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Abstract: Recent studies in social robotics show that it can provide economic efficiency and growth
in domains such as retail, entertainment, and active and assisted living (AAL). Recent work also
highlights that users have the expectation of affordable social robotics platforms, providing focused
and specific assistance in a robust manner. In this paper, we present the AMIRO social robotics
framework, designed in a modular and robust way for assistive care scenarios. The framework
includes robotic services for navigation, person detection and recognition, multi-lingual natural
language interaction and dialogue management, as well as activity recognition and general
behavior composition. We present AMIRO platform independent implementation based on a
Robot Operating System (ROS). We focus on quantitative evaluations of each functionality module,
providing discussions on their performance in different settings and the possible improvements.
We showcase the deployment of the AMIRO framework on a popular social robotics platform—the
Pepper robot—and present the experience of developing a complex user interaction scenario,
employing all available functionality modules within AMIRO.

Keywords: social robots; robotic sensing; activity recognition; natural language processing;
voice commands; active and assisted living

1. Introduction

Socially Assistive Robotics [1] refers to robots that are meant to assist people in a manner
that focuses on social interactions (e.g., speaking, guiding, reminding, observing, and entertaining).
Though physical interaction (e.g., carrying of objects) may be enabled by certain kinds of robot, it is
not mandated by the mentioned definition.

One of the most focused domains of application for socially assistive robots (also referred
to as companion robots) is that of supporting the elderly population, particularly people who
are living alone or in care institutions, as well as those who are affected by medical conditions
which warrant a closer monitoring of daily habits. The Active and Assisted Living (AAL) domain,
which concerns itself with developing technology to support the needs of the aforementioned aging
population, is therefore actively sustaining development of the capabilities of companion robots.
In the AAL domain, companion robots are typically used to facilitate communication with the user
and integration into a larger smart environment [2]. The robot may be tasked with facilitating
telepresence, proactive notifications and reminders for medication or health related measurements,
cognitive (e.g., through cognitive exergames) or informational support (e.g., information about weather
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forecasts, traffic or event updates), and interaction with a smart environment (e.g., vocal commands
for turning on the lights, checking the status of smart appliances).

In their analysis of the impact of robotics on AAL [2], Payr et al. identify that primary user focus
groups (i.e., the elderly users themselves) will usually regard companion robots as having a positive
impact on people living alone and their relatives. The main benefit seems to be associated with the
notion of safety and, interestingly, would more strongly improve the experience of elderly users which
are not familiar with the regular usage of alternative technologies (e.g., PCs, tablets, and smartphones).
Moreover, at the time of the Payr report, secondary caregivers (e.g., family and friends as well as
professional care personnel) estimated lower adoption rates of the existing companion robot technology.
However, they predicted continued increase in uptake of socially assistive robots, specifically as they
provide the benefit of increased independence of seniors living alone at home. A motivation for this
was highlighted in the market scenario envisioned in [2], where they show how acquisition costs of
social robots can be offset when considering the time savings of professional caregivers, who are in
high demand for performing simple monitoring tasks for many elderly individuals.

These analyses suggest, however, that a more proactive behavior (e.g., anticipation of needs and
taking initiative in notifications) is expected on the part of socially assistive robots. Systems that
aim to enable a useful companion robot are thus tasked with developing solutions that integrate
functional building blocks from a wide range of perspectives, such as efficient navigation to the
user whereabouts, improved perception abilities (e.g., object detection, person detection, user action
recognition, and emotion recognition), improved voice-based interactions or improved integration
with potentially pre-existing smart home solutions.

At the same time, research into user preferences regarding smart homes and service robots [3,4]
suggests that elderly users prefer on-demand assistive functionality (i.e., decision-making is not
autonomous, but within the control of the user). Users still favor robotic services that help them
with physical tasks (e.g., cleaning, answering the door, and bringing objects), compared to primarily
social ones. From the latter category, users are most interested in services that provide information,
a sense of connection or increase their sense of safety (e.g., reminding of appointments or medication
intake, personal health and home environment status check, and telepresence).

