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Abstract: The benefits of using Networked Control Systems (NCS) in the growing Industry 4.0 are
numerous, including better management and operational capabilities, as well as costs reduction.
However, despite these benefits, the use of NCSs can also expose physical plants to new threats
originated in the cyber domain—such as data injection attacks in NCS links through which sensors
and controllers transmit signals. In this sense, this work proposes a link monitoring strategy to
identify linear time-invariant (LTI) functions executed during controlled data injection attacks
by a Man-in-the-Middle hosted in an NCS link. The countermeasure is based on a bioinspired
metaheuristic, called Backtracking Search Optimization Algorithm (BSA), and uses white Gaussian
noise to excite the attack function. To increase the accuracy of this countermeasure, it is proposed
the Noise Impulse Integration (INII) technique, which is developed using the radar pulse integration
technique as inspiration. The results demonstrate that the proposed countermeasure is able to
accurately identify LTI attack functions, here executed to impair measurements transmitted by
the plant sensor, without interfering with the NCS behavior when the system is in its normal
operation. Moreover, the results indicate that the NII technique can increase the accuracy of the attack
identification.

Keywords: security; industrial control system; networked control system; data injection attack;
countermeasure; system identification

1. Introduction

The concept of the fourth industrial revolution—Industry 4.0 [1,2]—arises with the development
and use of cyber-physical systems, which promote the computerization of manufacturing and
integrate communication networks to physical processes. In this scenario, Networked Control Systems
(NCS)—i.e., controllers and sensors/actuators of physical plants connected through communication
networks [3—7]—are widely used to obtain better management and operational capabilities, as well as
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cost reductions [8]. In an NCS, as shown in Figure 1, a controller—i.e., a computer system—executes
a control function C(z) to properly drive the behavior of a physical plant, herein described by a
discrete-time transfer function P(z). The control signal produced by the controller is transmitted to the
plant actuators through a forward stream. The signals measured by the plant sensors, in turn, are sent
to the controller through a feedback stream.

Controller

forward stream

"""""" >  Plant
k) +~e(k) Cont.rol u(k) g Physical Z
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Figure 1. Networked Control Systems (NCS) [8].

The possible applications for NCSs are broad and can range from non-critical industrial plants
controlled by wireless networked control systems (WNCS) [9], to critical infrastructures controlled
by wired NCSs, such as nuclear reactors [6,10,11] and water canal systems [12]. However, despite
the several benefits provided by NCSs, the use of communication networks to integrate controllers
and physical plants can also expose these systems to cyber threats [8,12-16]. Indeed, the literature [7]
reports the execution of real cyber-attacks against physical plants since 1982, affecting a wide variety of
targets, such as a diesel generator, a gas pipeline, and a steel plant. Among these known cases, the most
emblematic example of attack in a cyber-physical system is the Stuxnet worm [14], whose targets were
uranium enrichment centrifuges in Iran [17]. To achieve its aim, Stuxnet installed a modified control
algorithm into the controller (a programmable logic controller—PLC) in order to cause subtle and
harmful behaviors to the centrifuges, reducing their efficiency and causing damage [14,17,18].

Please note that one possible way to attack an NCS, for example, is by hacking its software
(i.e., changing the configuration or even the code executed by the controller), following a strategy
similar to that used by the Stuxnet worm [14]. Another possible way for an attacker to negatively
affect an NCS is by interfering on its communication process between controllers, sensors and
actuators. Basically, an attacker may interfere in the forward and/or feedback streams by three
different means: inducing jitter, causing data loss due to packet drop outs, or even injecting false data
in the communication process due to failure or absence of security mechanisms in the NCS.

In fact, although some new industrial communication protocols were developed including security
features [9,19,20], there are protocols in industry that still lack security mechanisms [21]—such as
the Profinet, MODBUS/TCP, and Ethernet/IP. The main issue of these industrial protocols is the
lack of encryption and authentication [21] between devices (e.g., controllers, actuators, and sensors)
used in automation and control systems. A vast collection of scientific literature about cybersecurity
in Industrial Control Systems (ICS) is available, reporting security breaches in all major Real-Time
Ethernet (RTE) protocols used in industry [21-28]. Therefore, considering the feasibility of occurring
cyber-attacks against physical systems, as demonstrated by the real cases already reported in the
literature [7,14,17], studies have been conducted aiming to characterize vulnerabilities and promote
security solutions for NCSs [8,12,13,15,16,29].

In [12,15], it is proposed a covert misappropriation attack, where a malicious agent uses the
knowledge about the plant model to inject false data in the NCS. The author assumes that the attacker
knows the plant model, but does not describe how the model is obtained. More recent works [8,13]
demonstrate that Service Degradation (SD)-Controlled Data Injection attacks can be accurately built
based on the NCS models previously learned through system identification attacks [8,13]. The harmful
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effects that SD-Controlled Data Injection attacks can produce on physical plants motivate the research
on mechanisms able to prevent them, as well as to detect/identify them when they occur.

It is possible to verify in the literature [7,8,12,13,15,16,21,22,26,29-36] that in cyber-physical
systems (which includes NCSs), a relevant portion of the attack surface often lies in the communication
process between sensors/actuators and controllers. For this reason, in the ICS cybersecurity landscape,
significant attention has been given to the study of cyber-attacks to sensor/actuator systems [7].
Indeed, the high accuracy desired for sensors, for instance, may be useless if the integrity of sensor
data is compromised by some kind of malicious manipulation in its communication process. Not
by chance, still taking the scope of sensors as an example, data integrity is arising as a property
as important as other typical sensor properties—e.g., accuracy, sensitivity, linearity, resolution,
repeatability, etc. [32,34-40].

Aiming to improve the cybersecurity of NCSs, the authors of [29] discuss countermeasures
that can be used to mitigate data injection attacks executed within the communication between
sensors/actuators and controllers. These countermeasures can be systematically thought in a layered
defense strategy [29] to avoid access to the control loop and data. Non-authorized access to the
NCS control loop can be obtained, for instance, by using network segmentation, demilitarized zones
(DMZ), firewall policies and implementing specific network architectures, such as described in [31].
Additionally, non-authorized access to data transmitted by controllers and sensors can be obtained
by using security mechanisms for data confidentiality, integrity and authenticity. Such a solution
is presented in [32], where the authors propose a countermeasure that integrates a symmetric-key
encryption algorithm, a hash algorithm and a timestamp strategy to form a secure transmission
mechanism between the controller side and sensors/actuators located in the plant side. However, it
is noteworthy that even when NCS uses secure communication protocols and network architectures,
existing security mechanisms can still be overcome. The security of the communication between
sensors, controllers and actuators may be compromised, for instance, if an attacker succeed in obtaining
security keys or passwords (used for encryption and authentication) through social engineering
attacks [41]. In this case, as shown in [8,13], an attacker can have the conditions required to implement
an SD-Controlled Data Injection attack. Therefore, it is important to develop countermeasures able to
detect and identify SD-Controlled Data Injection attacks in NCSs.

In this sense, this work proposes a link monitoring strategy to identify linear time-invariant
(LTI) transfer functions performed by a Man-in-the-Middle (MitM) during an SD-Controlled Data
Injection attack [8]. The proposed countermeasure uses white gaussian noise to excite possible attack
functions in the NCS, to obtain the information necessary to identify the attack. Moreover, to increase
the accuracy of the attack function identification using white gaussian noise, this work also proposes
a Noise Impulse Integration (NII) technique, which is developed inspired by the pulse integration
process of radar systems [42]. From the NCS owner perspective, the knowledge about the attack
function may be useful, for instance, to:

e provide information for an autonomous process intended to redesign the NCS control function,
to mitigate the attack effects in the plant behavior;

e reveal the attacker intentions, for forensic purposes, helping to estimate the possible impacts of
the attack on the plant and its services.

Previous works [37-39] report the use of Independent and Identically Distributed (IID) noise
sequence as watermark to detect data injection attacks (integrity attacks) in NCSs. More specifically,
the solutions proposed in [37-39] provide a physical authentication scheme to detect replay attacks
in sensors” measurements when the NCS is in steady state. In [38,39], the core idea of the detection
scheme is to add an IID noise to the control signal applied to the plant and, thus, obtain a physical
watermark within the plant output signal—transmitted by sensors—in a system equipped with a x?
failure detector. In [37], to detect counterfeit sensor signals, the authors investigate the problem of
designing the optimal watermark signal in the class of stationary Gaussian processes. Their results
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generalize the solution proposed in [38,39] where only IID Gaussian processes are considered in the
design of watermarked control inputs. Also, the authors propose a watermark design method that
bounds the control performance loss incurred by the watermark signal—note that although the cost
to control performance is bounded, it is not completely eliminated. As mentioned by the authors,
this drawback occurs in all solutions presented in [37-39]. The presence of the extra watermark signal in
the control signal causes the control performance to not be optimal—i.e., to allow the attack detection,
the control performance is sacrificed. In [40], the authors propose a multiplicative watermarking
scheme to detect and isolate replay attacks on sensors measurements without interfering in the control
performance. Unlike [37-39], to avoid detrimental effects on the closed loop performance, each sensor
output is separately watermarked while an equalization filter is incorporated at the controller’s side to
reconstruct the original plant outputs.

