUs) [17,18].
The preprocessed input signal, as well as the extracted parameters, are subsequently used to optimise
a specific inference model based on different methods. In [19], the authors use an ensemble of linear
Support Vector Machines (SVMs) [20] (each trained on a specific AU), in which inference scores
are subsequently combined using Logistical Linear Regression (LLR) [21] for the detection of pain
at a frame-by-frame level. The authors in [22] apply a k-Nearest Neighbours (k-NN) [23] model
on geometric features extracted from a specific set of facial landmarks for the recognition of AUs.
Subsequently, the pain intensity in a particular frame is evaluated based on the detected AUs by using
a pain evaluation scale provided by Prkachin and Solomon [24]. Most recently, the authors in [25]
improve the performance of a pain detection system based on automatically detected AUs by applying
a transfer learning approach based on neural networks to map automated AU codings to a subspace of
manual AU codings. The encoded AUs are subsequently used to perform pain classification, using
an Artificial Neural Network (ANN) [26].

In addition to AU-based pain assessment approaches, several techniques based on either facial
texture, shape, appearance and geometry or on a combination of several of such facial descriptors
have been proposed. Yang et al. [27] assess several appearance-based facial descriptors by comparing
the pain classification performance of each feature with its spatio-temporal counterpart using SVMs.
The assessed spatial descriptors consist of Local Binary Patterns (LBP) [28], Local Phase Quantization
(LPQ) [29], Binarized Statistical Image Features (BSIF) [30] as well as each descriptor’s spatio-temporal
counterpart extracted from video sequences on three orthogonal planes (LBP-TOP, LPQ-TOP and
BSIF-TOP). In [8,31], the authors propose several sets of spatio-temporal facial action descriptors based
on both appearance- and geometry-based features extracted from both the facial area, as well as the
head pose. Those descriptors are further used to perform the classification of several levels of pain
intensities using a Random Forest (RF) [32] model. Similarly, the authors in [7,14,15,33], propose several
spatio-temporal descriptors extracted either from the localised facial area or from the estimated head
pose, including, among others, Pyramid Histograms of Oriented Gradients (PHOG) [34] and Local
Gabor Binary Patterns from Three Orthogonal Planes (LGBP-TOP) [35], to perform the classification of
several levels of nociceptive pain. The classification experiments are also performed with RF models
and ANNs.
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Alongside handcrafted feature-based approaches, several techniques based on deep neural
networks have also been proposed for the assessment of pain induced facial expressions. Such
approaches are characterised by the joint extraction of relevant descriptors (from the preprocessed
raw input data) and optimisation of an inference model, based on neural networks in an end-to-end
manner. In [36–38], the authors propose a hybrid deep neural network pain detection architecture
characterised by the combination of a feature embedding network consisting of a Convolutional
Neural Network (CNN) [39] with a Long Short-Term Memory (LSTM) [40] Recurrent Neural Network
(RNN), to take advantage of both spatial and temporal aspects of facial pain expressions in video
sequences. Soar et al. [41] propose a similar approach by combining a CNN with a Bidirectional LSTM
(BiLSTM), and using a Variable-State Latent Conditional Random Field (VRS-CRF) [42] instead of
a conventional Multi-Layer Perceptron (MLP) to perform the classification. In [43], the authors also use
a similar hybrid approach as in [36,37]; however, in this case, the feature embedding CNN is coupled
to two distinct LSTM networks. The outputs of the LSTM networks are further concatenated and
a MLP is used to perform the classification of the pain intensities in video sequences. Furthermore,
Zhou et al. [44] propose a Recurrent Convolutional Neural Network (RCNN) [45] architecture for the
continuous estimation of pain intensity in video sequences at the frame-level, whereas Wang et al. [46]
propose a transfer learning approach, consisting of the regularisation of a face verification network,
which is subsequently applied to a pain intensity regression task.

The current work focuses on the analysis of facial expressions for the discrimination of neutral, low
and high levels of nociceptive pain in video sequences. Thereby, an end-to-end hybrid neural network
characterised by the integration of spatial and temporal information at both the representational
level of the input data (OFI and MHI) and the structural level of the proposed architecture (hybrid
CNN-BiLSTM) is proposed. Furthermore, frame attention parameters [47] are integrated into the
proposed architecture to generate an aggregated representation of the input data based on an estimation
of the representativeness of each single input frame, in relation with the corresponding level of
nociceptive pain. An extensive assessment of the proposed architecture is performed on both BioVid
Heat Pain Database (Part A) [4] and SenseEmotion Database [6].

