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Abstract: By developing awareness of smartphone activities that the user is performing on their
smartphone, such as scrolling feeds, typing and watching videos, we can develop application
features that are beneficial to the users, such as personalization. It is currently not possible to
access real-time smartphone activities directly, due to standard smartphone privileges and if internal
movement sensors can detect them, there may be implications for access policies. Our research
seeks to understand whether the sensor data from existing smartphone inertial measurement unit
(IMU) sensors (triaxial accelerometers, gyroscopes and magnetometers) can be used to classify typical
human smartphone activities. We designed and conducted a study with human participants which
uses an Android app to collect motion data during scrolling, typing and watching videos, while
walking or seated and the baseline of smartphone non-use, while sitting and walking. We then
trained a machine learning (ML) model to perform real-time activity recognition of those eight states.
We investigated various algorithms and parameters for the best accuracy. Our optimal solution
achieved an accuracy of 78.6% with the Extremely Randomized Trees algorithm, data sampled at
50 Hz and 5-s windows. We conclude by discussing the viability of using IMU sensors to recognize
common smartphone activities.

Keywords: smartphone activity recognition; smartphone IMU sensors; real-time classification;
machine learning

1. Introduction

Human activity tracking using smartphone sensors has been a key concern since smartphones
have been released, in part due to smartphones’ physical size, ubiquity, unobtrusiveness and ease of
use. Whole-body human activities such as walking and running have been investigated but physically
smaller human activities such as reading or typing have not been explored. Knowing whether a
user is scrolling, typing or watching videos is valuable in our endeavors to better understand users.
Digital content and experience providers benefit from tracking users’ smartphone activities to inform
personalization, as demonstrated by several recent patents [1-3]. For example, news and social media
applications log when users watch videos or read in order to present personalized content which is
more likely to be engaging to each user [4]. If a news or social media app uses inertial measurement
unit (IMU) sensors for this, they can present the user with more personalized content (i.e., more videos
or more text, depending on what the user uses and likes).
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The other side of this investigation is a question of security. Currently it is not possible to
access user action logs directly, due to smartphone data access privileges. Detailed logs of all user
smartphone activities may be considered private or sensitive. As of 2019, smartphones do not ask
users for permission to access IMU sensor data. A phone would need to be “rooted,” in other words,
an application would need to gain root access control, in order to access activity data directly. This may
be because current IMU applications do not seem as privacy-sensitive as other permission-protected
sensors such as Global Positioning System (GPS), the microphone and camera. However there is
growing evidence that IMU sensors can be used for nefarious purposes, such as location tracking [5]
and password sniffing [6]. In response to this trend, new privacy applications are being introduced
that enforce runtime control policies to protect IMU sensors from misuse [7]. To inform whether
IMU sensors should be permission-protected, we aim to understand the precision with which our
human smartphone activities can be estimated from smartphone standard internal sensors including
a accelerometer, gyroscope and magnetometer. This investigation fits into an emerging literature on
human activity recognition with IMU sensors [8-17].

Over the last decade, smartphone IMU sensors have been used to classify general user behaviors
including sitting, walking, jogging, running or walking up and down stairs [8-17]. Typically,
such research first collects raw sensor data, extracts time domain or frequency domain features from the
raw data, and then uses the extracted features to train a machine learning model to classify the specified
user activities. Using these methods, researchers have developed machine learning models which
can classify user activities with greater than 95% accuracy [8,9,12,14,15]. The area of human activity
recognition has focused on recognizing physically larger human activities (walking, etc.) [8-17] but to
date none have tried to recognize what the person is doing on the smartphone itself, namely reading,
typing, scrolling or watching. A user’s activity on their smartphone can be estimated to some degree
through knowledge of the app they are using. For instance, in a news application, does the user tend
to read articles or watch news programs? There are privacy concerns associated with monitoring users’
application use, making this approach infeasible for use on a large scale. A person who is typing
or scrolling on their phone still produces movements and vibrations which can be picked up by the
phone’s inertial sensors, similar to when a person is walking or running. Figure 1 shows a comparison
of a 10 s triaxial accelerometer reading between typing and watching while seated. Two observable
differences are the swap of x and y axes between these two activities and the greater variation when
the participant is typing. These movements may be small but they can still be used in the same process
as outlined above to build a model and predict the user’s activity, though we currently do not know
what precision is achievable.
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Figure 1. Ten seconds of acceleration data for a. typing (left) and b. watching (right), both while seated.
The acceleration data for typing shows greater variation while the data for watching is smoother.

In this study, we used smartphone IMU sensors to classify the following user smartphone activities:
scrolling, typing, watching and non-use, while seated or walking. We conducted a study with human
participants, using an Android app which we developed to collect labelled IMU sensor data while
they were carrying out the activities which we aimed to classify. The app led the user to perform
the activities for two-minute blocks, with an optional rest between blocks. We performed a machine
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learning-based method for smartphone activity recognition. This method achieved an accuracy of
78.6% in classifying eight types of activities: scrolling, typing, watching and non-use, while sitting and
walking. The contributions of this paper are:

the first investigation of recognition of human smartphone activities using IMU sensors,
a novel machine learning model that classifies smartphone activities, suitable features and time
window sizes, and

e the accuracy that the model and parameters can achieve, along with a discussion of feasibility
and implications.

These contributions will be useful for understanding the precision of smartphone activity tracking
with IMU sensors for purposes such as personalization and when considering whether IMU sensors
present security concerns due to their ability to recognize private behavior.