Such studies suggest that the interaction performance of social robots needs to improve. The focus
on the physical service tasks is also an indication that users expect functionality aspects such as
navigation, object detection, object handling, and natural language interactions to be available and
reliable by default. Furthermore, while users may appreciate the novelty and usefulness of physical
and social interaction capabilities of a robot, a lack of robustness in functionalities such as speech
recognition, gesture recognition, navigation, and object handling will undermine the perception of
usability and trustworthiness which are required by the user [5].

Recent research into social robotic platforms tends to keep count of the previously mentioned
user preferences and develop systems exhibiting specific behaviors, which are evaluated in real user
deployments. However, to the best of our knowledge, relatively few works provide quantitative,
performance metric-based evaluations of all the individual functionalities of their social robotics
system, using data streams obtained directly from the robot. It is therefore difficult for other research
teams to obtain a baseline expectation of performance results, when deploying the system over a robotic
platform and in more diverse environment setups.

Another relevant factor of analysis is the robot hardware itself, as well as its price. While some
projects [6,7] develop custom built robots, in the attempt to keep the price tag below 15 k EUR,
others (see, e.g., in [8]) focus on exploiting the advantages of more powerful, but far more expensive
robots, selling for upward of 35k EUR.

Considering the above-mentioned aspects, in our own research we decided to develop a social
robotics solution based on a platform that was designed specifically for social interactions, which has
sold 12 k units in Europe as of May 2018 [9] and whose price stays within the 14–20 k EUR margin,
depending on the financing scheme: the Pepper robot (https://www.softbankrobotics.com/emea/en/
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pepper/). Furthermore, we focus on addressing three research aspects which are of relevance in the
social robotics domain. Our contributions in this paper refer to the following.

1. Developing a social robotics platform, called AMIRO (for AMbIent RObotics), deployable on
the Pepper robot, but necessarily generalizable to any Robot Operating System (ROS) (https:
//www.ros.org/) compatible robot. The developed platform operates on an architecture that
follows the recent trends of edge- and cloud-based robotics. It enables a comprehensive set of
functionality modules that facilitate complex behavior composition: (i) navigation and obstacle
avoidance; (ii) person recognition and coordinate estimation; (iii) human activity recognition;
(iv) speech recognition, command processing, and dialogue management; (v) integration with
smart environments; and (vi) belief-desire-intent similar composition and management of robot
behaviors. Our effort focuses on developing a ROS-based social robotics framework performing
the integration of existing and validated state-of-the-art models and platforms. We develop
interfacing capabilities which allow for composition of individual module functionality into
complex behaviors.

2. While many works in the literature focus on evaluating social robotics systems as a whole, few of
them provide a reference point for the performance of each individual capability, using data
streams collected directly from the robot platform. In particular, these observations stand true
all the more in the case of the Pepper robot. One important contribution is therefore that of
performing quantifiable tests of each individual functionality module, based on datasets collected
directly from the Pepper robot in diverse laboratory setups. The documented experiments
provide a reference for the robustness of the developed social robotics platform and inform
on the advantages and downsides inherent to the Pepper hardware or perfectible in our
current implementation.

3. Qualitative evaluation of the developed framework by means of a scenario highlighting the
interplay of all available functionality modules. The scenario involves receiving of a notification
from an external health management service, proactive search and navigation towards the user,
natural language interaction, and activity recognition (drinking water).

We organize the presentation of these contributions in the following way. In Section 2, we position
AMIRO with respect to related work by analyzing and comparing existing social robotics frameworks,
as well as state-of-the-art developments for each the available functionality modules in AMIRO.
Section 3 describes the AMIRO platform in terms of overall architecture and details of each provided
functionality module. The performance analysis of the AMIRO functionality modules is presented in
Section 4, while the composition of these modules into a complex scenario is evaluated in Section 5.
We conclude the paper and specify directions of future work in Section 6.

2. Related Work

Given the motivation outlined in the introduction, the social robotics domain has seen an
increased support in recent years. Social robots are designed to interact with people in a natural
way, having intention like humans.