In the present work, differently from [37-39], the proposed solution is designed not to sacrifice
the system performance when it is in normal operation. Here, the white gaussian noise added in the
transmitting device (e.g., a sensor) is cancelled in the receiving device (e.g., a controller), in a strategy
analogous to the multiplicative watermarking scheme used in [40]. Moreover, while the watermarking
schemes proposed in [37-40] aim to detect data injection attacks (specifically, replay attacks) in sensors
measurements, they do not intend to identify possible LTI attack functions within the communication
between sensors/actuators and controllers. In the present work, differently from [37-40], the proposed
solution is intended to detect and identify (i.e., estimate the parameters of) LTI attack functions
executed during data injection attacks in NCSs—precisely the class of SD-Controlled Data Injection
attacks discussed in [8,13]. The identification of SD-Controlled Data Loss attacks using switching LTI
attack functions is not considered in this paper.

It is worth mentioning that the proposed countermeasure is not intended to prevent the
implementation of an SD-Controlled Data Injection attack, but to detect and identify it once it occurs,
in order to obtain knowledge about the attack function. As in other works addressing the detection of
data integrity attacks in NCS [37-39], the countermeasure herein proposed is designed to identify the
attack when the plant is operating in steady-state condition — which is still a relevant system condition
to be considered in cybersecurity of NCSs [37-39]. Please note that SD attacks, by definition [8], are not
intended to cause immediate system failure. They are intended to degrade the efficiency of the physical
process or to reduce the mean time between failure of the plant, remaining active in the system for
mid/long term. Thus, the knowledge about the attack function obtained during steady operating
conditions is useful to build reactive countermeasures that make the attack cease (or mitigate it) once it
has started—even if the beginning of the attack was during a transient response and its identification
occurs during the subsequent steady condition.

The reminder of this work is organized as follows: Section 2 briefly presents the concepts of the
SD-Controlled Data Injection attack [8]. Section 3 describes the proposed countermeasure—a link
monitoring mechanism—including the NII technique herein introduced to increase the accuracy of the
attack identification. Section 4 shows simulation results that evaluate the performance of the proposed
countermeasure when identifying an SD-Controlled Data Injection attack in the communication
between a sensor and a controller. It also evaluates the ability of the NII technique in increasing the
accuracy of the identification process. Finally, Section 5 brings the conclusions of this work.

2. SD-Controlled Data Injection Attack

For the sake of completeness, this section briefly describes the SD-Controlled Data Injection attack
characterized in [8]. The attack purpose is to reduce the mean time between failure (MTBF) of the plant
and/or reduce the efficiency of the physical process that the plant performs, by inserting false data in
the NCS communication links.

In the SD-Controlled Data Injection attack, to cause a harmful behavior on the plant (e.g., an
overshoot or a steady-state error), the attacker interfere in the NCS’s links by injecting false data into
the system in a controlled way. To do so, the attacker act as a MitM that executes an LTI attack function
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M(z) between the sensor and the controller, as presented in Figure 2, wherein Y'(z) = M(z2)Y(z),
Y'(z) = Z[y'(k)], Y(z) = Z[y(k)], and Z represents de Z-transform operation. The function M(z)
is designed based on the models of the plant and the controller, both obtained through a System
Identification attack [8,13]. Therefore, according to [8], the SD-Controlled Data Injection attack is
implemented in two subsequent stages:

STAGE-I: The system identification stage [8,13] is executed to provide the attacker an accurate
knowledge about the models of the targeted system, i.e., the plant’s transfer function P(z)
and the controller’s control function C(z). This knowledge is obtained either through
a Passive System Identification process [8] or through an Active System Identification
process [13].

STAGE-II: The Data Injection stage is performed. The attacker, as an MitM, injects false data in the
NCS control loop. To accurately change the plant physical behavior, the injected false
data is computed according to M(z) which, in turn, is designed based on the knowledge
obtained by the attacker during STAGE-IL.

Controller Jorward stream, ~ Plant
(k) +~e(k Cont.rol u(k) w'(k) é Physical z
— function 5| process 2
P Z
) Network (z)

MitM
y'(k) y(k)

\% feedback stream

Figure 2. SD-controlled data injection attack.

3. Identification of Controlled Data Injection Attacks

This section proposes a countermeasure—a link monitoring strategy—to identify the LTI transfer
function performed by a MitM during an SD-Controlled Data Injection attack (described in Section 2).
Section 3.1 describes the proposed link monitoring strategy, which uses white gaussian noise
to excite the attack function and obtain the information necessary for the identification process.
The countermeasure is designed to do not affect the plant behavior in normal operating conditions
(i.e., without attack). To estimate parameters of the LTI attack function, the identification process uses a
bioinspired metaheuristic called Backtracking Search Optimization Algorithm (BSA) [43]. Additionally,
to increase the accuracy of the attack identification using white gaussian noise, this work proposes a
Noise Impulse Integration (NII) technique, which is presented in Section 3.2.

3.1. Strategy to Identify the Attack

This section describes a link monitoring strategy to identify the LTI attack functions used by a
MitM during the SD-Controlled Data Injection attack defined in Section 2. Consider, for instance,
the SD-Controlled Data Injection attack shown in Figure 3, where the attacker only has access to the
measurements transmitted by the sensor to the controller through the feedback stream.

To identify the attack function, M(z) must be excited by an input signal to produce meaningful
information for the identification process. If the system is in steady operating conditions, for instance,
the information content of measured signals is often insufficient for identification purposes [44].
Considering this, one possible strategy to identify an attack function is to use typical variations in the
NCS signals—such as a variation caused by a change in the setpoint r(k)—to estimate M(z). However,
depending on the system, these variations may not occur often, which can make the identification of
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M(z) time consuming. Furthermore, causing arbitrary variations in such signals to identify M(z) may
not be convenient as it may affect the behavior of the plant.

Controller Jorward stream, Plant
——— —_————
| . .
r(k) +~e(k)| Control u(k) /(>\u ()| £| Physical | ¢
function 1 g| process Z |
Network | 2 @« | Network
¢ MitM :_ Interface P(z) Interface |

YOIy (k)
T M

\‘\(ZJ)\_/J éeedback stream
Attack
Identificatin

w(k)

M,(z)

Figure 3. Identification of an SD-Controlled data injection attack [45].

The architecture shown in Figure 3 is proposed as a solution that can be used to excite
M(z) at any time, without affecting the plant behavior when the system is working in normal
conditions—i.e., without attack. To do so, as shown in Figure 3, a white gaussian noise w(k) is
injected (added) in the signal to be transmitted through the monitored link. To avoid interfering in the
controlled plant when the system in not under attack, the same noise signal w(k) is subtracted from
the monitored NCS signal at the other end of the link. In Figure 3, where the feedback link is the one
being monitored, w(k) is injected at the sensor’s network interface, and subtracted at the controller
input. In this system, the NCS output Y (z) = Z[y(k)] is defined as (1):

_ C@PE)
1+ C(z)P(z)M(z)

Y(z) [R(z) +W(z) (1 - M(2))], @
wherein R(z) = Z[r(k)] and W(z) = Z[w(k)]. Please note that if w(k) is exactly the same signal at
both ends of the monitored link and the system is not under attack (i.e., M(z) = 1), then the injection
of w(k) is cancelled and does not influence y (k). In this case, based on (1), the plant output Y(z) is
defined as (2):

C(z)P(2)

(z) = T+ CE)PE) (2). ()

The white gaussian noise w(k) is chosen to excite the attack function due to its unpredictability,
which makes it harder for an attacker to estimate the noise that will be added to the link at any
given moment. The white gaussian noise w(k) is obtained from a normal distribution, such that
w(k) ~ N(p,0), wherein u = 0 is the mean and ¢ is the standard deviation. To have the same noise
signal w(k) at both ends of the monitored link, it is considered that these two sources of noise are
synchronized and both signals are produced based on the same seed. Moreover, to avoid an attacker
to predict the noise values, the seed is exchanged among both devices—i.e., the transmitter and
receiver—using a secure key exchange method, such as the Diffie-Hellman algorithm [46].
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Now, if the system is under attack (i.e., M(z) # 1), then, according to (1), the noise is not cancelled.
In this case, the signal observed at the controller input i’ (k) is given by (3):