The remainder of the paper is organized as follows. Section 2 presents recent studies on human
activity recognition. The method we used to collect data and the study setup are presented in Section 3.
The results of the study and discussion about the findings are presented in Sections 4 and 5, followed
by the conclusion and future work in Section 6.

2. Related Work

The study of modern human activity recognition began from analysis of visual data from pictures
and film [18] and shifted into using movement-based wearable sensing devices. Both of these methods
used specialized technology which is not readily available to a typical consumer and is difficult for
them to use in their everyday life. For these reasons, the leading platform for activity recognition
has shifted to the smartphone [19,20]. The rich set of sensors integrated into smartphones, such as an
accelerometer and gyroscope, make the smartphone capable of collecting data similar to that obtained
from a wearable sensing device. Smartphones have the added benefit of being relatively ubiquitous
and accessible. Their powerful data transmission technologies, Wi-Fi and Bluetooth, make them a
practical platform for personal activity recognition.

However there are limitations to the use of smartphones for activity recognition. Continuous sensing
is a challenge [21] as this can take a significant toll on the phone’s battery life [22] as well as generate
more data than can be stored feasibly on the phone. Gathering data based on a sampling frequency can
help to conserve battery and adaptive algorithms are being developed to adjust this frequency based on
the activity which is occurring [21]. Running the classification algorithm on the phone requires more
processing power than is readily available [22]. At present outsourcing computation to a more powerful
machine is currently the best approach with current smartphone technology, although it introduces
time delays. Outsourcing is the method we have used in our research.

Most studies which use smartphones for activity recognition use the accelerometer as a part of
their input data [8-10,12,13,17]. The smartphone accelerometer has also been extensively utilized in
research fields adjacent to human activity recognition. For instance, smartphone sensors have been
used to estimate the user’s mood [23] and stress level [24]. Another study found that smartphone
accelerometer can be used to counterbalance the movement of the phone while walking and thus
improve typing efficiency and reduce the error rate of the user [25]. Smartphone accelerometers can
also be used to detect changes in the surrounding environment; one study shows the possibility of
using the accelerometer to detect the vibration of the nearby keyboards and thus decode what is being
typed [26]. Some studies have suggested that the use of the gyroscope, together with the accelerometer,
can improve classification accuracy [8,9,27]. With these existing applications in mind, we investigate
whether internal smartphone sensors are reliable enough to produce an accurate result for typical
smartphone activities such as scrolling feeds, typing and watching videos.

Table 1 provides an overview of the sensors and features used in research on human activity
recognition with smartphones. Accelerometers and gyroscopes are the most common sensors used.
Note that one study did not perform feature extraction because the machine learning model used was
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a deep convolutional neural network, and the layers in the network acted as a hierarchical feature
extractor [9].

Table 1. Sensors and features used in prior research on human activity recognition with smartphones.

Sensors Features Reference
Mean, Standard Deviation, Mean Absolute Deviation, Window
Maximum Value, Window Minimum Value, Frequency Skewness,
Accelerometer, Maximum F%‘equency, Average. Energy, Signal Magnitude A1.‘ea,
Entropy, Window Interquartile Range, Pearson Correlation [8]
Gyroscope s . .
Coefficients, Frequency Signal Weighted Average, Spectral
Energy and Angle between a Central Vector and Mean of Three
Consecutive Windows
Accelerometer, 9]
Gyroscope
Accelerometer, Mean, Average Absolute Difference, Standard Deviation, Average
Gyroscope, . . [10]
Resultant Acceleration and Histogram
Magnetometer
Mean, Elapse Time between Consecutive Local Peaks, Average of
Accelerometer Peak Frequency (APF), Variance of APF, Root Mean Square, Standerd [11]
Deviation, Minmax Value and Correlation
écizlsecrc())n;eter, Mean, Variance, Standard Deviation, FFT Coefficient, Zero Crossing [12]
Yy pe, Rate, Maximum Correlation Value and Index of Max Correlation
Magnetometer
Accelerometer Mean, Standard Deviation, Average Absolute Difference, Average [13]
Resultant Acceleration, Time between Peaks and Binned Distribution
Mean, Standard Deviation, Median Absolute Value, Window
Maximum Value, Window Minimum Value, Signal Magnitude Area,
Accelerometer, . . ..
Gvroscope Energy, Interquartile Range, Entropy, Autoregression Coefficient, [14]
y P Correlation, Maximum Frequency Index, Mean Frequency, Skewness,
Kurtosis, Energy Band, and the Angle between Two Vectors
Accelerometer Autoregressive Coefficients and Signal Magnitude Area [15]
Accelerometer, Mean, Standard Deviation, Magnitude, Window Maximum Value,
Gyroscope, Window Minimum Value, Semi-quartile, Median and Sum of the First [16]
Magnetometer Ten FFT Coefficient
Mean, Standard Deviation, Variance, Skewness, Kurtosis, Correlation
Accelerometer [17]

and Signal Magnitude Area

Many machine learning solutions have been employed in human activity recognition.
These machine learning models range from traditional models such as k-nearest neighbors (KNN) [11-16]
to neural networks [8-11], and from supervised learning models [8-16] to the unsupervised model [17].
In this prior work, the KNN solution proposed by Ustev [12] outperforms other solutions with the
highest accuracy of 97%. However, this does not mean that the KNN classifier is the best solution for
all situations because there were different setups in the different studies. Recently, a model which
combines both supervised and unsupervised methods to classify human activities has become popular;
Lu et al. show that a hybrid solution can outperform the models which use a supervised method
only [17]. The MCODE method proposed by Lu et al. outperforms the following classifiers—GMM,
HC, K-means++, K-medoids and SC.