3. Proposed Approach

A video sequence can be characterised by both its spatial and temporal components. The spatial
component represents the appearance (i.e., texture, shape and form) of each frame’s content, whereas
the temporal component represents the perceived motion across consecutive frames due to dynamic
changes of the content’s appearance through time. Most of the deep neural network approaches
designed for the assessment of pain-related facial expressions generate spatio-temporal descriptors of
the input data in two distinct and conjoint stages: a specific feature embedding neural network (which
is commonly a pre-trained CNN) first extracts appearance based descriptors from the individual
input frames (which are greyscale or colour images), and a recurrent neural network is subsequently
used for the integration of the input’s temporal aspect based on sequences of previously extracted
appearance features, thus generating spatio-temporal representations of video sequences that are
used for classification or regression tasks. Therefore, both the temporal and spatial aspects of video
sequences are integrated uniquely at the structural level (e.g., the architecture of the neural network)
of such approaches. The current approach extends this specific technique by additionally integrating
motion information at the representational level (e.g., input data) of the architecture throughout
sequences of motion history images [1] and optical flow images [2].

3.1. Motion History Image (MHI)

Introduced by Bobick and Davis [48], a MHI consists of a scalar-valued image depicting both the
location and direction of motion in a sequence of consecutive images, based on the changes of pixel
intensities of each image through time. The intensity of a pixel in a MHI is a function of the temporal
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motion history at that specific point. A MHI Hτ is computed using an update function Ψ (x, y, t), and
is defined as follows,

Hτ (x, y, t) =

{
τ if Ψ (x, y, t) = 1

max (0, Hτ (x, y, t− 1)− δ) otherwise
(1)

where (x, y) represents the pixel’s location, t the time and τ the temporal extent of the observed motion
(e.g., the length of a sequence of images); Ψ (x, y, t) = 1 is synonym of motion at the location (x, y) and
at the time t; and δ represents a decay parameter. The update function Ψ (x, y, t) is defined as follows,

Ψ (x, y, t) =

{
1 if D (x, y, t) ≥ ξ

0 otherwise
(2)

where ξ is a threshold; D (x, y, t) represents the absolute value of the difference of pixel intensity values
of consecutive frames and is defined as follows,

D (x, y, t) = |I(x, y, t)− I(x, y, t± ∆t)| (3)

where I (x, y, t) represents the pixel intensity at the location (x, y) and at the time t; ∆t represents the
temporal distance between the frames.

Therefore, the computation of a MHI consists in first performing image differencing [49] between
a specific, preceding frame and the current tth frame, and detecting the pixel locations where
a substantial amount of movement has occurred (depending on the value assigned to the threshold
ξ) based on Equation (2). Subsequently, Equation (1) is used to assign pixel values to the MHI.
If a motion has been detected at the location (x, y) of the tth frame, a pixel value of τ is assigned at that
location. Otherwise, the previous pixel value of that location is reduced by δ, thereby indicating the
temporal occurrence of the motion at that specific location, according to the actual time t. This whole
process is conducted iteratively until the entire sequence of images has been processed. The temporal
history of motion is thereby encoded into the resulting MHI. Therefore, a whole sequence of images
can be encoded into a single MHI. However, in the current work, a sequence of MHIs is generated
from each single sequence of images by saving each single MHI generated at each single step of the
iterative process described earlier. The resulting sequence of images is used as input for the designed
deep neural networks. A depiction of such a sequence of MHIs can be seen in Figure 1b, with the
corresponding sequence of greyscale images depicted in Figure 1a.

(a) Greyscale input sequence.

(b) MHI input sequence.

(c) OFI input sequence.
Figure 1. Data preprocessing. Following the detection, alignment, normalisation and extraction of the
facial area in each frame of a video sequence, the images are converted into greyscale. MHI and OFI
sequences are subsequently generated.



