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Abstract: Multilateration tracking systems (MLTSs) are used in industrial three-dimensional (3D)
coordinate measuring applications. For high-precision measurement, system parameters must
be calibrated properly in advance. For an MLTS using absolute distance measurement (ADM),
the conventional self-calibration method significantly reduces estimation efficiency because all system
parameters are estimated simultaneously using a complicated residual function. This paper presents
a novel self-calibration method that optimizes ADM to reduce the number of system parameters via
highly precise and separate estimations of dead paths. Therefore, the residual function to estimate
the tracking station locations can be simplified. By applying a suitable mathematical procedure
and solving the initial guess problem without the aid of an external device, estimation accuracy of
the system parameters is significantly improved. In three self-calibration experiments, with ADM
repeatability of approximately 3.4 µm, the maximum deviation of the system parameters estimated
by the proposed self-calibration method was 68.6 µm, while the maximum deviation estimated by the
conventional self-calibration method was 711.9 µm. Validation of 3D coordinate measurements in a
1000 mm × 1000 mm × 1000 mm volume showed good agreement between the proposed ADM-based
MLTS and a commercial laser tracker, where the maximum difference based on the standard deviation
was 17.7 µm. Conversely, the maximum difference was 98.8 µm using the conventional self-calibration
method. These results confirmed the efficiency and feasibility of the proposed self-calibration method.

Keywords: multilateration; self-calibration; absolute distance measurement; initial guess

1. Introduction

In recent decades, the demand for accurate measurement of large structures has increased
considerably. Accordingly, large-scale metrology has played an important role in industrial
applications [1,2]. Since the first interferometry-based prototype was introduced by Lau et al.
in the 1980s [3,4], laser tracking systems have been widely used in many engineering applications such
as robot metrology, precision machine calibration, automotive and aircraft assembly, and industrial
shipbuilding [1,2,5]. A single laser tracker incorporates angle sensors on two rotational axes, which
carry the interferometer, thus providing a spherical coordinate measurement system. Moreover,
the use of absolute distance measurement (ADM) offers the convenience of re-establishing distance
data after a beam-break event, as well as dynamic measurement related to speed improvement [5,6].
However, the uncertainty associated with angular information remains the main source of error in
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large-volume measurement [7]. Efforts to reduce this error have led to the use of multilateration
tracking systems (MLTSs), in which angle measurement is entirely removed and only multi-distance
information is used for three-dimensional (3D) coordinate measurement [8]. Theoretically, an MLTS
could improve measurement accuracy if the remaining uncertainty sources (e.g., system configuration
and the self-calibration process) are carefully considered [9]. The conventional self-calibration method
for incremental distance measurement (IDM)-based MLTSs has been extensively studied to enhance
overall performance in 3D coordinate measurement [10–13]. However, to the best of our knowledge,
there have been no reports of a custom-designed self-calibration method for ADM-based MLTSs, which
could implement advantages of ADM to provide high-precision estimation of system parameters
(i.e., dead paths and tracking station locations).

The conventional self-calibration algorithm for a multilateration system using IDM was developed
and implemented by Zhuang et al. [10] and Takasuji et al. [11–13]. In detail, before calculation of the
3D coordinates of target points, all system parameters are simultaneously estimated by minimizing
a nonlinear residual function [13]. Because all system parameters must be repeatedly calibrated
at the beginning of a new measurement, estimation of those parameters can become unstable in
some circumstances. Thus, the optimization process may lead to poor estimation or convergence
failure [13,14]. Furthermore, the lack of an analytical calculation of the initial guess, performed to
overcome the local minimum problem of nonlinear optimization process, could be a critical problem
when good initial guesses of the system parameters are not obtained [15,16].