A 2015 survey which reviewed 30 studies on online classification of physical activities with
smartphones concluded that the commonly used classifiers are relatively simple compared to the
classifiers which operate on a desktop computer [28]. This simplicity is due to smartphones’ limited
resources and computational power.
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Several studies looked at human smartphone gestures for the purpose of continuous authentication.
Sitova et al. investigated if they were able to authenticate users based on patterns in how users hold, grasp,
and tap their phones while sitting and walking and achieved a relatively low error rate of 7.10% [29].
Kumar, Phoha, and Serwadda fused swiping gestures, typing patterns and phone movement patterns
for continuous authentication and achieved 93.33% accuracy [30]. There are no prior studies on
recognizing typical smartphone activities for the purpose of classifying smartphone behaviors.

In our research, we investigate what accuracy can be achieved in classifying typical smartphone
activities (scrolling, typing, watching and non-uses, while sitting or walking) using internal sensor
data along with simple algorithms.

3. Methods

We conducted a study where human participants completed specified activities on smartphones
and where the data was used for real-time classification. We first discuss an overview of this work and
then we describe the study setup and software used.

We follow a general approach to classifying human activities using IMU sensors. First, we collect
raw data from IMU sensors. Next, we extract time-domain features (e.g., mean, standard deviation)
and frequency-domain features (e.g., energy) from the raw data. The features extracted are then
segmented and used as the input of a machine learning model. The model must be trained with
sufficient data. Then the model is used for real-time classification. The accuracy of the model is
validated by separating the data into two disjoint sets, where one set is used as the training set, and the
other is used as the test set. The accuracy of the model is determined by how correctly the test set is
predicted using the training set, which is referred to as cross-validation. This process is summarized in
Figure 2.

User using .
Transferred to PC real-time
the via Bluetooth Read unlabelled
> —p
smartphone > data
Collecting Save labelled data Real-time feature
sensor data l extraction
Feature extraction
1 Training set used for
real-time classification :
.. Real-time
Lt ar—— Model Training =———————> . .
classification

Figure 2. Study data collection and processing workflow: a user uses the smartphone for specified
time periods and specified activities, while sensor data is recorded. In real time, data is transmitted
and classified.

3.1. Study Setup

In this study, participants were asked to perform a series of tasks using a test phone (Samsung
Galaxy S7) under the conditions of sitting and walking (Figure 3). Another part of the study focused
on cognitive load, which is reported on elsewhere [31,32]. For each condition of sitting and walking,
there were four tasks: reading an article, scrolling through a social media feed, typing sentences,
and watching short videos (Figure 4).
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Figure 3. Foyer of the building used for the walking condition, selected to simulate the real walking
conditions that smartphone users might experience in daily life.
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Figure 4. Screenshots of the four tasks which participants completed as part of the study, while software
collects the IMU sensor data. Each of the four tasks is completed while sitting and while walking.

The content of the activities was chosen to be of general interest without violence or explicit
content. The articles for the reading activities were selected from news published in the NZ Herald
(The New Zealand Herald is a daily newspaper published in Auckland, New Zealand. https://www.
nzherald.co.nz/) or on Medium (Medium is an online publishing platform. https://medium.com/),
and they had a suggested reading time of 2 to 3 min. The participants were asked to answer one
multi-choice question for each article after they had read it. The purpose of the question is to motivate
the participants to read the articles with enough care that they can answer basic questions about the
content. The sentences selected for the typing activity were chosen from a dataset used for evaluation
of text entry techniques [33]. The phrases provided by the study are usually moderate in length, easy
to remember, and representative of the target language. During the typing activity, the participants
were asked to type the phrases as they appeared on screen. The order of the phrases was random,
and “Qwerty” keyboard was used. The social media feeds were taken from Reddit (Reddit is a
social news aggregation, web content rating, and discussion website. https://www.reddit.com/),
sourced by taking long screenshots using a smartphone, and then the images were inserted into our
application. The three videos selected for the application were downloaded from YouTube (YouTube is
a video-sharing platform. https:/ /www.youtube.com). These were a movie trailer, a funny video and
an educational video. The selection of content aimed to cover the general types of activities which
people may perform in their daily life.
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The sitting and walking conditions had an additional activity, namely non-use, where baseline
data was collected. For these non-use tasks, participants were asked to place the smartphone anywhere
they preferred while sitting or walking.

Each activity was two minutes long. Short breaks could be taken between activities. Participants
were asked to perform a total of 10 tasks. The order of conditions and tasks (excluding the baseline
tasks) was randomly generated to minimize any bias that could be introduced by the sequence of
tasks. The baseline task would always appear at the beginning of the sequence of tasks for the
corresponding condition.

After the tasks, participants were asked to fill out a questionnaire which included demographic
information and typical phone usage. We collected age, gender, dominant hand, phone model,
typical smartphone keyboard layout, and usual phone usage. The questions asked how often the
participant would typically engage in the activities tested in the study: that is, the frequency of
scrolling feeds, reading articles on their phone, typing and watching video, while sitting and walking.
The questionnaire data was used to investigate relationships between the participants’ daily reported
usage and collected data.

Two software applications were developed for this research: an Android app which participants
interacted with during the study and which collects smartphone IMU sensor data (described above),
and a python application which runs on a desktop computer to process the data and provide real-time
classification. The python application processed the data collected from the smartphone and performed
feature extraction and classification. The application also performed several validation functions
including 5-fold cross-validation. It generated correlation tables, confusion matrices and F1-scores.