2.1. Social Robotics Systems

A number of research projects have developed solutions, comprising a diverse set of
functionalities, from more specific ones [10,11], to general systems [7,8,12], to initiatives
(e.g., STRANDS [13]) that support development of technologies for long-term autonomy of robots.

Our focus is on providing a framework for general social robotics (i.e., comprehensive set
of capabilities). Our review of related work aims to analyze aspects related to the openness
and extensibility of the supporting core platforms, the set of core functionalities enabled,
performance metric-based testing of each enabled functionality, as well as system wide testing of
interaction scenarios. Our findings are summarized in Table 1. We proceed in what follows with a
more detailed description of reviewed frameworks and systems.

https://www.softbankrobotics.com/emea/en/pepper/
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Table 1. Summary of analyzed frameworks and systems in terms of their supporting platform,
the core functionalities they enable, the existence of performance tests for individual functionality
modules, as well as the existence of a validation through a scenario employing the whole system.
The abbreviations in the Enabled functionality column refer to PD = Person Detection/Recognition,
OD = Object Detection, Nav = Navigation, DM = Dialogue Management, HAR = Human Activitiy
Recognition, SE = Smart Environment Integration, BM = Behavior Management.

Framework Analysis Criteria

Supporting
platform

Enabled
functionality

Individual
Functionality
Testing

System
Testing

NaoQI Closed source
PD, OD, Nav,
DM, BM - -

RADIO
Open, based on
ROS

PD, OD, Nav,
HAR, SE Nav, HAR, SE -

RAS
Open, based on
ROS PD, OD, HAR OD, HAR

Lab deployment,
activity
assistance
scenario

EnrichMe
Open, based on
ROS

PD, OD, Nav,
BM, DM PD, OD

User home
deployment,
rich AAL scenario

SocialRobot
Open, based on
ROS

PD, Nav, BM,
DM -

Senior center
deployment, navigation
and simple interaction
scenarios

AMIRO
Open, based on
ROS

PD, OD, Nav,
HAR, DM, SE,
BM

PD, Nav, HAR,
DM

Lab deployment
of a smart
notification scenario

NAOqi and the visual IDE Choregraphe [14], which is based on it, are the default frameworks
for composing social interaction capabilities on the Pepper robot, which we use in our deployment.
NAOqi provides rich development capabilities, but its downside is that its application is limited to
Softbank’s robots. The developer is also tied in exploiting the builtin modules such as user detection,
speech recognition or navigation. On the other hand, the AMIRO framework places its foundation
in ROS, allowing its deployment over a much larger base of robots, as well as the interfacing with
state-of-the-art modules for key functionalities (cf. Section 3). Other frameworks are more focused
on the social interactions. An example is Interaction Composer [15], offering similar behavior-based
programming to AMIRO, while being suitable for non-technical users. It can, in theory, be used on top
of ROS, yet this is not intrinsically supported. The RADIO project [11] comes close to the technical
integration capabilities that we envision in our own research. While the framework enables ROS-based
interfaces that connect a robotic unit with ambient monitoring sensors, its main application area is that
of multimodal (e.g., vision and sound) detection and monitoring of Activities of Daily Living (ADLs).
Furthermore, much of the project is focused on the technical integration itself. In contrast, our research
is focused also on providing a means for goal-driven development of the robot life cycle and enabling
a fuller range of possible interactions.

Apart from frameworks that enable development of social robotics solutions, there are a number
of developed systems whose objectives and functionality items are similar to the ones enabled by
AMIRO. We continue the related work overview by examining such systems in terms of their provided
functionality set, existing performance tests, as well as deployment scenarios and their results. We then
provide a closer look at recent state-of-the-art for each of the functionality modules implemented
in AMIRO.
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The Robotic Activity Support (RAS) [6] develops a system that links smart home technologies
with robots to provide assistance in carrying out daily activities. Authors test specific functionality
modules (e.g., object detection and personal activity monitoring) of their social robot platform in a lab
setting involving 26 younger adults. The object detection evaluation is based on a comparison between
popular pretrained neural network architectures such as R-CNN, R-FCN, or SSD, and obtains good
precision scores for objects one might typically find in a household (e.g., dog leash, keys, cup, umbrella,
and plant). However, the tested networks perform poorly in detecting people, with a precision of
less than 50%. Currently, the robot has a single principal behavior, that of observing users while
they carry out an activity and noticing if they execute the steps of the activity in the correct order
(e.g., detect missing steps or order switching). Questionnaires collected from participants rate the robot
user interface (which uses a tablet) as favorable, but the authors report that users had a neutral rating
of the overall usability of the activity monitoring and support system offered by the robot. One point
of needed improvement is the response time of the robot (e.g., navigating to the user and displaying
a video of the required sequence of steps to perform the activity) when an error in performing an
activity has been detected. In contrast to our solution, the RAS system is more specific and, as currently
described, does not facilitate arbitrary behavior composition, natural language interaction or longer
distance navigation.