V00 =i+ 27 [e) (ST ) +
v (k)

r(k)« 271 {

®)

C(z)P(z)M(z) }
14+ C(z)P(z)M(z) |

vy (k)

In the present countermeasure, the identification of M(z) is performed by observing the variations
produced by w(k) in y” (k) when M(z) # 1. Note, in Figure 3, that both w(k) and y” (k) are provided
to the Attack Identification process. The effect of w(k) in y” (k) is specifically indicated in (3) as y{ (k).
To have the identification relying on y{ (k), and independent from variations in v} (k), it is executed
when the system is in steady state with regard to (k). In other words, the identification occurs when
4 (k)—driven by the setpoint r(k)—converges to a constant value p. In this case, considering the
time window defined by k; < k < k, in which yJ (k) is in its steady state, (3) can be rewritten as
(4)—without initial conditions:

" _ 1+ C(2)P(z)
y' (k) = wk) 271 [M(z) (1+C(Z)P(Z)M(z)>} +\\p//, Vks < k < ky, W

1 k
) vy (k)

wherein p can be estimated by computing the average i of y” (k) during a certain amount of samples
T < (ky — ks) starting at ks, as indicated in (5):

. -1 1+C(z)P(z) .
S AN wik)+ 27 | M) (et )| L5Te
ks T ks T ks T (5)
——
71 (k) 73 (k)

Considering that w(k) ~ N(u,0), wherein y = 0 as previously stated, then 7/ (k) — 0 when
T — oco. In this case, for a sufficiently large 7, (5) can be simplified to (6):

7" =p, 6)
Thus, by applying (6) in (4), we may define (7):
vl (k) =y" (k) -7, Vs < k < ky, 7)

wherein y/ (k)—obtained through measurements of y” (k)—is the output of the model defined by (8)
when the noise w(k) is applied to its input:

®)

Y (K) = w(k) x 271 [M(Z) <1 jg(zc)(zfgf)(zl\/l)(Z)ﬂ '

Based on (8), if C(z) and P(z) are known, the Attack Identification process can estimate M(z) by
applying w(k) in an estimated system, defined by (9):

©)

77 (k) = w(k) * z1 {Me(z) <1 _._1C+(z(§§32()zl;](\2(z) )] '
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wherein M,(z) is the estimation of M(z) and 77 (k) is the output of the estimated system in face of

M, (z). By comparing §{ (k) with y{ (k), the Attack Identification process can evaluate whether M,(z)
is equal/approximately M(z). Please note that M,(z) is a generic LTI attack function represented
by (10):

a2 4wz +ag
2 Bz izt By

wherein 1 and m are the order of the numerator and denominator, respectively, while [ay,, a1, .1, 0]
and [By—1, Bm—2, ---B1, Po] are the coefficients of the numerator and denominator, respectively, that are
intended to be found by Attack Identification algorithm. Therefore, to find M(z), the coefficients of
M, (z) are adjusted until the estimated output 77
of y’ (k) in the real NCS.

In this work, the Backtracking Search Optimization algorithm (BSA) [43], is used to iteratively
adjust the coefficients of M,(z), by minimizing a specific fitness function until M, (z) converges to the
actual M(z). To compute the fitness of the BSA individuals, the noise w(k)—recorded while y” (k) was
being captured—is applied on the estimated system defined by (9) and (10), where the coefficients
of M,(z) are the coordinates x; = [, j, & _1,j, --&1,j, ®0,j, Bu—1,j Bm—2,j,B1,j, Bo,j] of an individual j of
the BSA. Let y”l’](k) be the output of the estimated model (9) (10) in face of w(k), when the coefficients
of Me(z) are x;. Then, the fitness f; of each individual j is obtained by comparing 7 (k) with 7 (k),
according to (11):

Me,(z) (10)

(k) converges to y{ (k)—obtained from measurements

N
T (30— 95 (4))2
= , )

wherein N is the number of samples that exist during a monitoring period T of y{ (k). Please note
that min f; occurs when [a,, j, & 1j, &1, €0j, Bm—1,j Bu—2,j, - B1j, Bojl — [&n, &n—1, 21, &0, Bu—1,
Bm—2,--.B1, Bol, i.e., when the estimated M,(z) converges to M(z).

The attack identification process described in this section, without the use of the Noise

Impulse Integration technique (to be described in Section 3.2), is summarized in Algorithm 1.

Algorithm 1: Attack Identification without the NII technique.

begin
if y" (k) is in steady state regarding r(k) then

Record w(k) and y” (k) during T seconds;

Compute 7’ according to (5);

Compute y{ (k) according to (7);

Execute BSA, using w(k) and y (k) to find M,(z) based on (9), (10) and (11).
end if

end

3.2. Integrating Impulses of Noise

This section presents the Noise Impulse Integration (NII) technique, which is added to the attack
identification process described in Section 3.1 to improve its accuracy. This technique is inspired by
the Pulse Integration process [42], used in pulse radar systems to improve the probability of detection
and reduce the probability of false alarms in those systems. To allow a clear comprehension on the
inspiration obtained from the radar Pulse Integration technique, it is necessary to provide a brief
explanation on how a pulse radar system works and what is the main idea behind the pulse integration
process. Therefore, first, Section 3.2.1 provides an explanation on the radar pulse integration process.
Then, Section 3.2.2 introduces the NII technique.
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3.2.1. Radar Pulse Integration

In a pulse radar system, the radar transmits electromagnetic pulses to the environment to detect
and obtain information about targets. When a pulse reaches a reflective surface—of a target or other
objects in the environment—it is reflected producing an echo that travels back to the radar antenna,
allowing the target detection. To increase the probability of detection, the radar does not transmit
only one pulse during the detection process. Instead, as depicted in Figure 4, the radar transmits a
series of pulses, one at each pulse repetition interval Tr. Also, as shown in Figure 4, between two
consecutive transmissions there is a silence period Ty, in which the radar remains listening the echoes
that arrive from the monitored environment. These echoes may represent a target or another reflective
body situated within the line of sight of the radar antenna.

Ty

pulse transmissions

echoes
W 0¥ Np H

T,

1(s)

Figure 4. Pulse transmissions.

Please note that while the radar scans the environment by rotating its antenna, for each antenna
pointing angle 6, several pulses are transmitted in sequence as shown in Figure 5. Naturally, for each
pulse p transmitted from a given antenna pointing angle 6, there will be a listening period T 4
to receive echoes. It happens that in a real system, the signal received during each listening period
Ty (4,p) does not contain only target echoes. Typically, as represented in Figure 6, the received signal
also contains uncorrelated signal fluctuations (noise), whose amplitude follows a gaussian distribution
with zero mean [47,48].

Figure 5. Radar scan process, in which a sequence of pulses is transmitted for each antenna pointing angle.
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target echo

Signal amplitude

TL(dyp)

Figure 6. Noisy signal typically received during a given listening period Ty (g ,).

To increase signal-to-noise ratio (SNR), the radar Pulse Integration (RPI) technique combines the
signals received in multiple listening periods T} 4 ,) in a given 6, taking advantage of the mentioned
noise properties —i.e., uncorrelated fluctuations with gaussian distribution and zero mean. Basically,
all signals S, ,,) (t) received in a sequence of listening periods Tj ( ,) are integrated by computing their

mean according to (12):
h
L S(ap(t)

1 =" —, (12)

wherein I(t) is the integrated signal and } is the number of signals buffered in a sequence of listening
periods. A representation of this computation is shown in Figure 7, where the signals received in a
sequence of four listening periods (i.e., i = 4) are buffered and integrated according to (12). Please
note that the integrated signal has a better SNR when compared to the other signals. The uncorrelated
noise is minimized (almost cancelled) thanks to its gaussian distribution with zero mean. On the
other hand, the target echo (constantly present with non-zero mean amplitude) is reinforced. Ideally,
the noise of the integrated signal is completely cancelled when h — oc. In this case, I(t) would contain
only echoes.

—— Integrated signal
— Received signals

Signal amplitude

(1.1

Figure 7. Radar pulse integration.

3.2.2. Noise Impulse Integration Technique

The NII technique described in this section works similarly to the RPI process described in
Section 3.2.1. Basically, it integrates portions of noisy signals to cancel information that may disturb
the identification process, and extract the information that is useful to obtain accurate models. Despite
the inspiration obtained from the RPI, it is worth mentioning the following differences between both
techniques:

e  Goal: The goal of the RPI technique is to minimize the uncorrelated noise contained in signals
received by the radar, and reinforce the echoes reflected by bodies within the radar antenna’s line
of sight—i.e., produce a signal with grater SNR. The goal of the NII technique is to obtain a clear
impulse response function of an LTI system, when it is excited by a white gaussian noise;
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e Integrated signals: The RPI technique integrates signals received between consecutive pulse
transmissions, containing, in general, reflected pulses and noise. The NII technique integrates
portions of the signal produced by an LTI system when white gaussian noise is injected into it.

e  Selection of signals to be integrated: In the RPI technique, the selection of signals to be integrated
is straightforward. As explained in Section 3.2.1, it integrates signals received between the
transmission of consecutive radar pulses. This selection provides a synchronism between the
signals to be integrated, which, as shown in Figure 7, aligns the information that must be reinforced
by the RPI—i.e., reinforce echoes that are constantly present in the received signal. The RPI’s
signal selection cannot be used in the NII technique, given that the latter is not triggered by pulses.
Therefore, it is necessary to use other criteria to select the portions of signal to be integrated,
which is explained in the remainder of this section.