Participant Recruitment and Data Acquisition

We recruited 21 participants for our study. Participants were recruited from the software
engineering and computer science students who were studying at the University of Auckland.
All participants gave their informed consent for inclusion before they participated in the study.
The study was conducted in accordance with the Declaration of Helsinki, and the protocol was
approved by the University of Auckland Human Participants Ethics Committee (UAHPEC) with
reference 023008. Among these participants, 15 were male (71.4%), and the remainder were female
(28.6%). The age of the participants ranged from 21 to 42 years, with a mean age of 25.1 and a median
of 23. Inclusion in the research required that the participants be familiar with using a smartphone
and have no physical limitations preventing them from interacting with the device. To maintain the
validity of our results and consistency between participants, a study protocol was developed and
strictly adhered to.

The sensor data was transmitted from the smartphone to computer via Bluetooth with a frequency
of 10 Hz. Transmission via Bluetooth was selected over Wi-Fi due to its availability, low cost and ease
of use. As the sensor data was sent, it was also labelled as the activity that was currently taking place
in the study; for example, while a participant was engaged with the scrolling task, we labelled all
data as scrolling. This process eliminated the need for manual labelling. The data transferred to the
computer included the timestamp, nine sets of sensor data (X, y, z-axis for accelerometer, gyroscope
and magnetometer) and the labelled smartphone activity.

The raw data from smartphone sensors is time-series data and it would not be feasible to put
such a large amount of data into the machine learning model at once. Therefore, a sliding-window is
used to segment the data into sections, where each section has the same amount of data. Each of the
segmented windows was used to classify an instance of the smartphone activity. Based on previous
ranges of suitable window sizes for similar investigations [8-10,12,14,16], we systematically explored
sizes of 2.56 s, 5 5, and 8 s. Consecutive windows had an overlap of 50%. Sampling frequencies
can have an impact on the performance of the classification. Further, power consumption differs
across sampling frequencies. To examine the effect of different sampling frequencies on the model’s
performance, we tested the two sampling frequencies which the smartphone can provide, which are
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5 Hz and 50 Hz. In our study, 9 participants’ data was sampled with a frequency of 5 Hz, and the
remaining 12 participants were sampled with a frequency of 50 Hz. The sensor data from these
participants for reading, scrolling, typing, watching and idle, while sitting and walking, is included in
the Supplementary Materials.

3.2. Feature Extraction And Classification

3.2.1. Feature Extraction

Feature extraction plays an essential role in the performance of the smartphone activity recognition
system. This process allows useful information to be extracted from the raw data which can then be
used to improve the performance and computation time of the machine learning algorithm.

Mourcou et al. compared Apple and Samsung Galaxy smartphone IMU sensors with gold
standard industrial robotic arm IMU sensors and found them to be comparable [34]. This research
supported the use of the raw data directly for feature extraction without any pre-processing filters.

Time and frequency domain features were selected. We extracted the following features from
our raw IMU sensor data: mean, standard deviation, variance, mean absolute deviation, minimum,
maximum, inter-quartile range, average resultant acceleration, skewness, kurtosis, signal magnitude
area, energy, zero-crossing rate, and the number of peaks of the data in the window. The description
of the features is shown in Table 2. The number of parameters indicates the number of parameters
related to each feature. There are nine sets of data related to means (one for each axis of each sensor)
and three sets of data related to average resultant acceleration (one for each type of sensor).

Table 2. List of features and description for the investigation of recognition of smartphone activities
with inertial measurement unit (IMU) sensors.

Features Number of Description
Parameters
Mean 9 The average value of the data for each axis in the window
Standard Deviation 9 Standard deviation of each axis in the window
Variance 9 The square of the standard deviation of each axis in the window
Mean Absolute 9 The average difference between the mean and each of the values for each
Deviation axis in the window
Window Minimum Value 9 The minimum value of the data for each axis in the window
Window Maximum Value 9 The maximum value of the data for each axis in the window
Inter-quartile Range 9 The range of the middle 50% of the values for each axis in the data
Average Resultant 3 The average of the square roots of the sum of the squared value of 3 axis
Acceleration for each type of sensor in the data
The degree of distortion of each axis from the symmetrical bell curve in
Skewness 9 .
the window
Kurtosis 9 The weight of the distribution tails for each axis in the window
Signal Magnitude Area 3 The normalized integral of 3-axis for each type of sensor in the window
Energy 9 The area under the squared magnitude of each axis in the window
. The number of times the data crossed the 0 value for each axis in
Zero Crossing Rate 9 .
the window
Number of Peaks 9 The number of peaks for each axis in the window

A correlation table for the features was generated using Pearson’s Correlation Coefficient.
The correlation coefficient helps to identify the strength of association between two features. Any two
features (i.e., a pair) with a high correlation coefficient absolute value are highly related, meaning one
cannot provide extra information to the algorithm if the other feature is already present. The presence
of both highly correlated features would affect the overall weighting of features, increasing bias



Sensors 2020, 20, 655 9of 18

and therefore reducing algorithm accuracy. We examined feature pairs for absolute correlations
of greater than 0.9 for removal, as these are classified as strongly related pairs [35]; one pair was
removed from the feature list. The comparison of the correlation table before and after removing these
features is shown in Figure 5. There are 71 features in the final list, which includes standard deviation,
variance, skewness, kurtosis, zero-crossing rate and the number of peaks for all three types of sensors,
mean for the accelerometer and gyroscope and minimum, maximum, average resultant acceleration,
signal magnitude area and energy for the accelerometer.

Correlation table for the Correlation table for features
original set of features after feature extraction
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Figure 5. Correlation table before and after feature extraction.