Sensors 2020, 20, 839 5 of 19

3.2. Optical Flow Image (OFI)

Optical flow refers to the apparent motion of visual features (e.g., corners, edges, textures and
pixels) in a sequence of consecutive images. It is characterised by a set of vectors (optical flow vectors)
defined either at each location (x, y) of an entire image (dense optical flow [50,51]), or at specific
locations of a predefined set of visual features (sparse optical flow [2,52]). The orientation of an optical
flow vector depicts the direction of the apparent motion, whereas the magnitude of an optical flow
vector depicts the velocity of the apparent motion of the corresponding visual feature in consecutive
frames. Thus, an OFI provides a compact description of the location, direction and velocity of a specific
motion occurring in consecutive frames. The estimation of the optical flow is based on the brightness
constancy assumption, which stipulates that pixel intensities are constant between consecutive frames.
If I (x, y, t) is the pixel intensity at the location (x, y) and at the time t, the brightness constancy
assumption can be formulated as follows,

I (x, y, t) = I (x + δx, y + δy, t + δt) (4)

where (δx, δy, δt) represents a small motion. By applying a first-order Taylor expansion,
I (x + δx, y + δy, t + δt) can be written as follows,

I (x + δx, y + δy, t + δt) ≈ I (x, y, t) +
∂I
∂x

δx +
∂I
∂y

δy +
∂I
∂t

δt. (5)

Thus,
∂I
∂x

δx +
∂I
∂y

δy +
∂I
∂t

δt ≈ 0 (6)

and by dividing each term by δt, the optical flow constraint equation can be written as follows,

∂I
∂x

dx
dt

+
∂I
∂y

dy
dt

+
dI
dt
≈ 0. (7)

Resolving the optical flow constraint equation (Equation (7)) consists of the estimation of both
parameters u = dx

dt and v = dy
dt . Several methods have been proposed to perform this specific task.

The authors in [53,54] propose an overview of such approaches. In the current work, dense optical flow
is applied, using the method of Farnebäck [50], to compute OFIs from consecutive greyscale images.
A depiction of such a sequence of images can be seen in Figure 1c (both motion direction and motion
velocity are color encoded).

3.3. Network Architecture

As opposed to still images, the motion component of a video sequence is integrated into both MHIs
and OFIs, therefore providing more valuable information for facial expressions analysis. Therefore,
the proposed architecture consists of a multi-view learning [55] neural network with both OFIs and
MHIs as input channels. An overall illustration of the proposed two-stream neural network can be
seen in Figure 2. In a nutshell, an attention network specific to each input channel (OFIs and MHIs)
first generates a weighted representation from the jth input sequence (ho f i

j and hmhi
j ). The generated

representation is subsequently fed into a channel specific classification model (which in this case is
a MLP). The resulting class probabilities of each channel (scoreo f i

j and scoremhi
j ) are further fed into

an aggregation layer with a linear output function, where a weighted aggregation of the provided
scores is performed as follows,

scorej = αo f i · scoreo f i
j + αmhi · scoremhi

j (8)
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with the constraint
αo f i + αmhi = 1. (9)

The entire architecture is trained in an end-to-end manner by using the following loss function,

L = λo f i · Lo f i + λmhi · Lmhi + λagg · Lagg (10)

where the loss functions of each input channel and of the aggregation layer are respectively depicted
with Lo f i, Lmhi and Lagg. The parameters λo f i, λmhi and λagg correspond to the regularisation
parameters of each respective loss function. Once the network has been trained, unseen samples
are classified based on the output of the aggregation layer.

MotionHistory
Images

OpticalFlow
Images

Attention
Network

Attention
Network

hmhi
j

ho f i
j

Classifier

Classifier

scoremhi
j

scoreo f i
j

×αmhi

×αo f i

+ yj

Figure 2. Two-Stream Attention Network with Weighted Score Aggregation.

The attention network (see Figure 3) consists of a CNN coupled to a BiLSTM with a frame attention
module [47]. The CNN consists of a time distributed feature embedding network which takes a single
facial image imk,j as input and generates a fixed-dimension feature representation Xk,j specific to that
image. Therefore, the output of the jth input sequence of facial images {imk,j}l

k=1 consists of a set of
facial features {Xk,j}l

k=1. The temporal component of the sequence of images is further integrated by
using a BiLSTM layer. A BiLSTM [56] RNN is an extension of a regular LSTM [40] RNN, to enable the
use of context representations in both forward and backward directions.