The white gaussian noise w(k), herein used to excite the LTI transfer function to be identified,
can be defined as a sum of time-shifted impulses with uncorrelated random weights (amplitudes) as
shown in (13):

w(k) = i w(i)d(k — i), (13)

in which the amplitudes w(i) ~ N(p,0), N is a normal distribution, y is its mean and ¢ is its non-zero
standard deviation. When a weighted time-shifted impulse w(i)d(k — i) of w(k) is individually applied
to a given LTI system H(z) = Z{h(k)}, it produces an output signal y;(k) defined by (14):

yi(k)

w(i)o(k — i)  h(k)
w(i)h(k —i).

Please note that y;(k) is the impulse response of h(k)—i.e., h(k) itself—weighted by the impulse’s
amplitude w(i) and time-shifted by i samples. However, when w(k) is applied to h(k), the output
signal is no more composed by a single weighted time-shifted impulse response function. In this
case, the discrete-time output y(k) produced when & (k) is excited by a white gaussian noise w(k) is
determined by the discrete convolution (15):

(14)

y(k) = w(k) * h(k). (15)

Considering (13), Equation (15) can be rewritten as (16) and (17):

y(k) = ‘7§: w(i)é(k —1) = h(k) (16)
—1 0o
y(k) = ‘72 w(i)o(k —1i) xh(k) + w(0)d(k) * h(k) + ;w(i)é(k —1i) % h(k). (17)

which means that the output y(k) is composed by a sum of randomly weighted time-shifted impulse
responses of h(k). Evidently, by observing (17), it is possible to verify that y(k) could result in a
weighted impulse response of h(k) if conditions (18) and (19) were met:

w(0) #0 (18)
w(i) =0, Vi#0, (19)

which would make it straightforward to reveal h(k) by measuring y(k). However, although
condition (18) is possible, condition (19) is not feasible, given that w(i) ~ N(u,0), and ¢ # 0,
as previously defined. Thus, the task of the NII technique is to overcome the constraint imposed by



Sensors 2020, 20, 792 12 of 25

condition (19). Its goal is to produce a signal derived from y(k) that can reveal h(k) in the same way as
if conditions (18) and (19) were met.

Inspired by the RPI, the NII technique consists of separating portions of y(k) that, when integrated,
reinforce selected impulse responses of h(k) and minimize (cancel) the interferences produced by
other weighted time-shifted impulse responses of /(k) contained in y(k). Therefore, let y;(k) be a
portion of signal extracted from y(k), wherein j is a reference number used to identify each y;(k). The
instances y;(k) are extracted from the output y (k) based on the amplitudes of the input signal w(k),
which is evaluated during a monitoring period staring in sample k; and ending in sample k. This said,
each y;(k) is obtained according Algorithm 2.

Algorithm 2: Generation of signals y; (k).

begin
fork = ks tok; do
if w(k) > Q) then
j—k
yj(k) = y(k+j).
end if
end for

end

According to Algorithm 2, each j is a value of k in which the input w(k) is grater or equal than
an amplitude threshold ). Please note that y;(k) is an instance of y(k) advanced (left-shifted) by j
samples. Thus, in the same way that y(k) is defined by (17), y;(k) can be written as (20):

[e9)

-1
yi(k) = ‘ Z wj(i)o(k — i) * h(k) + w;(0)d(k) * h(k) + ij(i)é(k — 1) x h(k) (20)

i=—o00 i=1

wherein cu]-(i), defined according to (21), are the advanced (left-shifted) amplitudes of the white
gaussian noise (13):
wj(i) = w(i+j). (21)

Considering that Algorithm 2 is intended to produce a collection of y;(k)—which is necessary
for the NII technique—Tlet ] be the set of all j, and |]| be the total number of elements j € J. Therefore,
analogously to the RPI process, the mean Y (k) of all y;(k) is computed according to (22):

]% yj(k)
Y0 =" (22)
Thus, considering (20), Equation (22) can be rewritten as (23):
b z‘—zloo otk = h 5 0200 5 ig w; ()6 (k — i) * h(k)
Y(k) = 7l + 7 + T 23
o Y2 Ya(h

Please note that w; (i) has the same probability distribution function of w(i) (i.e., w;(i) ~ N(u,0))
since, according to (21), wj(i) consists of the same amplitudes of w(i), but left-shifted. Thus,
considering that ¢ = 0, then Y;(k) — 0 and Y3(k) — 0 when |]| increases. It means that for a



Sensors 2020, 20, 792 13 of 25

given i # 0 the impulse responses produced by all w;(i)é(k — i) are canceled when the average of y;(k)
is computed among all j € J.

On the other hand, Y;(k) # 0 since that the mean of w;(0), among all j € ], is different from zero.
Please note that according to (21) w;(0) = w(j). From Algorithm 2, w(j) > Q which, according to (13),
means that w(j) > Q. Therefore, w;(0) > ), Vj. This reasoning demonstrates that the mean of all w;(0)
is greater than Q) and, therefore, Y2 (k) # 0. In this case, the responses produced by all w;(0)d(k) are
the impulses responses of (k) selected to be reinforced through the NII technique. This reinforcement
is analogous to what the RPI technique does with target echoes. This said, (23) can be simplified as (24):

Y(k) = (ZJ]-(O)(S(k) xh(k), (24)
wherein @;(0) is the mean of all w;(0), according to (25):

¥ w;(0)

w(0) ="

I ®)

An example of the computation performed by the NII technique is represented in Figures 8 and 9.
In this example, the transfer function H(z) (26):

73 — 2.5462% + 2.111z — 0.5646

H(z) = Z21h0)] = 5= 4892+ 21002 — 0.6113"

(26)

is excited by the white gaussian noise w(k) (13), with w(i) ~ N(0,0.005), thereby providing the output
y(k) = w(k) * h(k). The amplitude threshold Q of Algorithm 2, used to obtain all y;(k) from y(k),
is () = 0.01. Figure 8 shows all y;(k) aligned side by side to be integrated (similarly to the representation
shown in Figure 7 for the RPI process). This figure—when compared to Figure 7—depicts the analogy
between the NII and the RPI techniques, showing signals whose uncorrelated noise can be cancelled
through (22) in order to obtain the desired information—which here, in the NII technique, is the
weighted impulse response Y (k) of H(z).

200

075 samples (k)

Figure 8. Signals y;(k) aligned to be integrated.

Figure 9 shows the signal Y(k) produced by the computation of (22) using the set of signals
represented in Figure 8. The signal Y (k), highlighted in red, is the result of the integration of all y; (k)
which, according to (24), reveals the impulse response of the system as it was excited by the impulse
@;j(0)é(k). To graphically compare the magnitude of Y(k) with the noise magnitude, Figure 9 also
shows all y;(k) of overlapped in black—as a front view of Figure 8. Therefore, in Figure 9, Y (k) (in red)
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is the signal of interest, which is extracted from all noisy signals y;(k) (overlapped in black) when the
uncorrelated noise of all y;(k) is cancelled by computing (22).

003 | Al y, (k) T(k) |

0.02

0.01

Amplitude
o

50 100 150 200

samples (k)
Figure 9. The impulse response Y (k) (in red) produced by the NII technique after the integration of a
set of signals y;(k) (shown overlapped in black).

As previously discussed, the NII technique is herein used to complement the attack identification
strategy described in Section 3.1 to improve its accuracy. To do so, let us consider that:

e @j(0) and Y(k) are obtained through the NII technique, by processing signals w(k) and
y{ (k)—specified in Section 3.1 and indicated in Figure 3;
o (k) is the transfer function between w(k) and y/ (k) which, according to (8), is defined as (27):

o (2500

Doing so, (24) can be rewritten as (28):

_ _ 14+ C(z)P(z)
Y(k) = @j(0)5(k) x 2~ 2
() = @00k <27 M) (5 asmeas )] 29
which can now be used to estimate M(z) in the same way as in Section 3.1 for equation (8). Please note
that the differences between (8) and (28) are:

e theinput of (8) is a white gaussian noise and its output is a white gaussian noise filtered by h(k);

e the input of (28) is a weighted impulse signal and its output is a weighted impulse response
of h(k).