The EnrichMe project [8] targeted aiding the independent living of single older adults via
smart-home, robotics, and web technologies. The project used a custom version of the TIAGo
Iron robot which had three main behaviors: locating lost objects in a home, activity monitoring,
and abnormal situation detection. Object localization is performed by placing cheap RFID tags on
specific objects of interest (e.g., remote control, keyring, and glasses) and confidence region-based
algorithm (constructed using tag grid maps) to assign the most probable object to the current robot
position. Human detection and tracking is based on a fused information model that combines data
from a laser scanner that identifies legs of people, an image-based upper body detection method
and whole body thermal imaging. The activity recognition is limited to detecting basic actions
(e.g., walking, standing still, and moving hands) based on analysis of 5 s intervals, while the anomaly
detection can only specify if a person spends an abnormal time in a given room, as compared to
prior statistics [16]. The system was tested qualitatively in six deployment scenarios across the
UK, Greece, and Poland by a total of 11 users, with satisfying results, specifically with respect
to user interactions with the robot tablet applications (e.g., cognitive games and weather service).
Object detection had more faults in the live deployments, due in most part to the predefined path that
the robot could use in each home, which was too far from the objects to provide enough confidence
on the assignment of an object to the current robot region based on the RF signal. The project also
performed quantitative evaluations of each functionality module in a laboratory setting. A general
performance metric for the RFID-based object localization was missing. Person identification has a
precision of over 90% (although F1 score is low—25%), while person re-identification achieves a less
than 50% precision rate and a ~40% recall rate. Failures appear in cases of people with similar body
shapes or when they are affected by partial occlusions. The robot lifecycle is governed by a Hybrid
Behavior Based Architecture (HBBA), which is similar in design to the Belief-Desire-Intent (BDI) model,
and is implemented as a collection of Robot Operating System (ROS) nodes. The EnrichMe project is
overall most similar in design principles, functionality modules, testing procedures and qualitative
evaluations to our own solution for social robotics. However, it is missing a more comprehensive test
of navigation capabilities, as well as means to detect more diverse user actions (e.g., working on a
smartphone, sitting and typing on a keyboard, and drinking from a cup).

The SocialRobot project [7] focused on developing a custom robot for elderly care, focusing on
essential aspects of care provisioning and on affordability. The system is based on a service-oriented
architecture and the specific services implemented include navigation, people detection and face
recognition, audio-based emotion recognition, simple word detection, as well as a tablet-based UI that
can launch touch-based applications or Skype calls. The robot has been tested qualitatively in a care
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center in the Netherlands using a simple behavior whereby the robot wanders in a defined perimeter
and asks users how it can be of assistance (e.g., take picture, suggest activity, show agenda, and Skype
call) when approached by a person. A questionnaire filled in by 30 users of the senior center shows a
good evaluation of the robot in terms of ease of use, usefulness, support for independence, and activity
or feeling of companionship). However, the authors do not report a more systematic performance of
individual functionality modules (neither in the live deployment, nor in a lab setting).