It consists of two LSTM layers, one processing the input sequence
{

X1,j, X2,j, . . . , Xl,j

}
sequentially

forward in time (from X1,j to Xl,j) and the second processing the input sequence sequentially backward
in time (from Xl,j to X1,j). A LSTM RNN is capable of learning long-term dependencies in sequential
data, while avoiding the vanishing gradient problem of standard RNNs [57]. This is achieved
throughout the use of cell states (see Figure 4), which regulate the amount of information flowing
through a LSTM network throughout the use of three principal gates: forget gate ( ft), input gate (it)
and output gate (ot). The cell’s output ht (at each time step t) is computed, given a specific input xt,
the previous hidden state ht−1, and the previous cell state Ct−1, as follows,

ft = σ
(

W f xt + U f ht−1 + b f

)
(11)

it = σ (Wixt + Uiht−1 + bi) (12)

C̃t = tanh (Wcst + Ucht−1 + bc) (13)

Ct = ft ⊗ Ct−1 + it ⊗ C̃t (14)

ot = σ (Woxt + Uoht−1 + bo) (15)

ht = ot ⊗ tanh(Ct) (16)

where σ represents the sigmoid activation function σ(x) = (1 + exp(−x))−1 and tanh represents the
hyperbolic tangent activation function. The element-wise multiplication operator is represented by the
symbol⊗. The weight matrices for the input xt are represented by Wi, W f , Wo and Wc for the input gate,
forget gate, output gate and cell state, respectively. Analogously, the weight matrices for the previous
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hidden state ht−1 for each gate are represented by Ui, U f , Uo and Uc. The amount of information
to be further propagated into the network is controlled by the forget gate (Equation (11)), the input
gate (Equation (12)) and the computed cell state candidate C̃t (Equation (13)). These parameters are
subsequently used to update the cell state Ct based on the previous cell state Ct−1 (Equation (14)).
The output of the cell can subsequently be computed using both Equation (15) and Equation (16).

iml,j

imk,j

im2,j

im1,j

CNN

CNN

CNN

CNN

Xl,j

Xk,j

X2,j

X1,j

−−−→
LSTM

←−−−
LSTM

−−−→
LSTM

←−−−
LSTM

−−−→
LSTM

←−−−
LSTM

−−−→
LSTM

←−−−
LSTM

C

hl,j

C

hk,j

C

h2,j

C

h1,j Attention Layer

×al

×ak

×a2

×a1

+

hj

C Concatenation + Element-wise Sum

Figure 3. Attention Network.

xt

σ ×ht−1

Ct−1 ×

σ

ft

σ

it

tanh

×

+

C̃t
tanh

ot

ht

ht

Ct

Figure 4. Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN).

In the current work, the hidden representation stemming from the forward pass
{−→

h1,j,
−→
h2,j, . . . ,

−→
hl,j

}
and the one stemming from the backward pass

{←−
h1,j,
←−
h2,j, . . . ,

←−
hl,j

}
are subsequently concatenated{[−→

h1,j,
←−
h1,j

]
,
[−→

h2,j,
←−
h2,j

]
, . . . ,

[−→
hl,j,
←−
hl,j

]}
and fed into the next layer. For the sake of simplicity,

the output of the BiLSTM layer will be depicted as follows,
{

h1,j, h2,j, . . . , hl,j

}
(with hk,j =[−→

hk,j,
←−
hk,j

]
). The next layer consists of an attention layer, where self-attention weights {ak}l

k=1 are
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computed and subsequently used to generate a single weighted representation of the input sequence.
The self-attention weights are computed as follows,

αk = elu
(

Wkhk,j + bk

)
(17)

ak =
exp(αk)
l

∑
i=1

exp(αi)

(18)

where Wk are the weights specific to the input feature representation hk,j =
[−→

hk,j,
←−
hk,j

]
and elu represents

the exponential linear unit activation function [58], which is defined as

eluα(x) =

{
α · (exp(x)− 1) if x < 0

x if x ≥ 0
(19)

with α = 1. Each self-attention weight expresses the relevance of a specific image for the corresponding
emotional state expressed within the video sequence. Thereby, relevant images should be assigned
significantly higher weight values as irrelevant images. The final representation of the input
sequence is subsequently computed by performing a weighted aggregation of the BiLSTM output{

h1,j, h2,j, . . . , hl,j

}
based on the computed self-attention weights {ak}l

k=1 as follows,

hj =
l

∑
k=1

ak · hk,j (20)

and is further used to perform the classification task.

4. Experiments

In the following section, a description of the experiments performed for the evaluation of the
proposed approach is provided. First, the datasets used for the evaluation are briefly described,
followed by a depiction of the conducted data preprocessing steps. The experimental settings as
well as the performed experiments are described subsequently. This section is finally concluded with
a description and discussion of the experimental results.