Now, given (28), the attack function M(z) can be estimated by an optimization algorithm (e.g.,
the BSA), such as described in Section 3.1. In this case, if C(z) and P(z) are known (which is feasible
for the NCS owner), M(z) can be estimated by applying @;(0)d(k) in an estimated system, defined
by (29):

Y(k) = @;(0)8(k) x 27! {Me(z) (1 ;&SS(LI;I(\Z(Z))} ' @)

wherein M, (z) is the estimation of M(z) and Y (k) is the output of the estimated system in face of M, (z).
Recall that M,(z) is the generic LTI attack function represented by (10) wherein [a, &, 1, ...a1, %] and
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[Bim—1, Bm—2,---B1, Bo] are the coefficients of the numerator and denominator, respectively, that are
intended to be found by Attack Identification algorithm. By comparing Y (k) with Y(k), the Attack
Identification process can evaluate whether M, (z) is equal to/approximately M(z).

In the same way as in Section 3.1, to discover M(z), the coefficients of M,(z) are adjusted by
the BSA until the estimated output Y (k) converges to Y(k) (the latter obtained by the NII technique
from measurements of y” (k) and w(k) in the real NCS). Let Yj(k) be the output of the estimated
model (29) in face of the input @;(0)d(k), when the coefficients of M, (z) (10) are the coordinates x; =
[0, @1, &1, 00,js Bm—1,js Bm—2,j, --B1,j, Bo,j] of an individual j of the BSA. In this case, the fitness f;
of each individual j of the BSA is obtained comparing Yj(k) with Y(k), according to (30):

N .
L (Y(k) = Yj(k))?

fi= k=0 - / (30)

wherein V is the number of samples that exist in Y (k). As already discussed in Section 3.1, min fjoccurs
when [an,]-, an—l,jr ...0(1’]', 0(0,]', ,E'm—l,jr ,E'm—Z,]'r :Bl,]" .BO,]'] — [zxn, Ky_1,..-01,K&Q, ‘Bmfl, ‘Bm_z, ...ﬁl, ‘30},
i.e., when the estimated M,(z) converges to M(z).

The complete attack identification process described in this section, performed with the Noise
Impulse Integration technique, is summarized in Algorithm 3. Please note that the differences between
Algorithms 1 and 3 is that the former does not have the NII stage. This way, while Algorithm 1 uses
w(k) and y7 (k) as input signals to the BSA-based identification, Algorithm 3 uses @;(0)J(k) and Y (k)
as input signals to the BSA-based identification.

Algorithm 3: Attack Identification with the NII technique.

begin
if y" (k) is in steady state regarding r(k) then
Record w(k) and y” (k) during T seconds;
Compute 7’ according to (5);
Compute y{ (k) according to (7);
NII stage:
Obtain a set of y;(k) signals from y/' (k) and w(k) using Algorithm 2;
Compute Y (k) according to equation (22);
Compute @;(0) according to equation (25);
end
Execute BSA, using @;(0)é(k) and Y (k) to find M,(z) based on (10), (29) and (30).
end if
end

4. Results

This section analyses the performance of the attack identification strategy proposed in section 3
when identifying the Controlled Data Injection attack characterized in Section 2. The evaluation
on the accuracy of the countermeasure is based on results obtained through simulations using
MATLAB/SIMULINK. First, Section 4.1 describes the attacked NCS and the attack parameters. Then,
Section 4.2 presents the results obtained by the proposed countermeasure in the scenario described in
Section 4.1.
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4.1. Attacked NCSs and Parameters of the Attack

In the simulations of this section, the attacked NCS has the same architecture of the NCS shown
in Figure 3. The system consists of Proportional-Integral (PI) controller that controls the rotational
speed of a DC motor — which has broad applications in industry and real-world systems, and has been
widely used in previous works about NCS [8,49-52]. The control function C(z) and the plant transfer
function P(z) are the same as in [8,50], which are represented by (31):
_0.1701z — 0.1673 _0.3379z +0.2793

P —
Z—1 (2) = 2154622 1 05646

C(z) 31)
The sample rate of the system is 50 samples/s and the set point (k) is a unitary step function.
As discussed in [8], one way to degrade the service of a plant is by causing overshoots during
its transient response, which, indeed, can cause stress and possibly damage a variety of physical
systems [53]. Thus, in this work, an attack function M(z) is designed to degrade the plant service by
causing 50% of overshoot in the motor speed. To achieve this goal, a MitM located in the feedback link
runs the attack function represented by (32), wherein oy = 0.25 and By = —0.75:

_ %o
_Z-I—ﬁo.

M(z)

(32)

4.2. Performance of the Attack Identification

Section 3 proposes an attack identification process where the NII technique is used to improve
the accuracy of the estimation of LTI attack functions in NCSs. This section analyzes the performance
of the proposed attack identification method when estimating the attack defined in Section 4.1.
To statistically evaluate how the NII technique improves the accuracy of the identification process,
two set of simulations are carried out:

1. 100 simulations using the identification process shown in Algorithm 1—i.e., without the NII
technique; and

2. 100 simulations using the identification process shown in Algorithm 3—i.e., with the NII
technique.

The noise w(k) ~ N(u, ) injected in the system by the identification scheme is configured with
# = 0 and ¢ = 0.005, which makes 95% of the noise amplitudes within £0.01 (these parameters are
chosen to produce a small noise, considering the magnitude of the plant output signal transmitted
through the feedback link). Each of the 100 simulations with Algorithms 1 and 3 uses a different
(randomly generated) white gaussian noise signal.

Figure 10 shows examples of the system output (the motor speed) with and without the attack.
Please note that when the attack is executed, the motor speed has an overshoot of 50% and a small
noise is present in the plant output. However, in a normal condition—i.e., without attack—the noise is
cancelled and does not appear in the plant output (as expected, based on Equation (1) when M(z) = 1).

As previously discussed, the present attack identification scheme aims to estimate the coefficients
of M(z), which according to (32) are ag and Bo. The BSA settings in both Algorithms 1 and 3 are the
same as those used in [8,45]: the lower and upper limits of each search space dimension are —10 and
10, respectively; the BSA population has 100 individuals; and # = 1 (in the BSA, 7 is used to define the
amplitude of the displacement of the individuals).

The BSA is executed for 600 iterations.

For the execution of Algorithm 1 the signals w(k) and y” (k) are recorded during 100 samples,
starting when the system achieves its steady state regarding to r(k). Thus, the size of signals w(k)
and y/ (k) used by the BSA in (9) and (11), respectively, is N = 100 samples. For the execution of
Algorithm 3 the signals w(k) and y” (k) are recorded during 0, 5Msamples, also starting when the
system achieves its steady state regarding to r(k). Recall that in Algorithm 3, the recorded signals are
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not directly applied to the BSA process. They are processed through the NII stage to result in @;(0)4 (k)
and Y (k). The signals @;(0)d(k) and Y (k) used by the BSA in (29) and (30), respectively, are sized with
N =100 samples. This way, the signals processed by the BSA have the same size in both Algorithms 1
and 3 (i.e., N' = N). The amplitude threshold of the NII is ) = 0.01, which means that the condition
defined in Algorithm 2 (i.e., w(k) > Q) is true in approximately 2.28% of the samples of w(k).

1.5

A

1.02

1AI\AA‘I\AA
VvV VV

0.5 0.98 i

350 400 450

— Plant output with attack
— Plant output without attack
O 1 1 1 1

0 100 200 300 400 500

Samples (k)

Motor rotation speed (rad/s)

Figure 10. Motor speed with and without attack.

Figure 11 shows the 100 values of &y and B estimated by the identification processes with and
without the NII stage (i.e., with Algorithms 3 and 1, respectively). Additionally, Table 1 shows the
statistics of the results presented in Figure 11. From Figure 11 and Table 1, it is possible to verify that the
accuracy of the attack identification algorithm with the NII stage is better than the accuracy obtained
without the proposed technique. Figure 11 demonstrates that with the NII stage, the estimated values
of ap and By are closer to their actual values—i.e., less spread—than without the NII stage. Please note
that the statistics shown in Table 1 ratifies the better performance provided by the NII stage. In this
case, the means of the estimated values are closer to the to the real values of ay and Sy, with lower
standard deviation.

Table 1. Statistics of the attack identification process.

Coefficient Algorithm Mean Standard Deviation

) with NII 0.2500 0.0011
without NII ~ 0.2506 0.0147
Bo with NII —0.7502 0.0017

without NI  —0.7485 0.0172
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(@) Estimations of ag (b) Estimations of fg

Figure 11. Estimations of &g and By with and without the NII stage.