With the aim of providing a solution to the above-mentioned issues, this paper presents a novel
self-calibration method for an MLTS using ADM, in which the advantages of ADM are effectively
optimized to improve the efficiency of the self-calibration process and provide good initial guesses for
least squares estimation. In detail, the self-calibration process is divided into two steps: estimation
of dead paths and estimation of tracking station locations. Here, the tracking station is a device for
tracking a target in 3D space and measuring the absolute distance to the target, and the dead path is
the offset distance between the origin of ADM and the tracking station location (i.e., rotating center
of tracking station). A small number of system parameters are then estimated in each step, which
reduces the complexity of the original residual function. Moreover, when precise dead paths have been
obtained, re-estimation is not required [5]. Notably, by using the roughly estimated elevation angle
offset, the initial guess problem can be solved automatically without the aid of any external device.
This enables improvement of the on-site calibration of tracking station locations. By combining the
two-step self-calibration approach and automated calculation of the initial guesses, the self-calibration
performance can be considerably improved. Finally, the estimated system parameters are ready for use
in actual measurement applications.

The remainder of this paper is organized as follows. Section 2 provides the background of the
conventional self-calibration method. Section 3 presents the detailed mathematical model of the
proposed self-calibration method in two parts: dead-path estimation and on-site calibration of tracking
station locations. Section 4 shows the simulation results and experimental findings.

2. Conventional Self-Calibration Method for 3D Coordinate Measurement

The schematic in Figure 1 depicts the conventional self-calibration method for an MLTS using
IDM, in which the typical locations of four tracking stations are selected in the MLTS coordinate system
as follows: TS1(0, 0, 0), TS2(X2, 0, 0), TS3(X3, Y3, 0), and TS4(X4, Y4, Z4). Theoretically, the MLTS uses
at least three tracking stations. The 3D coordinates of the target point are then identified using the
trilateration formula [10]. However, information concerning the locations of tracking stations (X2, X3,
Y3, X4, Y4, and Z4) must be known in advance. Furthermore, only the relative distance lij is measured
in an IDM-based MLTS. Thus, the initial lengths (d1, d2, d3, and d4), which are defined as the distance
from each tracking station to initial point P0 (where interferometers are reset to zero), must be known
to calculate the exact distance from each tracking station to target point Pj(xj, yj, zj).



Sensors 2020, 20, 7288 3 of 16

Figure 1. Schematic of the conventional self-calibration method for a multilateration tracking system
using incremental distance measurement.

In this circumstance, the concept of self-calibration is proposed, whereby inclusion of an additional
tracking station provides an over-determined system, in contrast to a system that uses an external
device for calibration. The initial lengths and locations of tracking stations can then be self-calibrated.
The original residual function used in the conventional self-calibration method [13] is as follows:

Rori =
4∑

i=1

n∑
j=1

{[
(x j − Xi)

2 + (y j − Yi)
2 + (z j − Zi)

2
]1/2
− (d i + li j)

}2
(1)

where n is the number of measurement points for self-calibration, Xi, Yi, Zi represent the location of
the ith tracking station, xj, yj, zj are coordinates of measurement point Pj, di is the initial length of the ith

tracking station, and lij is the relative distance determined by IDM. A simpler version that helps to
reduce the complexity of the residual function has been proposed to improve estimation accuracy [13].
This simplified equation is as follows:

Rori_sim =
n∑

j=1

{[
(x j − X4)

2 + (y j − Y4)
2 + (z j − Z4)

2
]1/2
− (d 4 + l4 j)

}2
(2)

As specified in Equations (1) and (2), all system parameters (i.e., initial lengths and locations of
tracking stations) are simultaneously estimated in the conventional self-calibration method.

3. Proposed Self-Calibration Method for an ADM-Based MLTS

The schematic in Figure 2 depicts the proposed self-calibration method for an MLTS using ADM, in
which the typical locations of four tracking stations are selected in the manner shown in Figure 1. In the
IDM-based MLTS, the initial lengths vary depending on the position of the initial point. In contrast,
the dead paths (d1, d2, d3, and d4) of an ADM-based MLTS, defined as the distance between the origin
of ADM and the location of each tracking station, are fixed values. Thus, these parameters can be
utilized continuously following calibration. Accordingly, the absolute distances from each tracking
station to all target points can be attained.
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Figure 2. Schematic of the proposed self-calibration method for a multilateration tracking system using
absolute distance measurement.

Rather than simultaneously estimating all system parameters, the proposed self-calibration process
for an ADM-based MLTS is divided into two steps: (1) estimation of dead paths and (2) estimation of
tracking station locations. Four and six system parameters, respectively, are included in these two
steps. Because a small number of system parameters are estimated in each step, the residual function
complexity is reduced. This might enhance the performance of the self-calibration process. Because
step (1) can be executed independently of step (2), the estimation of dead paths can be improved by
using a high-precision reference positioning system, such as a coordinate measuring machine (CMM).