4.1. Datasets Description

The presented approach is evaluated on both the BioVid Heat Pain Database (Part A) (BVDB) [4]
and the SenseEmotion Database (SEDB) [6]. Both datasets were recorded with the principal goal of
fostering research in the domain of pain recognition. In both cases, several healthy participants were
submitted to a series of individually calibrated heat-induced painful stimuli, using the exact same
procedure. Whereas the BVDB consists of 87 individuals submitted to four individually calibrated and
gradually increasing levels of heat-induced painful stimuli (T1, T2, T3 and T4), the SEDB consists of 40
individuals submitted to three individually calibrated and gradually increasing levels of heat-induced
stimuli (T1, T2 and T3). Each single level of heat-induced pain stimulation was randomly elicited a total
of 20 times for the BVDB and 30 times for the SEDB. Each elicitation lasted 4 s, followed by a recovery
phase of a random length of 8 to 12 s during which a baseline temperature T0 (32◦C) was applied
(see Figure 5). Whereas the elicitations were performed uniquely on one specific hand for the BVDB,
the experiments were conducted twice for the SEDB, with the elicitation performed each time on one
specific arm (left forearm and right forearm). Therefore, with the inclusion of the baseline temperature
T0, the dataset specific to the BVDB consists of a total of 87× 20× 5 = 8700 samples, whereas the SEDB
consists of a total of 40× 30× 4× 2 = 9600 samples. During the experiments, the demeanour of each
participant was recorded using several modalities consisting of video and bio-physiological channels
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for the BVDB, while the SEDB included audio, video and bio-physiological channels. The current work
focuses uniquely on the video modality, and the reader should refer to the work in [10,14–16,33,59–64]
for more experiments including the other recorded modalities.

4.2. Data Preprocessing

The evaluation performed in the current work is undertaken in both cases (BVDB and SEDB)
on video recordings performed by a frontal camera. The recordings were performed at a frame rate
of 25 frames per second (fps) for the BVDB and 30 fps for the SEDB. Furthermore, the evaluation
is performed uniquely on windows of length 4.5 s with a shift of 4 s from the elicitation’s onset,
as proposed in [16] (see Figure 5). Once these specific windows are extracted, the facial behaviour
analysis toolkit OpenFace [65] is used for the automatic detection, alignment and normalisation of the
facial area (with a fixed size of 100× 100 pixels) in each video frame. Subsequently, MHI sequences
and OFI sequences are extracted using the OpenCV library [66]. Both MHIs and OFIs are generated
relatively to a reference frame, which in this case is the very first frame of each video sequence.
Concerning MHIs, the temporal extent parameter τ (see Equation (1)) was set to the length of the
sequence of images (25× 4.5 ∼= 113 frames for the BVDB and 30× 4.5 = 135 frames for the SEDB).
Furthermore, the threshold parameter ξ (see Equation (2)) was set to 1 to capture any single motion
from two consecutive frames (in this case, the fluctuation of pixel intensities between the reference
frame and the tth frame). Finally, to reduce the computational requirements, the number of samples
in each sequence is reduced by sequentially selecting each second frame of an entire sequence for
the BVDB (resulting in sequences with a total length of 57 frames), and each third frame of an entire
sequence for the SEDB (resulting in sequences of length 45 frames). The dimensionality of the tensor
input specific to the BVDB is, respectively, (bs, 57, 100, 100, 3) for OFI sequences and (bs, 57, 100, 100, 1)
for MHI sequences (bs representing the batch size). The dimensionality of the tensor input specific
to the SEDB is, respectively, (bs, 45, 100, 100, 3) for OFI sequences and (bs, 45, 100, 100, 1) for MHI
sequences.

T1

T4

T2

T3

T0

2 s 4 s 8− 12 s 2 s 4 s

4.5 s

4.5 s

Figure 5. Video Signal Segmentation (BioVid Heat Pain Database (Part A)). Experiments are carried
out on windows of length 4.5 s with a temporal shift of 4 s from the elicitations’ onsets.