Figure 12 shows the input and output signals used by the BSA to estimate M(z) in a simulation
example performed with Algorithm 1 (without the NII stage). Figure 12a shows the noise w(k)
recorded in the actual system and used by the BSA as input for the model defined by (8). Figure 12b
shows in black dashed line the signal y{ (k) measured in the actual system and used by the BSA as
the reference output for the model defined by (8). Additionally, Figure 12b shows in red line the
signal 7 (k) produced by the estimated model—i.e., the model (9) containing the estimated attack
function—when excited by the noise input shown in Figure 12a. In Figure 12b, it is possible to see
that the output 77 (k) obtained with the estimated model does not completely match the output y7 (k)
measured in the actual system. It exemplifies, as shown in Figure 11 and Table 1, the lower accuracy of
Algorithm 1 when identifying M(z).

Figure 13, in turn, shows the input and output signals used by the BSA to estimate M(z) in a
simulation example performed with Algorithm 3 (with the NII stage). Figure 13a shows the weighted
impulse @;(0)d(k) produced by the NII stage and used by the BSA as input for the model defined in
(28). Figure 13b shows:

e Inblack dashed line: the integrated signal Y (k) produced by the NII stage (based on measurements
in the actual system) and used by the BSA as the reference output for the model defined in (28);

e In blue line: the impulse response produced when the weighted impulse @;(0)é(k), shown
Figure 13a, is applied to the system defined in (28) containing the actual attack function;

e In red line: the impulse response produced when the weighted impulse @;(0)d(k), shown
Figure 13a, is applied to the system defined in (29) containing the estimated attack function.

From Figure 13D, it is possible to see that the integrated signal (provided by the NII stage)
accurately meets the impulse response of the actual system. It indicates that the NII technique can
accurately reveal the impulse response of the system based on the signals produced by the white
gaussian noise injected in the NCS. Additionally, Figure 13b shows that the impulse response obtained
with the estimated model accurately meets the impulse response obtained with the actual system.
It demonstrates that NII stage effectively contributes to enhance the accuracy of the identification
process, as already shown in Figure 11 and Table 1.
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Figure 13. Input and output signals used by the BSA in Algorithm 3 to estimate M(z) considering the

model defined in (28).

The better performance obtained with the NII stage is mainly attributed to the cancelation of the
initial conditions produced by the noise in the actual system. Please note that in Algorithm 1, the noise
input was already present in the system since before y{ (k) was obtained, which makes w(k) affect
the initial conditions of the system. Thus, the lack of knowledge about the initial conditions of the
system affects the estimation of the attack function in Algorithm 1. On the other hand, in Algorithm 3,
the impact of w(k) in the system’s initial conditions is mitigated by the NII stage. This statement
can be verified in Equation (23), where Y1 (k) — 0 when all y;(k) are integrated among all j € ],
as demonstrated in Section 3.2.2. Indeed, when the noise input w(k) is transformed into a weighted
impulse signal @;(0)d(k), it is not expected to exist any initial conditions caused by w(k) in the system
defined in (28), given that cD]-(O)(S(k) =0,V—0c0<k<0.

Additionally, the performance of the proposed countermeasure is evaluated in scenarios where the
reference signal is slowly changing during the execution of Algorithm 3. For this purpose, the reference
signal of the system described in Section 4.1 is changed to (33):

r(k) = {

0

1+ A sin(0.01k)

k<0
k>0.

(33)
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where three different amplitudes A are considered: 0.001, 0.01, and 0.1 (i.e., 0.1%, 1% and 10% of the
unitary step function setpoint, respectively). Please note that the reference signal of the original system
described in Section 4.1 corresponds to the case where A = 0. For statistical analysis, 100 different
simulations are provided for each amplitude A. Figure 14 shows examples of output signals ' (k)
obtained in simulations using different amplitudes A in (33).

—_
e
1

TErT

oooo
—~oo
=o
=

o
©

Motor rotation speed (rad/s)

1 1 1 1
300 400 500 600
time (s)

! !
100 200

o

Figure 14. Examples of sensor outputs y/ (k) in simulations with different amplitudes A.

Figure 15 compares the coefficients estimated by Algorithm 3 when the reference signal is constant
(A = 0) and when it slowly varies using different amplitude values A. Additionally, Table 2 shows the
statistics of the results presented in Figure 15. From Figure 15 and Table 2, it is possible to verify that
the accuracy of the attack identification algorithm is not affected by variations in the reference signal
when A = 0.001 and A = 0.01. In these cases, as shown in Figure 15, the estimated coefficients are quite
close to their actual values and are as accurate as when A = 0 (when there are no variations in r(k)).
The statistics shown in Table 2 ratifies that for A = 0.001 and A = 0.01, the algorithm presents the
same performance as when (k) is not varying—the means and the standard deviations are practically
the same as when A = 0.

Lower performance is verified when the amplitude is increased to A = 0.1. In this case, 29% of the
estimated coefficients have their accuracy affected—these outliers can be seen in Figure 15 (specially
in Figure 15a) far from the coefficients” actual values. According to Table 2, when these outliers are
taken into account, the means of the estimated coefficients diverge from the actual values and the
standard deviations increase. However, it is worth mentioning that when A = 0.1, even with the
reduced performance, 71% of the results are not affected by the variations in r(k) and the estimated
coefficients are as accurate as when A = 0. Figure 15 shows these 71% of estimated coefficients close to
their actual values. Moreover, Table 2 shows that if the outliers are not taken into account, the means
and the standard deviations are practically the same as when A = 0. These results suggest that even
when the reference signal is (slowly) varying +10%, the proposed algorithm can provide satisfactory
performance in most cases (71%).

For the sake of comparison with Figure 13b, Figure 16 brings examples of results obtained in
scenarios with different amplitudes A. Through these examples, it is possible to visualize the impact of
the different amplitudes A in the integrated signal Y (k) produced by the NII stage, and in the weighted
impulse response of the system containing the estimated attack function.

Note in Figure 16 that even with variations in the reference signal, the NII technique is able to
accurately reveal the impulse response of the system under attack (represented in black dashed line).
However, it is possible to see the presence of an offset between the integrated signal and the impulse
response of the actual system. This offset tends to increase as A becomes higher, and is caused by the
different levels of y” (k) (due the variations in r(k)) at the time when w(k) > () is satisfied and each
y;(k) is obtained according to Algorithm 2. Still, even when such offset is higher (as in Figure 16c,
when A = 0.1), the optimization metaheuristic in most cases (71%) is able to accurately find the
coefficients of M(z) by minimizing the difference between the impulse response of the system with
the estimated model (represented in red) and the integrated signal (represented in black dashed line),
making them parallel. In all examples shown in Figure 16, the impulse response of the system with
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the estimated model (represented in red) converges to the impulse response of the system with the
actual model (represented in blue), illustrating the good accuracy obtained by the countermeasure
even when r(k) is varying.
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Figure 15. Estimations of «y and By using the NII technique, with and without variations in the

reference signal r (k).

Table 2. Statistics of the attack identification process using the NII technique, with and without
variations in the reference signal (k).

Coefficient A Mean Standard Deviation
xQ 0* 0.2500 0.0011
0.001  0.2500 0.0011
0.01 0.2500 0.0011
0.1 0.1712 0.1241
0.1*  0.2500 0.0012
Bo 0* —0.7502 0.0017
0.001 —0.7502 0.0017
0.01 —0.7501 0.0017
0.1 —0.7812 0.0586
0.1* —0.7500 0.0020

* The reference signal r(k) does not vary. ** Not taking into account the outliers verified in Figure 15.
(These statistics represent the remaining 71% of the results.

The results of this section indicate the effectiveness and accuracy of the proposed countermeasure
when identifying SD-Controlled Data Injection attacks in NCSs, especially when the NII technique
is used. The performance of the countermeasure, designed for scenarios where the reference signal
remains constant, is evaluated considering r(k) as a step function. Additionally, the countermeasure
is also evaluated in scenarios where the reference signal slowly changes, causing oscillations in the
monitored signals (which in the present work are sensor measurements). In both cases, accurate results
are obtained, with a performance reduction when the oscillation amplitude is increased to A = 0.1.
The results indicate that if the offsets shown in Figure 16 (introduced by variations in r(k)) are reduced,
or taken into account in the BSA optimization process, the performance of the countermeasure can
be further improved for reference signals varying with higher amplitudes—encouraging research in
this direction.
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Figure 16. Examples of integrated signals and weighted impulse responses obtained through
Algorithm 3 in scenarios with different amplitudes A.

Moreover, it is worth mentioning that in a normal conditions, when the system is not under attack,
the injected noise is cancelled and does not affect the NCS. When the system is under attack, it is
possible to see that noise is present in the plant output, but it is small due the parameters chosen for
w(k). It should be noted that such small noise is not necessarily a drawback for the system; however,
the possible impacts of this noise in case of attack have to be evaluated for each specific system.