These features are further analyzed by completing the temporal autocorrelation, which is
the relationship between the successive values of the same feature. As shown in Figure 6,
the autocorrelation of the features can be categorized into three types: linear, periodic and no correlation.
The linear correlation means that the values of a feature are related to each other, so the closer two
values are in the timeline, the greater the correlation between them. Periodic correlation occurs when
the values of a feature are repeated in some frequency. Therefore, the value of an instance would be
highly correlated to values from some time units before. Lastly, no correlation means that the previous
value of a feature does not impact on the current value. This result shows how the sampling frequency
can have a significant impact on the performance of the algorithm, as critical information could be lost
if the sampling frequency is not high enough. To investigate the impact of sampling, nine participants’
data were collected with a sampling frequency of 5 Hz, and the rest were collected with 50 Hz.

3.2.2. Activity Classification

Selected features are put into machine learning models as training sets and are used for real-time
classification. We used the “scikit learn” python package for training the classifiers. We trained and
evaluated seven different classification algorithms: Multi-Layer Perceptron (MLP), Support Vector
Machine (SVM), K-Nearest Neighbor (KNN), Bootstrap Aggregating (Bagging), Adaptive Boosting
(AdaBoosting), Random Forest (RF) and Extremely Randomized Trees (also called ExtraTree, ET).

We used the k-fold cross-validation technique to evaluate the performance of the algorithms.
To minimize the bias between participants, no participant’s data appears in two folds. Therefore, 5-fold
cross-validation was used because the data we collected from the participants was not enough to
perform the 10-fold cross-validation (nine participants” data was collected in 5 Hz). The data used
for training the model is divided into five sets, where each set consists of data from two participants
on average. Among the five sets, one of them is selected to be the test set, and the remaining four
sets are used to train the classifier; the accuracy is then evaluated on the test set. This process is
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iterated for each of the sets, and the final validation result is the average of all iterations. We aimed to
classify the human smartphone activities into 10 labels—sitting scrolling, sitting reading, sitting typing,
sitting watching, sitting idle, walking scrolling, walking reading, walking typing, walking watching,
and walking idle.
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Figure 6. Autocorrelation for the final selected features.

We examine three population algorithms for classifying human activities—the Multi-Layer
Perceptron (MLP), Random Forest (RF) and Extremely Randomized Trees (ET).

Multi-Layer Perception is a feedforward artificial neural network (ANN) for supervised
classification [36]. This algorithm consists of interconnected nodes which can be divided into at
least three layers (an input layer, one or more hidden layers, and an output layer). Every connection
between nodes has a weight, and every node in the system except input nodes is associated with an
activation function which determines whether a signal should be fired or not based on the incoming
signal and its weight. The output of the algorithm is determined by how the signal propagates
through the nodes. The model is trained using the backpropagation technique. The advantage of using
Multi-Layer Perceptron is that it has the ability to learn complex, non-linear relationships, and it is
generalizable; and there is not restriction on how the data is distributed [36].

The Random Forest and Extremely Randomized Trees algorithms are similar. Random Forest is
an ensemble algorithm which constructs a large number of decision trees where each tree node splits
on a random subset of features [37]. The Extremely Randomized Trees algorithm is also a tree-based
ensemble method for supervised classification and solving regression problems [38]. There are two
major differences between these two algorithms. The first is that Extremely Randomized Trees
algorithm does not apply bagging for its training data; it uses the original dataset for all decision
trees. In contrast, Random Forest samples the original dataset with replacement to generate new
datasets for each of the trees. The second difference is the tree node splitting method. For the Random
Forest algorithm, the split of the tree node is based on the best feature among a random subset of all
features of the data, and it uses a majority vote to determine the final classification result. In contrast,
the Extremely Randomized Trees algorithm splits each tree node with a random number of features
and randomized cut-points [38].

The advantage of using the Random Forest algorithm is that it is an ensemble model. These usually
produce higher accuracy than individual algorithms. They also introduce randomness into the
algorithm to reduce the bias, which further improves its accuracy.



Sensors 2020, 20, 655 11 of 18

Due to the bootstrap sampling method and the randomness introduced in tree nodes splitting,
the corresponding nodes in different trees usually cannot split on the same feature. These two criteria
ensure the diversity of the individual trees, which significantly reduces error rate, allowing the majority
vote of trees to provide a more accurate result. The Extremely Randomized Trees algorithm maintains
most of the properties of the Random Forest algorithm but it minimizes its variance by increasing the
bias [38]. The Extremely Randomized Trees algorithm is faster than the Random Forest, and as the size
of the dataset increases, this difference increases. This efficiency property is ideal for mobile devices as
the computational power required to perform classification is limited.

4. Results

In total, 207 blocks of 2-minute activity data were recorded from the 21 participants. Three blocks
were invalid due to hardware failure. Several different window sizes and sampling frequencies
were tested using 5-fold cross-validation. The results are shown in Table 3. The performance of the
MLP, RF and ET algorithms were very close to each other, and they always outperformed the other
algorithms, and the results from the two sampling frequencies were very close to each other. Therefore,
we chose to consider these three algorithms for the rest of the study. From the Table 3, it is observed
that the longer the window size, the better the performance. To test whether this is true for even
longer window sizes, we did further tests on window sizes of 10 s, 15 s and 20 s, as shown in Table 4.
We noticed that for 50 Hz data, optimal accuracy is likely to occur when the window size is around
15 s. For the three good algorithms we found to be the best (MLP, RF and ET), the accuracy decreases
at 20 s (best accuracy of 67.7% =+ 2.8% occurs when using MLP with a 15-s window size). And for
the 5 Hz data, the optimal window size occurs beyond 20-s, which is too long to be used for real life
application. We note that recent research on media multitasking demonstrates that users engage in
continuous digital tasks for on average 11 s before switching attention [39]. Thus users will perform
the activities we classified (i.e., reading, watching) for more than five seconds, which means a five
second recognition delay would not be problematic. Therefore, we propose that five seconds is an
ideal window size to balance accuracy with responsiveness in our study. With the five-second window
size, 4639 samples of data were extracted from the 50 Hz data, and 3620 samples from the 5 Hz data.