4.3. Experimental Settings

The evaluation performed in the current work consists of the discrimination between high and
low stimuli levels. Therefore, two binary classification tasks are performed for each database: T0vs.T4

and T1vs.T4 for the BVDB, and T0vs.T3 and T1vs.T3 for the SEDB. Furthermore, the assessment of
the proposed approach is conducted by applying a Leave-One-Subject-Out (LOSO) cross-validation
evaluation, which means that a total of 87 experiments were conducted for the BVDB (40 experiments
for the SEDB), during which the data specific to each participant is used once to evaluate the
performance of the classification architecture optimised on the data specific to the remaining
86 participants (the data specific to 39 participants is used to optimise the architecture for the SEDB, and
the data specific to the remaining participant is used to evaluate the performance of the architecture).

The feature embedding CNN used for the evaluation is adapted from the one proposed by the
Visual Geometry Group of the University of Oxford VGG16 [67]. The depth of the CNN model is
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substantially reduced to a total of 10 convolutional layers (instead of 13 as in the VGG16 model), and
the number of convolutional filters is gradually increased from one convolutional block to the next
starting from 8 filters until a maximum of 64 filters. The activation function in each convolutional
layer consists of the elu activation function (instead of the rectified linear unit (relu) activation function
as in the VGG16 model). Max-pooling and Batch Normalisation [68] are performed after each
convolutional block. A detailed description of the feature embedding CNN architecture can be seen
in Table 1. The coupled BiLSTM layer consists of two LSTM RNNs with 64 units each. The resulting
sequence of spatio-temporal features is further fed into the attention layer in order to generate a single
aggregated representation of the input sequence. The classification is further performed based on this
representation and the architecture of the classification model is described in Table 2. The exact same
architecture is used for the two input sequences (MHIs and OFIs). The outputs of the classifiers are
further aggregated based on both Equation (8) and Equation (9). The whole architecture is subsequently
trained in an end-to-end manner, using the Adaptive Moment Estimation (Adam) [69] optimisation
algorithm with a fixed learning rate set empirically to 10−5. The categorical cross entropy loss function
is used for each network (Lmhi = Lo f i = Lagg = L), and is defined as follows,

L = −
c

∑
j=1

yjlog(ŷj) (21)

where ŷj represents the classifier’s output, yj is the ground-truth label value and c ∈ N is the number
of classes for a specific classification task.

Table 1. Feature embedding CNN architecture.

Layer No. Filters

2× Conv2D 8

MaxPooling2D −

Batch Normalisation −

2× Conv2D 16

MaxPooling2D −

Batch Normalisation −

3× Conv2D 32

MaxPooling2D −

Batch Normalisation −

3× Conv2D 64

MaxPooling2D −

Batch Normalisation −

Flatten −
The size of the kernels is identical for all convolutional layers and is set to 3× 3, with the convolutional stride
set to 1× 1. Max-pooling is performed after each block of convolutional layers over a 2× 2 window, with
a 2× 2 stride.

The regularisation parameters of the loss function in Equation (10) are set as follows: λmhi =

λo f i = 0.2 and λagg = 0.6. The value of the regularisation parameter specific to the aggregation layer’s
loss is set higher than the others in order to enable the architecture to compute robust aggregation
weights. The whole architecture is trained for a total of 20 epoches with the batch size set to 40 for the
BVDB and 60 for the SEDB. The implementation and evaluation of the whole architecture is done with
the Python libraries Keras [70], Tensorflow [71] and Scikit-learn [72].
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Table 2. Classifier Architecture.

Layer No. Units

Dropout −

Fully Connected 64

Dropout −

Fully Connected c

The dropout rate is empirically set to 0.25. The first fully connected layer uses the elu activation function,
while the last fully connected layer consists of a softmax layer (whereby c depicts the number of classes of the
classification task).

4.4. Results

The performance of the classification architectures specific to each input channel (MHIs and
OFIs), as well as the performance of the weighted score aggregation approach are depicted in Figure 6.
The performance metric in this case is the accuracy, which is defined as

Accuracy =
tp + tn

tp + f p + tn + f n
(22)