5. Conclusions

This paper proposes a BSA-based countermeasure to identify LTI attack functions executed during
SD-Controlled Data Injection attacks in NCSs. It consists of a link monitoring strategy that uses white
gaussian noise to excite the attack function and, thus, produce signals with the information necessary
for the identification process. The proposed solution is evaluated through simulations where the
attacker aims to manipulate the measurements transmitted by the plant sensor. It is demonstrated that
in normal operating conditions—i.e., without attack—the injected white gaussian noise is cancelled
and does not affect the plant output. The injected white gaussian noise only manifests itself in
the plant when an attack is occurring. In this case, the presence of noise may not necessarily be a
drawback, but the possible impacts of such noise (in case of attack) must be evaluated according to the
requirements of each specific plant.

Additionally, to increase the accuracy of the proposed countermeasure, this paper introduces the
NII technique which is developed using the radar pulse integration process as inspiration. It is proven
that the NII technique can accurately reveal the impulse response of the system under attack based on
the signals produced by the white gaussian noise injected in the NCS. The results indicate that the NII
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technique indeed increases the accuracy of the attack identification, eliminating the need to estimate
the initial conditions caused by the noise injected into the NCS.

Although the proposed countermeasure is designed for scenarios where the reference signal
remains constant, we also evaluate it in scenarios where the reference signal slowly changes. In both
cases, accurate results can be obtained, with a performance reduction when the oscillation of the
reference signal increases. With this regard, the results indicate that if the integrated signal offset
(introduced by variations in r(k)) is reduced, or taken into account in the BSA optimization process,
the performance of the countermeasure can be further improved for reference signals varying with
higher amplitudes. Therefore, we encourage future research in this direction.

As future work we plan to investigate the possibility of generalizing the proposed countermeasure,
to be able to run the identification task when the system is either in steady or transient operating
conditions. Moreover, we plan to evaluate the performance of the proposed countermeasure in
identifying switching LTT attack functions.

Also, we consider to investigate the use of the NII technique as an attack tool for System
Identification attacks [8,13] in scenarios with high data loss. In this paper, the technique is used
to enhance the performance of a countermeasure in scenarios where the monitored signals are not
impaired by data loss. However, we consider that the NII technique may be a useful tool to rebuild and
reveal the impulse response functions of LTI systems in scenarios where the captured data is impaired
by high percentage of loss. Such ability can be used, for instance, to enhance System Identifications
attacks [8,13] in scenarios with extreme data loss—as in the case of an attacker far from WINCS
transmitters, with poor connectivity, trying to identify the WNCS models.

Author Contributions: All authors contributed equally to this work. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was partially supported by the Brazilian research agencies CNPq and FAPER], by the
SHCDCiber project, by the Coordination for the Improvement of Higher Education Personnel (CAPES),
grant 99999.008512/2014-0, and by FCT through project LaSIGE (UID/CEC /00408 /2013).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Lasi, H,; Fettke, P.; Kemper, H.G.; Feld, T.; Hoffmann, M. Industry 4.0. Bus. Inf. Syst. Eng. 2014, 6, 239-242.
[CrossRef]

2. Jazdi, N. Cyber physical systems in the context of Industry 4.0. In Proceedings of the 2014 IEEE International
Conference on Automation, Quality and Testing, Robotics, Cluj-Napoca, Romania, 22-24 May 2014; pp. 1-4.

3. Latrech, C,; Chaibet, A.; Boukhnifer, M.; Glaser, S. Integrated longitudinal and lateral networked control
system design for vehicle platooning. Sensors 2018, 18, 3085. [CrossRef] [PubMed]

4. Ju,H.H.; Long, Y.; Wang, H. Reliable Finite Frequency Filter Design for Networked Control Systems with
Sensor Faults. Sensors 2012, 12, 7975-7993. [CrossRef] [PubMed]

5. Santos, C.; Martinez-Rey, M.; Espinosa, F.; Gardel, A.; Santiso, E. Event-based sensing and control for remote
robot guidance: An experimental case. Sensors 2017, 17, 2034. [CrossRef]

6. Dasgupta, S.; Halder, K.; Banerjee, S.; Gupta, A. Stability of Networked Control System (NCS) with discrete
time-driven PID controllers. Control Eng. Pract. 2015, 42, 41-49. [CrossRef]

7. McLaughlin, S.; Konstantinou, C.; Wang, X.; Davi, L.; Sadeghi, A.R,; Maniatakos, M.; Karri, R.
The cybersecurity landscape in industrial control systems. Proc. IEEE 2016, 104, 1039-1057. [CrossRef]

8. deSa, A.O.; da Costa Carmo, L.ER.; Machado, R.C.S. Covert Attacks in Cyber-Physical Control Systems.
IEEE Trans. Ind. Inf. 2017, 13, 1641-1651. [CrossRef]

9.  Ferrari, P; Flammini, A.; Rizzi, M.; Sisinni, E. Improving simulation of wireless networked control systems
based on WirelessHART. Comput. Stand. Interfac. 2013, 35, 605-615. [CrossRef]

10. Das, M.; Ghosh, R.; Goswami, B.; Gupta, A.; Tiwari, A.; Balasubrmanian, R.; Chandra, A. Network control
system applied to a large pressurized heavy water reactor. IEEE Trans. Nucl. Sci. 2006, 53, 2948-2956. [CrossRef]


http://dx.doi.org/10.1007/s12599-014-0334-4
http://dx.doi.org/10.3390/s18093085
http://www.ncbi.nlm.nih.gov/pubmed/30217085
http://dx.doi.org/10.3390/s120607975
http://www.ncbi.nlm.nih.gov/pubmed/22969382
http://dx.doi.org/10.3390/s17092034
http://dx.doi.org/10.1016/j.conengprac.2015.04.015
http://dx.doi.org/10.1109/JPROC.2015.2512235
http://dx.doi.org/10.1109/TII.2017.2676005
http://dx.doi.org/10.1016/j.csi.2013.04.003
http://dx.doi.org/10.1109/TNS.2006.881973

Sensors 2020, 20, 792 24 of 25

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Dasgupta, S.; Routh, A.; Banerjee, S.; Agilageswari, K.; Balasubramanian, R.; Bhandarkar, S.; Chattopadhyay,
S.; Kumar, M.; Gupta, A. Networked control of a large pressurized heavy water reactor (PHWR) with discrete
proportional-integral-derivative (PID) controllers. IEEE Trans. Nucl. Sci. 2013, 60, 3879-3888. [CrossRef]
Smith, R.S. Covert Misappropriation of Networked Control Systems: Presenting a Feedback Structure.
Control Syst. IEEE 2015, 35, 82-92.

De Sa, A.O,; da Costa Carmo, LER.; Machado, R.C.S. Bio-inspired Active System Identification:
A Cyber-Physical Intelligence Attack in Networked Control Systems. Mob. Netw. Appl. 2017, 1-14. [CrossRef]
Langner, R. Stuxnet: Dissecting a cyberwarfare weapon. Secur. Priv. IEEE 2011, 9, 49-51. [CrossRef]
Smith, R. A decoupled feedback structure for covertly appropriating networked control systems.
In Proceedings of the 18th IFAC World Congress 2011, IFAC-PapersOnLine, Milano, Italy, 28 August—2
September 2011.

Teixeira, A.; Shames, 1.; Sandberg, H.; Johansson, K.H. A secure control framework for resource-limited
adversaries. Automatica 2015, 51, 135-148. [CrossRef]

Zetter, K. Countdown to Zero Day: Stuxnet and the Launch of the World'’s First Digital Weapon; Crown: New York,
NY, USA, 2014.

Falliere, N.; Murchu, L.O.; Chien, E. W32. stuxnet dossier. White Pap. Symantec Corp. Secur. Response 2011,
5,29.

Muller, I; Netto, J.C.; Pereira, C.E. WirelessHART field devices. IEEE Instrum. Meas. Mag. 2011, 14, 20-25.
[CrossRef]

Petersen, S.; Carlsen, S. WirelessHART Versus ISA100. 11a: The Format War Hits the Factory Floor. IEEE Ind.
Electron. Mag. 2011, 4, 23-34. [CrossRef]

Collantes, M.H.; Padilla, A.L. Protocols and Network Security in ICS Infrastructures; Technical Report; Spanish
National Institute for Cyber-Security ( INCIBE): Leén, Spain, 2015.

Peschke, J.; Reinelt, D.; Yumin, W.; Treytl, A. Security in industrial ethernet. In Proceedings of the 11th
IEEE International Conference on Emerging Technologies and Factory Automation, Prague, Czech Republic,
20-22 September 2006; pp. 1214-1221.