3.1. Step 1: Estimation of Dead Paths

3.1.1. Estimation of Elevation Angle Offsets for Automated Initial Guess of System Parameters

The nonlinear least squares method is commonly used to estimate system parameters when a
multilateration scheme is adopted [17–21]. Therefore, the initial guesses of tracking station locations
should be sufficiently accurate to avoid convergence failure or a local minimum problem. Considering
the spherical coordinate system at each tracking station, if comprehensive calibration of all geometric
parameters (described in a previous study [22]) is skipped and only the elevation angle offset is
roughly estimated with the dead path in advance, each tracking station can report the approximate 3D
coordinates of target points with sufficient accuracy for an initial guess. The relationship of all tracking
station locations can be determined by the best rigid transformation.

The schematic in Figure 3 shows the estimation of elevation angle offsets and initial guesses of
dead paths, whereby the four tracking stations are located in front of the grid of reference points
provided by a high-precision positioning system. Under the assumption that the positioning system
is sufficiently accurate, the distance between the reference points can be regarded as a fixed term
(nominal distance provided by reference positioning system) in a least-squares adjustment. At tracking
station 1, the elevation angle offset (E1) and initial guess (d1_ini) of dead path (d1) can be estimated by
minimizing the residual function Rele1, as follows:

Rele1 =
n−1∑
j=1

ε2
ele1_ j =

n−1∑
j=1

{[
(x j − x j+1)

2 + (y j − y j+1)
2 + (z j − z j+1)

2
]1/2
− lre f _ j

}2
(3)
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where n is the number of reference points and lref_j is the nominal distance between two reference
points, Pj(xj, yj, zj) and Pj+1(xj+1, yj+1, zj+1). These reference points are also provided in the local
coordinates of tracking station 1, using the following formulas:

x j = (l 1 j + d1_ini) × sin(θ 1 j + E1) × cos(ϕ 1 j) (4)

y j = (l 1 j + d1_ini) × sin(θ 1 j + E1) × sin(ϕ 1 j) (5)

z j = (l 1 j + d1_ini) × cos(θ 1 j + E1) (6)

where l1j is the measured absolute distance at tracking station 1, θ1j is the measured elevation angle,
and ϕ1j is the measured azimuth angle. The elevation angle offsets (E2, E3, and E4) and the initial
guesses (d2_ini, d3_ini, and d4_ini) of the dead paths of the remaining tracking stations are estimated in a
similar manner.

Figure 3. Schematic of estimating elevation angle offsets and initial guesses of dead paths.

3.1.2. Estimation of Dead Paths

Because information concerning dead paths (d1_ini, d2_ini, d3_ini, and d4_ini) is obtained based on
angle measurements, which are relatively inaccurate, these measurements are used only as the initial
guesses for dead-path estimation. In contrast, only distance information is used for actual dead-path
estimation. By using the same schematic shown in Figure 3, the residual function R1 for estimating the
dead path of tracking station 1 is defined as the total sum of squares error εd1_j, as follows:

R1 =
n∑

j=1

ε2
d1_ j =

n∑
j=1

{[
(x j − X1)

2 + (y j − Y1)
2 + (z j − Z1)

2
]1/2
− (d 1 + l1 j)

}2
(7)

where xj, yj, and zj are the coordinates of the reference target point, while X1, Y1, Z1, and d1 are
the location and dead path of tracking station 1, respectively. Here, xj, yj, zj, and X1, Y1, Z1 are the
coordinates defined by the reference positioning system.