where tp refers to true positives, tn refers to true negatives, f p refers to false positives and f n
refers to false negatives (since we are dealing with a binary classification task with two balanced
datasets). For both datasets and both classification tasks, the aggregation approach significantly
outperforms the classification architecture based uniquely on MHIs. Furthermore, the classification
architecture based uniquely on OFIs outperforms the one based on MHIs for both databases and both
classification tasks, with significant performance improvement in the case of the BVDB. The aggregation
approach also performs slightly better than the architecture based uniquely on OFIs for both databases,
although not significantly in most cases. The only significant performance improvement is achieved
for the classification task T1 vs. T4 for the SEDB. However, the performance of both channel specific
architectures and the performance of the score aggregation approach are significantly higher than
chance level (which is 50% in the case of binary classification tasks) pointing at the relevance of the
designed approach. Furthermore, the performance of the classification architecture is improved by
using both channels and performing a weighted aggregation of the scores of both channel specific
deep attention models.
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(a) BioVid Heat Pain Database (Part A).
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Figure 6. Classification performance (Accuracy). An asterisk (*) indicates a significant performance
improvement. The test has been conducted using a Wilcoxon signed rank test with a significance level
of 5%. Within each boxplot, the mean and the median classification accuracy are depicted respectively
with a dot and a horizontal line.
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Moreover, to provide more insights into the self attention mechanism, the frame attention weight
values computed at each evaluation step during the LOSO cross-validation evaluation process are
depicted in Figure 7 for the BVDB and in Figure 8 for the SEDB (uniquely for the classification task T0 vs.
T4, as the results for the classification task T1 vs. T4 are similar). The distribution of the weight values
specific to the MHI deep attention models for both databases (Figure 7a,c for the BVDB, Figure 8a,c
for the SEDB) is skewed left. It depicts a steady growth of weight values along the temporal axis of
each sequence, with the MHIs located at the end of a sequence weighted significantly higher as the
others. This is in accordance with the sequential extraction process of MHIs, as each extracted image
contains more motion information as the previous one, with the last images accumulating almost the
totality of motion information of an entire sequence. Therefore, concerning the actual classification
task, the last MHIs are more interesting and relevant than the early images. Thus, such images should
be weighted accordingly higher. The designed network is therefore capable of conducting this specific
task by using self attention mechanisms.
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(b) Optical Flow Images.
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Figure 7. BioVid Heat Pain Database (Part A): Attention network weight values for the classification
task T0vs.T4. Within each boxplot in (a,b), the mean and the median weight values are depicted,
respectively, with a dot and a horizontal line. In (c), the average weight values are normalised between
the maximum average value and the minimum average value to allow a better visualisation of the
values distributions.

A similar observation can be made concerning the distribution of the weight values of OFIs (see
Figure 7b,c for the BVDB, Figure 8b,c for the SEDB). Both depicted distributions are also skewed
left, with gradually increasing weight values relative to the temporal axis. This shows that the
recorded pain-related facial expressions for both BVDB and SEDB consist of gradually evolving facial
movements, starting from a neutral facial depiction (not relevant for the actual classification task) to
the apex of the facial movement (which is the most relevant frame for the depicted facial emotion)
before gradually turning back to the neutral facial depiction. Therefore, the network assigns weight
values according to this specific characterisation of pain-related facial movements using attention
mechanisms, thus the relevance of such approaches for facial expression analysis.

Furthermore, the performance of the weighted score aggregation approach is further assessed
based on the following additional performance metrics,

Macro Precision =
1
c

c

∑
i=1

tpi
tpi + f pi

(23)

Macro Recall =
1
c

c

∑
i=1

tpi
tpi + f ni

(24)

Macro F1 Score =
2×Macro Precision×Macro Recall

Macro Precision + Macro Recall
(25)
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where tpi, f pi and f ni refer, respectively, to the true positives, false positives and false negatives of the
ith class. The results of the evaluation are depicted in Figure 9, for both the BVDB (see Figure 9a) and
the SEDB (see Figure 9b).
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(a) Motion History Images.
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(b) Optical Flow Images.
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Figure 8. SenseEmotion Database: Attention network weight values for the classification task T0vs.T3.
Within each boxplot in (a,b), the mean and the median weight values are depicted respectively with
a dot and a horizontal line. In (c), the average weight values are normalised between the maximum
average value and the minimum average value to allow a better visualisation of the values distributions.
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Figure 9. Weighted score aggregation classification performance. Within each box plot, the mean
and median values of the respective performance evaluation metrics are depicted with a dot and
a horizontal line, respectively.

These results depict a huge variance amongst all performance metrics, in particular the
Macro Recall, which points at the fact that the classification tasks remain difficult. The evaluation
on some participants yields a Macro F1 Score of null or nearly null, pointing at the fact that the
architecture is unable to discriminate between low and high levels of pain elicitation for these specific
participants. This is, however, similar and in accordance with previous works on these specific datasets.
The authors of the BVDB in [73] were able to identify a set of participants who did not react to the
levels of pain elicitation, therefore causing the huge variance in the classification experiments.