Table 3. Cross-validation accuracy and standard deviation for the classification algorithms trained for
different window sizes.

Algorithms 50 Hz with 2.56s 50 Hz with5s 50 Hzwith8s 5Hzwith2.56s 5Hz with5s 5Hz with 8 s
Window Size Window Size  Window Size Window Size Window Size  Window Size

MLP 60.3% +2.9% 62.2% +3.1%  64.5% +3.1% 60.3% =+ 3.8% 62.8% =+ 3.5% 64.6% 4 4.3%
SVM 36.9% + 5.3% 36.3% +4.3%  35.1% + 4.4% 34.4% +122%  33.0% +13.7% 31.8% +12.2%
KNN 44.5% + 4.5% 43.4% +52%  42.7% £+ 4.6% 40.0% £ 7.7% 38.5% +7.3%  37.8% +5.5%
Bagging 56.0% + 7.1% 55.9% +4.7%  58.5% =+ 6.4% 57.4% + 3.7% 57.9% +6.8%  56.7% £ 7.6%
AdaBoosting  37.3% £2.1% 381% +78%  27.0% =+ 6.1% 33.9% +3.9% 31.4% £10.0% 31.2% +10.5%
RF 58.2% + 7.2% 60.0% +8.5%  61.0% + 8.8% 61.3% + 6.2% 61.8% +5.6% 63.1% + 6.2%

ET 60.4% + 5.4% 61.8% +6.2%  62.6% +5.4% 62.6% +5.7% 63.8% + 6.0% 64.6% £+ 5.7%

Table 4. Cross-validation accuracy and standard deviation for the classification algorithms trained for

longer window sizes.

Algorithms 50 Hz with 10 s 50 Hzwith15s 50Hzwith20s 5Hzwith10s 5Hzwith15s 5 Hzwith20s
Window Size Window size Window Size Window Size Window Size  Window Size

MLP 65.5% =+ 3.8% 67.7% +2.8% 67.0% + 4.5% 64.8% + 5.3% 64.8% +5.5%  66.3% + 3.6%
SVM 34.9% + 4.6% 32.9% + 5.6% 33.5% + 5.0% 31.8% +11.8% 335% +11.9% 33.2% £ 14.2%
KNN 41.1% £ 5.3% 39.4% + 4.0% 35.7% +5.0% 37.3% +5.7% 37.7% £5.6%  37.9% £ 3.9%
Bagging 55.9% + 4.3% 54.9% + 3.7% 57.7% + 4.6% 56.4% + 4.1% 57.7% + 6.3%  56.5% + 5.2%
AdaBoosting  28.6% £ 7.8% 28.9% +12.2%  34.9% +10.1% 21.1% +2.5% 23.0% £ 6.5%  22.7% +4.5%
RF 61.1% + 7.6% 60.3% =+ 8.6% 61.0% +9.2% 63.5% + 5.8% 65.6% +6.8%  65.4% +7.7%

ET 62.6% +5.2% 63.8% + 6.0% 63.0% + 5.5% 65.6% + 6.2% 65.8% +6.5%  66.6% + 5.2%
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The normalized confusion matrix was evaluated for each of the three models using data from two
frequencies with a window size of 5 s; this is shown in Figure 7. The confusion matrix is a table which
summarizes the classification result for each label; it breaks down the correct and incorrect predictions
for each label related to other labels to help visualize how the model makes predictions. Figure 7 shows
that all models have difficulties in distinguishing between reading and scrolling activities; this occurs
in both the sitting and the walking condition. This difficulty is likely due to the similarities in the
gestures involved in the activities. Therefore, to improve the accuracy of our results, we decide to
combine these two labels into one label.

Normalised Confusion matrix for 50 Hz data using Mli% Normalised Confusion matrix for 50 Hz data using RF Normalised Confusion matrix for 50 Hz data using E‘{O
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Figure 7. Confusion matrix for the three models (Multi-Layer Perceptron (MLP), Random Forest (RF)
and Extremely Randomized Trees (ET)) with different frequencies.

4.1. Reducing Labels

Due to the similarity in gesture motion between reading and scrolling, we decided to combine
these two activities into one, and only use label “scrolling” for both activities. Both of these activities use
a vertical swipe gesture on the smartphone, but usually with different frequencies; from observation,
the frequency of vertical swipe while reading is generally lower than scrolling. After the label of
reading was replaced by scrolling, the performance of the models was improved, as shown in Table 5.
The table shows that in general, a higher sampling frequency can provide a better result. This was
further confirmed by the confusion matrix of the models after we combined the labels, as shown in
Figure 8. With a lower sampling frequency, the model would have difficulty in classifying activities
between scrolling and typing, especially when the user is walking. Therefore, to achieve higher
accuracy, a higher sampling rate is necessary, which means it is not feasible to maintain a reasonable
accuracy and reduce power consumption by using lower sampling frequency. To determine which
of the three models has the best performance, we compared precision, recall and F1-scores (Table 6).
The Extremely Randomized Trees algorithm has the highest precision, recall and f1-score.
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Table 5. Cross-validation score for the three models (MLP, RF and ET) with different frequencies.