Denoting W1 as the vector of X1, Y1, Z1, and d1, W1 is estimated by an iterative solution based on
minimization of R1, as follows:

Wk+1
1 = Wk

1 + ∆k
1 (8)

where iteration step k = 1, 2 . . . m, W1
k=1 is the initial guess of W1, and ∆1 is the vector of a correction

term. Notably, X1, Y1, and Z1 of W1
k=1 can be determined using a predefined layout and technical

drawings, but they are determined more conveniently and accurately by using the estimated E1 and
d1_ini. The coordinates of target points expressed in the reference positioning system can also be
expressed in the local coordinate system of tracking station 1. The initial guesses of X1, Y1, and Z1 can
be obtained through coordinate matching between the two coordinate systems. A detailed description
of the process has been omitted because it is similar to the method described in Section 3.2 and Figure 4.
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Denoting L1 as a vector of the residual error εd1_ j at current guess value of W1, ∆1 is determined
by taking the derivative of R1 with respect to ∆1, as follows:

∂R1

∂∆1
= − JTL1 + JTJ∆1 (9)

where J is a Jacobian matrix. Setting ∂R1
∂∆1

= 0, the normal equation for determining ∆1 in each iteration
step is obtained as follows:

JTJ∆1 = JTL1 (10)

To guarantee numerical stability, Equation (10) is solved using singular value decomposition or
QR decomposition. The iterative process is stopped when the difference between two consecutive
values of W1 is smaller than a convergence criterion (a typical value is approximately 10−8). The dead
paths of the remaining tracking stations are estimated in a similar manner.

3.2. Step 2: On-Site Calibration of the Tracking Station Locations

After estimation of dead paths and elevation angle offsets using the high-precision positioning
system, four tracking stations can be installed for real 3D coordinate measurements based on the MLTS
principle. Because each tracking station reports the approximate coordinates of the target points in its
local coordinate system, a transformation step shown in Figure 4 is performed to obtain the initial
guesses of the tracking station locations in the global MLTS coordinate system.

Figure 4. Transformation from local coordinates to global multilateration tracking system
(MLTS) coordinates.

In detail, the relationships among all tracking stations (rotation matrix R and translation matrix
T) are identified by applying the best-fitting rigid transformation from the local coordinates (pj) of
tracking stations 2–4 to the local coordinates (qj) of tracking station 1. The principle is based on
minimization of the function Rtrans, as follows:

Rtrans =
n∑

j=1

‖

(
Rp j + T

)
− q j‖

2 (11)

Subsequently, the locations of tracking stations 2–4 are found in the local coordinate system of
tracking station 1. This essential information is then transferred into the global Cartesian coordinates
of the MLTS, in which tracking station 1 is regarded as the origin, tracking station 2 is on the x-axis,
tracking station 3 is on the xy-plane, and tracking station 4 is out of the xy-plane. Following this
transfer into the global MLTS coordinates to obtain the initial guesses of the tracking station locations,
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the vector of the tracking station locations is estimated by minimization of the residual function Ron_site,
defined as:

Ron_siee =
n∑

j=1

ε2
j =

n∑
j=1

{[
(x j − X4)

2 + (y j − Y4)
2 + (z j − Z4)

2
]1/2
− (d 4 + l4 j)

}2
(12)

where, l1j, l2j, l3j, and l4j are measured absolute distances and d1, d2, d3, and d4 are the dead paths
of tracking stations 1, 2, 3, and 4, respectively. The xj, yj, zj coordinates are given by the following
trilateration formula:

x j =
(d 1 + l1 j

)2
− (d 2 + l2 j)

2 + X2
2

2X2
(13)

y j =
(d 1 + l1 j

)2
− (d 3 + l3 j)

2 + X2
3 + Y2

3 − 2X3.x j

2Y3
(14)

z j =
(
(d 1 + l1 j

)2
− x2

j − y2
j

)1/2
(15)

The flow chart shown in Figure 5 summarizes the proposed self-calibration method for estimation
of system parameters, including dead paths and tracking station locations.

Figure 5. Flow chart of the proposed self-calibration method for an absolute distance measurement
(ADM)-based MLTS.

4. Experimental Results

4.1. Experiment Setup

Figure 6a shows the experimental setup for self-calibration and 3D coordinate measurement.
The layout was considered first [11,13,17]. Then, based on actual experimental conditions with respect
to the acceptance angle of the retroreflector and the rotation limitations of each tracking station,
the nominal layout was selected as follows (all in mm): TS1(0, 0, 0), TS2(700, 0, 0), TS3(700, 700, 0),
and TS4(350, 350, −350).