Granat, A.; HOFKEN, H.; Schuba, M. Intrusion Detection of the ICS Protocol EtherCAT. In Proceedings of
the 2nd International Conference on Computer, Network Security and Communication Engineering (CNSCE
2017), Bangkok, Thailand, 26-27 March 2017; pp. 113-117.

Ovaz Akpinar, K.; Ozcelik, I. Development of the ECAT Preprocessor with the Trust Communication
Approach. Secur. Commun. Netw. 2018, 2018, 2639750. [CrossRef]

Yung, J.; Debar, H.; Granboulan, L. Security Issues and Mitigation in Ethernet POWERLINK. In Proceedings
of the Conference on Security of Industrial-Control-and Cyber-Physical Systems, Crete, Greece, 26-30
September 2016; pp. 87-102.

Mathur, A.P; Tippenhauer, N.O. SWaT: a water treatment testbed for research and training on ICS security.
In Proceedings of the 2016 International Workshop on Cyber-physical Systems for Smart Water Networks
(CySWater), Vienna, Austria, 11 April 2016; pp. 31-36.

Pfrang, S.; Meier, D. On the Detection of Replay Attacks in Industrial Automation Networks Operated with
Profinet IO. In Proceedings of the ICISSP, Porto, Portugal, 9-21 February 2017; pp. 683-693.

Akerberg, J.; Bjorkman, M. Exploring security in PROFINET IO. In Proceedings of the 2009 33rd Annual
IEEE International Computer Software and Applications Conference, Seattle, WA, USA, 20-24 July 2009;
Volume 1, pp. 406—412.

de Sa, A.O.; da Costa Carmo, L.ER.; Machado, R.C.S. A controller design for mitigation of passive system
identification attacks in networked control systems. J. Int. Serv. Appl. 2018, 9, 1-19. [CrossRef]
Rubio-Hernan, J.; Rodolfo-Mejias, J.; Garcia-Alfaro, J. Security of cyber-physical systems. In Proceedings
of the International Workshop on the Security of Industrial Control Systems and Cyber-Physical Systems,
Crete, Greece, 26-30 September 2016; pp. 3-18.

Stouffer, K; Pillitteri, V.; Lightman, S.; Abrams, M.; Hahn, A. NIST Special Publication 800-82, Revision 2: Guide
to Industrial Control Systems (ICS) Security; National Institute of Standards and Technology: Gaithersburg,
MD, USA, 2015.

Pang, Z.H.; Liu, G.P. Design and implementation of secure networked predictive control systems under
deception attacks. IEEE Trans. Control Syst. Technol. 2012, 20, 1334-1342. [CrossRef]


http://dx.doi.org/10.1109/TNS.2013.2274199
http://dx.doi.org/10.1007/s11036-017-0943-5
http://dx.doi.org/10.1109/MSP.2011.67
http://dx.doi.org/10.1016/j.automatica.2014.10.067
http://dx.doi.org/10.1109/MIM.2011.6086896
http://dx.doi.org/10.1109/MIE.2011.943023
http://dx.doi.org/10.1155/2018/2639750
http://dx.doi.org/10.1186/s13174-017-0074-z
http://dx.doi.org/10.1109/TCST.2011.2160543

Sensors 2020, 20, 792 25 of 25

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.
43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

Gerard, B.; Rebai, S.B.; Voos, H.; Darouach, M. Cyber security and vulnerability analysis of networked control
system subject to false-data injection. In Proceedings of the 2018 Annual American Control Conference
(ACC), Milwaukee, WI, USA, 27-29 June 2018; pp. 992-997.

Miao, F; Zhu, Q.; Pajic, M.; Pappas, G.J. Coding sensor outputs for injection attacks detection. In Proceedings
of the 53rd IEEE Conference on Decision and Control, Los Angeles, CA, USA, 15-17 December, 2014;
pp. 5776-5781.

Dhunna, G.S.; Al-Anbagi, I. A Low Power WSNs Attack Detection and Isolation Mechanism for Critical
Smart Grid Applications. IEEE Sens. ]. 2019, 19, 5315-5324. [CrossRef]

Rigatos, G.; Serpanos, D.; Zervos, N. Detection of attacks against power grid sensors using Kalman filter
and statistical decision making. IEEE Sens. |. 2017, 17, 7641-7648. [CrossRef]

Mo, Y.; Weerakkody, S.; Sinopoli, B. Physical authentication of control systems: Designing watermarked
control inputs to detect counterfeit sensor outputs. IEEE Control Syst. Mag. 2015, 35, 93-109.

Mo, Y.; Sinopoli, B. Secure control against replay attacks. In Proceedings of the 2009 47th Annual Allerton
Conference on Communication, Control, and Computing (Allerton), Monticello, VA, USA, 30 September
2009; pp- 911-918.

Mo, Y.; Chabukswar, R.; Sinopoli, B. Detecting integrity attacks on SCADA systems. IEEE Trans. Control
Syst. Technol. 2014, 22, 1396-1407.

Ferrari, RM.; Teixeira, A.M. Detection and isolation of replay attacks through sensor watermarking.
IFAC-PapersOnLine 2017, 50, 7363-7368. [CrossRef]

Krombholz, K.; Hobel, H.; Huber, M.; Weippl, E. Advanced social engineering attacks. J. Inf. Secur. Appl.
2015, 22, 113-122. [CrossRef]

Skolnik, M.I. Radar Handbook; Electronic Engineering Series; McGraw-Hill: New York, NY, USA, 1990.
Civicioglu, P. Backtracking search optimization algorithm for numerical optimization problems. Appl. Math.
Comput. 2013, 219, 8121-8144. [CrossRef]

Tulleken, H.J. Generalized binary noise test-signal concept for improved identification-experiment design.
Automatica 1990, 26, 37-49. [CrossRef]

de S4, A.O.; Carmo, L.ER.d.C.; Machado, R.C.S. Countermeasure for Identification of Controlled Data
Injection Attacks in Networked Control Systems. In Proceedings of the 2019 II Workshop on Metrology for
Industry 4.0 and IoT (MetroIlnd4. 0&IoT), Naples, Italy, 4-6 June 2019; pp. 455-459.

Stallings, W. Cryptography and Network Security: Principles and Practices; Pearson Education India: Upper Saddle
River, NJ, USA, 2006.

Ahmed, S. Novel noncoherent radar pulse integration to combat noise jamming. IEEE Trans. Aerosp. Electron.
Syst. 2015, 51, 2350-2359. [CrossRef]

Schwartz, M. Effects of signal fluctuation on the detection of pulse signals in noise. IRE Trans. Inf. Theory
1956, 2, 66-71. [CrossRef]

Chen, X,; Song, Y.; Yu, J. Network-in-the-Loop Simulation Platform for Control System. In AsiaSim 2012;
Springer: Shanghai, China, 27 October 2012; pp. 54-62.

Long, M.; Wu, C.H.; Hung, J.Y. Denial of service attacks on network-based control systems: impact and
mitigation. Ind. Inf. IEEE Trans. 2005, 1, 85-96. [CrossRef]

Shi, Y.; Huang, J.; Yu, B. Robust tracking control of networked control systems: application to a networked
DC motor. IEEE Trans. Ind. Electron. 2013, 60, 5864-5874. [CrossRef]

Si, M.L.; Li, HX,; Chen, X.F,; Wang, G.H. Study on Sample Rate and Performance of a Networked Control
System by Simulation. Adv. Mater. Res. Trans. Tech. Publ. 2010, 139, 2225-2228.

Tran, T.; Ha, Q.P; Nguyen, H.T. Robust non-overshoot time responses using cascade sliding mode-pid
control. J. Adv. Comput. Intell. Intell. Inf. 2007, 11, 1224-1231. [CrossRef]

@ (© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1109/JSEN.2019.2902357
http://dx.doi.org/10.1109/JSEN.2017.2661247
http://dx.doi.org/10.1016/j.ifacol.2017.08.1502
http://dx.doi.org/10.1016/j.jisa.2014.09.005
http://dx.doi.org/10.1016/j.amc.2013.02.017
http://dx.doi.org/10.1016/0005-1098(90)90156-C
http://dx.doi.org/10.1109/TAES.2015.140315
http://dx.doi.org/10.1109/TIT.1956.1056786
http://dx.doi.org/10.1109/TII.2005.844422
http://dx.doi.org/10.1109/TIE.2012.2233692
http://dx.doi.org/10.20965/jaciii.2007.p1224
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	SD-Controlled Data Injection Attack
	Identification of Controlled Data Injection Attacks
	Strategy to Identify the Attack
	Integrating Impulses of Noise
	Radar Pulse Integration
	Noise Impulse Integration Technique


	Results
	Attacked NCSs and Parameters of the Attack
	Performance of the Attack Identification

	Conclusions
	References