Algorithms

All Labels

Combined Reading and Scrolling

MLP with 50 Hz data
RF with 50 Hz data
ET with 50 Hz data

MLP with 5 Hz data
RF with 5 Hz data
ET with 5 Hz data

62.2% £+ 3.1%
60.0% =+ 8.5%
61.8% £ 6.2%
62.8% £ 3.5%
61.8% £ 5.6%
63.8% £ 6.0%

75.4% £ 2.6%
77.0% £ 6.5%
78.6% £ 5.3%
75.0% £+ 4.5%
73.7% £ 5.5%
74.7% £ 4.6%
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Figure 8. Confusion matrix for the three models (MLP, RF and ET) with different frequencies,
after combining labels.

Table 6. Precision, recall and F1-score for MLP, RF and ET.

Algorithms Precision Recall Fl-score
MLP with 50 Hz data 0.961 0.959 0.960
RF with 50 Hz data 0.963 0.952 0.957
ET with 50 Hz data 0.978 0.971 0.974
MLP with 5 Hz data 0.922 0.915 0.918
RF with 5 Hz data 0.931 0.908 0.915
ET with 5 Hz data 0.940 0.913 0.921

4.2. Reading Quality

Short multiple choice questions were added after each reading task to motivate the participant
to pay attention to reading. Each participant’s answers to the multi-choice questions were recorded
and analyzed to help determine the quality of reading. The results of the questions are shown in
Table 7. This table shows how the participants performed under different conditions. For example,
nine participants read article 1 under the sitting condition, and five of them answered the question
correctly. The table was based on the question answers from 18 participants. The data from three
participants was not valid because of technical issues. Due to the randomization of condition order
and article orders, the number of participants under each condition with each article in the reading
task was different. The results show a higher reading quality for the sitting condition than in the
walking condition. This is expected as under the sitting condition there is less distraction and less for
the participant to focus on. During the walking condition, the participants needed to pay attention to
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the environment while reading the articles. The study facilitators noticed a significant reduction in
speed when participants performed activities while walking. Participants tended to walk more slowly
than what would be considered typical while typing or reading articles.

Table 7. Results of the questions after reading task as an approximation of reading quality.

Article 1 Article 2 Article 3 Correctness
Sitting Condition Correct: 5, Incorrect: 4  Correct: 2, Incorrect: 1 Correct: 4, Incorrect: 2 61.1%
Walking Condition  Correct: 1, Incorrect: 3 ~ Correct: 2, Incorrect: 6  Correct: 2, Incorrect: 4 27.8%
Correctness 40.3% 50% 50% 44.5%

4.3. Self-Reported Frequency of Engaging in Smartphone Activities

The questionnaire response data found differences in the frequency with which participants
engaged in scrolling, reading, typing and watching videos, with a lower frequency of video watching
compared to other activities (Table 8). Most participants reported that they performed the activities at
least daily (i.e., scrolling feeds, reading, texting, and watching videos on a smartphone). More than
90% of the participants read, texted and scrolled feeds at least daily, whereas only 52% watched videos
on a smartphone at least daily. Approximately half of the participants reported engaging in reading,
texting and scrolling while walking on a daily basis, and only one participant watched videos on their
smartphone while walking on a daily basis.

Table 8. Frequencies of participants” smartphone activities.

Activities Constantly A Few Daily A Few Times Once a Week
throughout the Day  Times a Day per Week or Less
Typing 38.1% 42.9% 14.3% 4.8% 0%
Reading 42.9% 38.1% 14.3% 4.8% 0%
Watching video 4.8% 33.3% 14.3% 28.6% 19.0%
Scrolling news feeds 33.3% 33.3% 23.8% 4.8% 4.8%
Typing while walking 4.8% 38.1% 19.0% 23.8% 14.3%
Reading while walking 14.3% 14.3% 23.8% 28.6% 19.0%
Watching video while walking 0% 4.8% 0% 28.6% 66.7%
Scrolling news feeds while walking 9.5% 4.8% 28.6% 28.6% 28.6%

5. Discussion

We have conducted a study with human participants to investigate the accuracy with which
IMU sensor data can be used to classify the typical activities that people perform on smartphones:
scrolling, typing, and watching videos while seated or walking. Using the Extremely Randomized
Trees algorithm, we achieved an activity recognition accuracy of 78.6%. To further validate the
performance of the model, we performed the 5-fold cross-validation on the 5 Hz data with the same
setting, which resulted in an accuracy of 75.0%. In order to use all the data we collected from 21
participants, we subsampled the 50 Hz data, and produced a higher cross-validation score of 78.2%,
with a lower standard deviation. An increase in dataset size reduces the impact of outliers and unusual
data, thus reducing the bias of the dataset and resulting in an increase in accuracy. Thus, it is reasonable
to conclude that the performance of our model would increase with a larger dataset.

To explore whether the data we collected was sufficient to train the model, an accuracy vs sample
size plot was created for each of the three models, as shown in Figure 9. The plots suggests that the
accuracy of the model became fairly stable when the sample size was greater than 1500. This supports
that the amount of data we collected was sufficient to produce a valid result.
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Accuracy vs sample size plot for MLP Accuracy vs sample size plot for RF Accuracy vs sample size plot for ET
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Figure 9. Accuracy vs sample size plot for the three models (MLP, RF and ET).