The 25 target points chosen for self-calibration were uniformly distributed in a 500 mm × 500 mm
square area that was approximately 600 mm from the xy-plane of the MLTS. The 52 points selected for
actual 3D coordinate measurement were equally distributed in four parallel planes in a 1000 mm ×
1000 mm × 1000 mm volume, which was located approximately 1000 mm from the xy-plane of the
MLTS. To provide target position measurement for self-calibration and 3D coordinate measurement,
a cat’s eye retroreflector was installed at the CMM (DUKIN, GIANT-251515). To further verify the
efficiency and feasibility of the proposed method, a commercial laser tracker from Leica Geosystems
(AT960-MR, Heerbrugg, Switzerland), for which the accuracy was ± 15 µm + 6 µm/m, was used
to provide comparable 3D coordinate measurement results. The experiment for the self-calibration
process was designed first. A 3D coordinate measurement based on the estimated system parameters
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was then conducted and the measured 3D coordinates were compared with the coordinates determined
by AT960MR. The experiment was carried out in a laboratory environment where the temperature was
controlled to 20 ± 1 ◦C.

Figure 6. Experimental setup for self-calibration and 3D coordinate measurement: (a) Schematic of
experimental setup; (b) Photograph of experimental setup.

As shown in Figure 6b, the tracking station carries the optic module for ADM. Basically, the tracking
station is a combination of precision ball bearings and motors that can create two-way rotational
motion. However, using a reference ball, the optical axis and two rotation axes were carefully aligned
to match each other to reduce the measurement error caused by geometric misalignment [9,22]. The
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resolutions of the encoders used for azimuth and elevation axis were approximately 0.21 arcsec and
0.79 arcsec, respectively.

Figure 7 shows the configuration of the ADM for the MLTS. The ADM module was designed to
measure the absolute distance between each tracking station and the retroreflector, in which the dead
path was excluded. In the ADM, a time-of-flight method involving asynchronous optical sampling
was applied to measure long distance with high precision [6,23–25].

Figure 7. Configuration of absolute distance measurement for the MLTS (fs: femtosecond).

For asynchronous optical sampling, two femtosecond lasers with slightly different repetition
rates were used. Femtosecond laser #1 generated femtosecond laser pulses with a repetition rate of
approximately 100 MHz (fr). The power of the generated laser pulses was divided into four directions
by a 1 × 4 coupler and then delivered to each tracking station through an optical fiber. Some of
the laser pulses arriving at the tracking stations were reflected back from the reference plane (Mref).
The remaining transmitted pulses were reflected by the retroreflector and returned back through
the optical fiber (Mtar). The reflected laser pulses (Mref and Mtar) were coupled with laser pulses
from femtosecond laser #2 in a polarization state perpendicular to each other in the polarizing beam
splitter (PBS), and were incident on the nonlinear optical crystal (PPKTP). At this point, due to the
difference in the repetition rates (∆fr, approximately 2 kHz) of the two femtosecond lasers, the laser
pulses of femtosecond laser #1 were scanned and sampled by the laser pulses of femtosecond laser #2.
The absolute distance l from reference plane to the retroreflector was determined as follows:

l = c
∆t
2

= c
∆T
2

(
∆ fr
fr

) (16)

where c is the speed of light in the air, ∆t is the delay of the laser pulse, and ∆T is the delay of the
sampled radiofrequency signal. The absolute distances from each tracking station were measured
sequentially while switching the high-speed optical switch.

4.2. Simulation and Experimental Verification of the Proposed Self-Calibration Method

With the experimental setup shown in Figure 6, the repeatability of the ADM, which is represented
by standard deviation, was first analyzed for five measurements. One measurement value of the
absolute distance was the average of 100 measurement samples. Figure 8 shows the repeatability for
25 target points used for self-calibration.
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Figure 8. Repeatability of absolute distance measurement for 25 target points used for self-calibration
(SD: standard deviation).

In the previous studies that measured absolute distances in a laboratory condition, the distances
were measured with repeatability of 0.21 µm [6] and 0.22 µm [25] using an average of 100 samples.
However, in this experiment, the distance was measured with repeatability of several micrometers.
The presumed main factor in performance deterioration was due to distortion of the laser pulse caused
by mixing a polarization-maintaining (PM) fiber and a non-polarization-maintaining (non-PM) fiber.
This introduced unwanted polarization components in the PM fiber and caused signal distortion
by polarization mode dispersion. Another presumed contributing factor was the poor stiffness of
the MLTS structure, which is composed of aluminum profile. These aspects will be improved in
future experiments.