Finally, the performance of the weighted score aggregation approach is compared to other
pain-related facial expressions classification approaches proposed in the literature. For the sake
of fairness, we compare the results of the proposed approach with those results in related works which
are based on the exact same dataset and were computed based on the exact same evaluation protocol
(LOSO). The results are depicted in Table 3 for the BVDB and in Table 4 for the SEDB.
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Table 3. Classification performance comparison to early works on the BioVid Heat Pain Database (Part
A) in a LOSO cross-validation setting for the classification task T0vs.T4.

Approach Description Performance

Yang et al. [27] BSIF 65.17

Kächele et al. [31,62] Geometric Features 65.55± 14.83

Werner et al. [8] Standardised Facial Action Descriptors 72.40

Our Approach Motion History Images 65.17± 15.49

Our Approach Optical Flow Images 69.11± 14.73

Our Approach Weighted Score Aggregation 69.25± 17.31

The performance metric consists of the average accuracy (in %) over the LOSO cross-validation evaluation.
The best performing approach is depicted in bold and the second best approach is underlined.

Table 4. Classification performance comparison to early works on the SenseEmotion Database in
a LOSO cross-validation setting for the classification task T0vs.T3.

Approach Description Performance

Kalischek et al. [38] Transfer Learning 60.10± 00.06

Thiam et al. [15] Standardised Geometric Features 66.22± 14.48

Our Approach Motion Histogram Images 60.86± 09.81

Our Approach Optical Flow Images 62.70± 09.24

Our Approach Weighted Score Aggregation 64.35± 10.40

The performance metric consists of the average accuracy (in %) over the LOSO cross-validation evaluation.
The best performing approach is depicted in bold and the second best approach is underlined.

In both cases, the performance of the weighted score aggregation approach is on par with the
best performing approaches. However, it has to be mentioned that the authors of the best performing
approaches for both the BVDB [8] and the SEDB [15] perform a subject-specific normalisation of the
extracted feature representations in order to compensate for the differences in expressiveness amongst
the participants. Although this specific preprocessing step has proven to significantly improve the
classification performance of the architecture [61], it is not realistic as it requires that the whole
testing set is already available beforehand. The normalisation parameters should be learned on the
available training material and subsequently applied to the testing material during the inference phase.
Nevertheless, the proposed approach based on the weighted aggregation of the scores of both MHI-
and OFI-specific deep attention models generalises well and is capable of achieving state-of-the-art
classification performances.

5. Conclusions

In the current work, an approach based on a weighted aggregation of the scores of two deep
attention networks based, respectively, on MHIs and OFIs has been proposed and evaluated for the
analysis of pain-related facial expressions. The assessment performed on both BVDB and SEDB shows
that the proposed approach is capable of achieving state-of-the-art classification performances and is
on par with the best performing approaches proposed in the literature. Moreover, the visualisation of
the weight values stemming from the implemented attention mechanism shows that the network is
capable of identifying relevant frames in relation with the current level of pain elicitation depicted
by a sequence of images, by assigning significantly higher values to the most relevant images in
comparison to the weight values of irrelevant images. Furthermore, as the proposed architecture was
trained from scratch in an end-to-end manner, it is believed that transfer learning, in particular, for the
feature embedding CNN used to generate the feature representation of each frame, could potentially
improve the performance of the whole architecture. Such an analysis was not conducted in the current
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work, as the optimisation of the presented approach was not the goal of the conducted experiments,
but rather the assessment of such an architecture for the analysis of pain-related facial expressions.
Moreover, a multi-stage training strategy could also potentially improve the overall performance of
the architecture, as the end-to-end trained approach is likely to suffer from overfitting, in particular,
when considering the coupled aggregation layer. The representation of the input sequences should be
further investigated as well. Both MHIs and OFIs have the temporal aspect of the sequences integrated
into their properties. The performed evaluation has shown that a model based on OFIs significantly
outperforms the one based on MHIs in most cases. However, it has also been shown that most of
the interesting frames in MHI sequences are located at the very end of the temporal axis of each
sequence. Therefore, single MHIs extracted from entire sequences could also be used as input for deep
architectures. Overall, the performed experiments show that the discrimination between lower and
higher pain elicitation levels remains a difficult endeavour. This is due to the variety of expressiveness
amongst the participants. However, personalisation and transfer learning strategies could potentially
help improve the performance of inference models applied in this specific area of research.
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