The accuracy of our model is only fair and we note that it is lower than some prior studies.
The movement involved in the general smartphone activities which we targeted is small, as phones
do not move excessively when people are scrolling, typing or watching videos. These activities are
physically smaller than the activities which were classified in the prior studies. They include general
physical activities which involve large movements of the entire body such as walking [8-17], ascending
and descending stairs [8-11,13-17], jogging (fast walking) [11,13,16,17], running [10-12,15,17],
biking [12,16], standing [8-10,12-14,16,17], sitting [8-10,12-17], and lying [8,9,14], in addition,
Hassan et al. also includes transition between the activities (for example moving from sitting to
standing) [8], Bayat et al. includes aerobic dancing [11], Shoaib et al. includes other activities such as
eating, typing, writing, smoking, drinking coffee and giving a talk [16], and lastly, Lu et al. includes
several race walking and basketball playing activities [17]. Some prior work used multiple devices and
additional sensors for data collection [15-17] and restricted the placement of the devices [9,11-15,17]
(for example, placing smartphone in trousers pocket) to reduce variations in the data in order to
improve the performance. In contrast, we did not give specific instructions to participants as we
wanted them to perform activities in typical ways. Our research is lightweight, and only uses IMU
sensors for recognition, and we did not restrict how the participants used the smartphone. Our work
demonstrates that we can achieve reasonable performance in tracking smartphone activities on an
“unrooted” smartphone using only IMU sensors.

In our study, we found a similarity between the reading and scrolling activities. We argue that it
is reasonable to classify both activities as scrolling because they are similar except for the frequency
of the vertical swipe gesture and the range of movement. This similarity is reflected in the confusion
matrix, where there is a high probability of a reading activity being classified as a scrolling activity
(and vice versa).

Our model includes typical activities done on smartphones. We initially considered other activities
such as playing a mobile game, reading an eBook and side-swiping (for e.g., a digital carousel or a
photo album) but these were excluded. We did not select gaming as one of our activities because
smartphone games can have enormous variation in the types of movements and gestures that are
performed. Different games can have a different controlling method; for example, Flappy Bird only
requires tapping. In contrast, driving simulation games can require placing the phone in landscape,
and rotating the phone during the game to control the car. Similarly to playing games, there are
three major types of gestures which can be used while reading an eBook: vertical swipe, side-swipe
or tapping, and different users or applications may have different preferences for which is used.
Side-swipe gestures, in general, were found to be less common, especially when the user needs to
perform side swipe for more than 5 s. As a result, our final classification was based on four typical
activities: scrolling, typing, watching and non-use. Each of these activities was performed under the
two conditions, sitting and walking.

We had to discard some data due to technical difficulties and in situations when participants
acted outside the scope of our study, invalidating their data. Only a small proportion of data was
discarded due to technical issues. Once the test phone was accidentally disconnected from the laptop,
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which prompted the necessity to restart the Android application. Since the order of the contents was
randomly generated, the participant might be presented with the same content twice, this may have
affected their behavior and data.

At the current stage, the processing power of most smartphones is capable of performing this
kind of recognition on its own by deploying the machine learning model to the smartphone. However,
the high computational power required by the process would drain the battery, which may not be
feasible for running the recognition for a long time. One possible solution would be to send the heavy
computational tasks to a remote server to reduce the battery drain on the smartphone and would
extend the endurance of the phone. One other possible solution would be to only turning on the
recognition on during critical periods.

Limitations

Limitations of this research include the small sample of participants, the restricted number
of labels used in the classification, and the physical environment involved in the study. We only
recruited 21 participants. Given that we separated the data collection into two different frequencies,
we would need more data to maximize accuracy. Since all of the participants recruited were university
students, and most studied computer science or software engineering, the result of classification
may not represent the more general population. More participants need to be recruited from more
varied backgrounds and fields to produce a more generalizable result. As described above, the labels
classified do not include gaming or game-related activities. However, this limitation is unlikely to
be overcome as the gestures used in gaming can overlap with the gestures used in other activities.
One of the possible ways to detect whether a person is gaming is to use facial recognition or sensors
which collect physiological signals of the human body in order to classify the person’s emotion.
The system can be combined with smartphone IMU sensors to predict the user’s smartphone activity.
Activities performed in the walking conditions were performed as participants walked around a
foyer. Participants had to walk in a circuit more than ten times, which may not be representative of a
real-world environment.

6. Conclusions and Future Directions

In this paper, we reported on a study which shows how accurately smartphone IMU sensors
can classify typical smartphone activities. We developed an Android application which collected
IMU sensor data and used it to train a machine learning model for smartphone activity classification.
The classifier can distinguish four different activities (scrolling, typing, watching videos, non-use)
under two different conditions (sitting and walking) with an accuracy of 78.6% using the Extremely
Randomized Trees algorithm.

To improve this research and make the results more realistic, more participants need to be recruited
from different user groups (i.e., different occupations and different age groups). Our future research
will include the collection of sensor data with participants using their smartphones naturalistically
rather than in a prescribed experiment. To do so, we would develop an app which collects sensor
data and that sends it to a remote server in the background while the user performs their usual
activities. We can explore how to involve the user in improving the labeling and reliability of the data.
For instance, the smartphone app could display how users” behavior was labeled, and enable them to
correct those labels if necessary.

Another important direction for further research is to investigate the performance of the models
for long-term single person use. Due to the behavioral differences between users, the model is not
specific for a single person. The accuracy of the model can be improved by training on a sufficient
amount of data from a single person, which would allow the classification to be more personalized
and more accurate for that person.

Our research provides insight into the question of whether typical smartphone activities can
be recognized using standard internal smartphone sensors. Such recognition could provide benefits
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such as personalization based on smartphone activities, but also indicates risk for user monitoring via
IMU sensors.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/3/655/
sl.
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