4.2.1. Simulation of the Proposed Self-Calibration Method

To verify the efficiency and feasibility of the proposed method, the MLTS was simulated by using
the conventional (IDM-based) and proposed (ADM-based) self-calibration methods. To match the
experimental and simulation conditions, a layout identical to that used in Figure 6a was implemented
during simulation. For simulation of the proposed method, the true value of the dead path was defined
as −40 mm. Following the comment of a previous study [14] that the initial point should not be too
close from the self-calibration plane, point No. 7 in the measurement volume was selected as an initial
point during simulation of the conventional method.

To avoid an excessively complex simulation, the proposed calculation of initial guesses was
excluded from the simulation. Instead, initial guesses that differed by ±5 mm from the true values
were randomly generated and used in the simulation. The measurement errors were simulated under
conditions identical to those of the experimental system, such that the average standard deviation
(σ) of the ADM was approximately 3.4 µm. The maximum error of the target points provided by the
CMM was assumed to be 5 µm in the x-, y-, and z-directions. In the simulation, the errors of the
ADM (or IDM) and position errors of the target points were randomly generated obeying a Gaussian
distribution within [−10 µm, 10 µm] and [−5 µm, 5 µm], respectively. Numerical simulations were
performed using commercial MATLAB software and were performed by following the relevant steps
of the conventional and proposed methods. Among the codes, the function normrnd (µ, σ) was used
to generate random errors with a Gaussian distribution (mean µ, standard deviation σ). To solve the
Equation (10) efficiently, the function pinv (JTJ) was used to perform pseudo inverse computation
based on singular value decomposition.
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The self-calibration process was simulated 10,000 times. Because errors with a Gaussian
distribution were used in the simulation, the average of the system parameters obtained in each
simulation approximated the true value. Therefore, only the repeatability of the estimated system
parameters by the two methods was compared. These values are shown in Figure 9.

Figure 9. Estimation repeatability of system parameters using proposed and conventional
self-calibration methods (simulation).

Simulation showed that the proposed self-calibration method provided estimated system
parameters that were more stable than those estimated by the conventional method. In particular,
the estimation repeatability of the system parameters obtained by the conventional method ranged
from 87.9 to 769.3 µm, whereas that of those obtained by the proposed method ranged from 18.3 to
54.0 µm. These values were approximately 3.7-fold better at the smallest difference (i.e., estimation
of Y4) and 28.6-fold better at the largest difference (i.e., estimation of d2). These findings show that
the proposed two-step approach was very effective for improving self-calibration performance by
reducing the number of system parameters in each step.

4.2.2. Experimental Results of the Proposed Self-Calibration Method

The self-calibration experiment was carried out three times in the order shown in Figure 5. First,
the elevation angle offsets (E1, E2, E3, and E4) and initial guesses of the dead paths (d1_ini, d2_ini, d3_ini,
and d4_ini) were estimated using 25 points on the self-calibration plane shown in Figure 6a. Then, dead
paths (d1, d2, d3, and d4) were estimated using identical ADM data. Next, without the aid of external
devices, the initial guesses for the tracking station locations were obtained in accordance with the
method described in Section 3.2. Finally, the system parameters of the tracking station locations (X2,
X3, Y3, X4, Y4, and Z4) were estimated by minimizing the residual function shown in Equation (12).
To compare estimation results, system parameters were also estimated by the conventional method.
As in the simulation, point No. 7 in the measurement volume was selected as an initial point to convert
ADM data to IDM data.

Table 1 shows the system parameters estimated by the proposed and conventional methods.
Combining the results of three experiments, the initial guesses showed very small differences of less
than 0.5 mm from the final estimated values, which was sufficient to avoid convergence failure or local
minimum problems. This demonstrates that the proposed method for acquisition of initial guesses
was very effective. For reference, initial guesses obtained by the proposed self-calibration method
were also used for the conventional self-calibration process. The system parameters obtained by the
two methods showed the following maximum differences: 0.918 mm in Experiment 1, 0.429 mm in
Experiment 2, and 0.324 mm in Experiment 3.
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Table 1. Estimation results of system parameters by using proposed and conventional self-calibration
methods (unit: mm).

X2 X3 Y3 X4 Y4 Z4 d1 d2 d3 d4

Exp. 1

Initial Guess (a) 700.766 697.037 697.272 346.868 348.121 −348.487 −42.497 −42.952 −42.725 −42.892
Proposed (b) 701.061 696.813 697.628 346.761 348.218 −348.735 −42.266 −42.464 −42.693 −42.531

Conventional (c) 701.218 697.466 697.984 347.088 348.346 −348.842 −42.168 −42.110 −41.775 −42.062
(a)–(b) −0.295 0.224 −0.356 0.108 −0.097 0.249 −0.230 −0.488 −0.032 −0.361
(c)–(b) 0.157 0.654 0.356 0.327 0.128 −0.107 0.099 0.353 0.918 0.470

Exp. 2

Initial Guess (a) 700.983 697.040 697.312 346.884 348.107 −348.464 −42.494 −42.743 −42.677 −42.895
Proposed (b) 701.012 696.744 697.616 346.723 348.229 −348.731 −42.292 −42.500 −42.708 −42.540

Conventional (c) 701.006 697.112 697.726 346.852 348.331 −348.825 −42.155 −42.454 −42.279 −42.228
(a)–(b) −0.028 0.296 −0.304 0.161 −0.122 0.267 −0.202 −0.243 0.031 −0.355
(c)–(b) −0.006 0.368 0.110 0.129 0.102 −0.095 0.137 0.046 0.429 0.312

Exp. 3

Initial Guess (a) 700.807 697.114 697.300 346.877 348.195 −348.457 −42.493 −42.917 −42.599 −42.878
Proposed (b) 701.031 696.806 697.620 346.751 348.232 −348.735 −42.297 −42.499 −42.687 −42.543

Conventional (c) 700.845 697.095 697.593 346.740 348.368 −348.835 −42.335 −42.822 −42.433 −42.384
(a)–(b) −0.224 0.308 −0.319 0.126 −0.037 0.278 −0.197 −0.418 0.088 −0.335
(c)–(b) −0.186 0.290 −0.026 −0.011 0.137 −0.100 −0.038 −0.324 0.254 0.159

Deviation
Proposed (d) 0.049 0.069 0.012 0.038 0.014 0.005 0.030 0.036 0.021 0.012

Conventional (e) 0.373 0.371 0.391 0.348 0.037 0.017 0.179 0.712 0.657 0.322
Ratio ((e)/(d)) 7.6 5.4 31.6 9.3 2.7 3.6 5.9 19.6 30.8 27.0

The deviations of the estimated system parameters listed at the bottom of Table 1 are visualized
and shown in Figure 10. Compared with the simulation results shown in Figure 9, the two results
demonstrate a very similar trend. In the three experiments, the deviation of the estimated system
parameter obtained by the conventional method ranged from 16.7 to 711.9 µm, whereas the deviation
obtained by the proposed method ranged from 4.7 to 68.6 µm. These values are approximately 2.7-fold
better at the smallest difference (i.e., estimation of Y4) and 31.6-fold better at the largest difference
(i.e., estimation of Y3).

Figure 10. Deviation of the estimated system parameters in three experiments.

4.3. Experimental Verification of 3D Coordinate Measurement Performance

The experiment of 3D coordinate measurement was carried out three times by using the
corresponding system parameters shown in Table 1. The 3D coordinates of 52 target points in the
measurement volume (Figure 6a) were calculated by a trilateration formula (Equations (13)–(15)) using
the absolute distances measured at each tracking station. Simultaneously, the 3D coordinates of the target
points were measured by a commercial laser tracker (AT960-MR, Heerbrugg, Switzerland). Because
the coordinate systems differed between the MLTS and the AT960-MR, the 3D coordinates measured
by the two measuring devices were transformed to a CMM coordinate system and then compared.
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Figure 11a shows CMM errors in the x-, y- and z-directions in Experiment 1, as measured by the
AT960-MR and MLTS with the proposed self-calibration method. Based on the standard deviation,
the differences between measurement results for 52 points were 17.4 µm in the x-direction, 17.7 µm
in the y-direction, and 15.1 µm in the z-direction. Figure 11b shows CMM errors, as measured by
the AT960-MR and MLTS using the conventional method. The respective differences were 76.6 µm,
56.2 µm, and 98.8 µm. These findings indicate that the CMM errors measured by the proposed method
were in good agreement with the errors measured by the AT960-MR.

Figure 11. Comparison of coordinate measuring machine (CMM) errors measured by AT960-MR and
MLTS in Experiment 1: (a) Proposed self-calibration method; (b) Conventional self-calibration method.

Figures 12 and 13 show comparisons of the CMM errors obtained in Experiments 2 and 3.
The overall trends were similar to the trend in Experiment 1. The CMM errors measured by the
conventional method were not repetitive and differed considerably from the errors measured by the
AT960-MR. These results confirmed that the system parameters estimated by the proposed method
were more accurate than those estimated by the conventional method.

Figure 12. Comparisons of CMM errors measured by AT960-MR and MLTS in Experiment 2:
(a) Proposed self-calibration method; (b) Conventional self-calibration method.
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Figure 13. Comparison of CMM errors measured by AT960-MR and MLTS in Experiment 3: (a) Proposed
self-calibration method; (b) Conventional self-calibration method.

5. Conclusions

Herein, we presented a custom-designed self-calibration method for estimating dead paths
and tracking station locations in an ADM-based MLTS. The advantage of ADM is that the dead
path comprises a fixed value, which enables use of the proposed two-step self-calibration approach.
Therefore, a small number of system parameters are estimated in each step, which reduces the
complexity of the original residual function. In addition, dead path estimation accuracy is further
enhanced by the use of a high-precision positioning system, which is available in this separate
calibration step. Based on the rough estimation of elevation angle offset in step (1), a method is
presented to calculate the initial guesses of the system parameters automatically. Using the appropriate
mathematical procedure and relevant solution of initial guesses significantly improves the estimation
performance of the system parameters.

The effectiveness of the proposed self-calibration method was demonstrated by simulation and
experimental approaches. Compared with the conventional method, the proposed method showed
improved repeatability during estimation of system parameters. In three self-calibration experiments,
the maximum deviation of the estimated system parameters obtained by the proposed method
was 68.6 µm, while the maximum deviation obtained by the conventional method was 711.9 µm.
Furthermore, by applying the proposed calculation process of initial guess, the initial guesses differed
by less than 0.5 mm from the final estimates, which was sufficient to avoid convergence failure or local
minimum problems. Importantly, validation of 3D coordinate measurements in a 1000 mm× 1000 mm
× 1000 mm volume showed that measurement results based on the proposed method were consistent
with those obtained using a commercial laser tracker. Differences between the two measurement results
were 10.9–17.4 µm in the x-direction, 9.9–17.7 µm in the y-direction, and 11.9–17.0 µm in the z-direction.
Differences between the two measurements based on the conventional method, and using a commercial
laser tracker, were 44.7–76.6 µm in the x-direction, 26.4–56.2 µm in the y-direction, and 57.6–98.8 µm in
the z-direction.

These results show that the proposed ADM-based MLTS can provide much more precise 3D
coordinate measurements than the IDM-based MLTS, provided the performance of ADM and IDM is
the same. Although the current performance of 3D coordinate measurement is comparable to that of
a commercial laser tracker, the repeatability of the self-made ADM system integrated with MLTS is
only 3.4 µm under experimental condition. It shows the performance gap with currently available
IDM-based MLTS. For example, measuring uncertainty of LASERTRACER by ETALON is 0.2 µm
+ 0.3 µm/m for spatial displacement. In the near future, we expect that the repeatability of ADM
could be less than 0.5 µm at 50 ms sampling time, and this improvement could bring a proportional
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performance enhancement of 3D coordinate measurements. ADM-based MLTS has obvious advantages
in large-scale 3D coordinate measurements compared to commercial laser trackers, but the increased
system complexity and cost due to the need for four tracking stations are limiting factors for a wide
range of applications. Low-cost multi-channel ADM and miniaturized tracking stations are key to
overcoming these limitations.
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