In our own research we decide to use and test the Pepper social robot (https://www.
softbankrobotics.com/emea/en/pepper/), specifically the 1.6 version, to which we made a simple
hardware modification. Pepper is gaining more and more traction as a friendly social interaction
robot, having sold 12 k units in Europe as of May 2018. Selling at 14–15 k USD, it comes close to
the price tag of solutions used in the RAS and SocialRobot projects. While the robot ships with a
number of functionalities (e.g., face detection, people tracking, dialogue, and tablet-based interaction)
which allows for defining simple interaction scenarios, we expand the capabilities of the robot by
developing functionality modules for: improved navigation, improved user identification and tracking,
improved speech recognition and custom command understanding, human activity recognition, as well
as services for integrating with a smart environment. All of these services are quantitatively tested in a
lab setting, under data streams coming directly from the robot.

2.2. Navigation and Obstacle Avoidance

Indoor robot navigation is inspired, like many other functionality domains, by the way humans
are performing it [17]. Most robotic navigation systems use Simultaneous Localization and Mapping
(SLAM) to solve the problem of building a map of the environment while moving, and localizing the
robot inside of the created map. Trajectory planning systems provide the robot with the ability of
moving to a valid target on the map. SLAM can be implemented in various ways, given the specifics of
hardware and sensing used for distance or similarity measurement. The quality of the sensors highly
influences the quality of the environment representation.

With respect to the Pepper robot, which is used for our AMIRO platform deployment and testing,
the authors of [18] report on usage of Pepper’s own range sensors (LiDAR installed in the robot
mobile base) to perform both mapping, localization, and planning using frameworks available in ROS
(e.g., slam_gmapping, cartographer, and DWA global and local planners). Results suggest usable maps
obtained by gmapper to an extensive cost of manual tuning of parameters. However, localization in a
SLAM created map suffers. This leads to good navigation in straight lines, but to problems when taking
corners. A suggestion to use more than the ranger sensors is made as future work objective in [18].
This suggestion is followed by the work in [19] which uses the RGB and depth sensors of Pepper to
perform visual SLAM (specifically, an adapted version of the ORB-SLAM algorithm [20]), using the
range sensors only for obstacle avoidance during navigation. However, in this case SLAM takes longer
to complete and the approach has difficulty in estimating a correct localization in visually feature-poor
environments (e.g., a large hall), given the narrow field of view of the RGB camera installed on Pepper.
In an attempt to make navigation more interactive, the authors of [21] develop an human–robot
interaction (HRI)-centered approach, whereby the local planner of the DWA ROS planning framework
is extended to include a social interaction in case the robot path is blocked by a human. The social
interaction consists in the asking the human to move out of the way, if the local planner cannot find a
quick way around the person. The authors implement mapping and localization using the standard
ROS (gmapping, amcl) and Pepper’s range sensors, but they report only on initial deployment tests in a
narrow environment (where the lasers onboard Pepper can still provide accurate results).

Recognizing the above-mentioned limitations of the onboard sensors of Pepper, in our own
previous work we develop enhanced localization and navigation capabilities by installing an additional
LiDAR on the robot and fine tuning the amcl parameters [22]. This enables navigation through
doors, wide corridors, and desk-dense lab environments. We provide some additional details on the
implementation of the navigation component in Section 3.4.

https://www.softbankrobotics.com/emea/en/pepper/
https://www.softbankrobotics.com/emea/en/pepper/
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2.3. Person Recognition and Coordinate Estimation

In Wang et al. [23] two mathematical methods are proposed to solve the coordinate estimation
problem: linear observer and nonlinear observer models. The proposed linear observed model uses
a geometrical approach to compute the coordinates estimation based on the linear and angular
velocities of the camera. However, because the velocities are only approximations of the real
values, the estimations are not accurate. The nonlinear observer model is introduced for more
accurate estimations, but considering the complexity of the mathematics behind it, two simplified
situations were analyzed: the linear velocity of the robot is known and one component of the interest
point is known. In both simplified situations, the nonlinear observer can be designed to obtain a
coordinate estimation.

Chao et al. [24] proposed a mathematical method to compute the 3D position of a target
recorded by the camera of a mobile robot. The method uses the calibrated parameters of the camera,
the odometry of the robot, alongside the triangulation principle to estimate a coordinate. The robot
moves and acquires multiple images from different angles for the same target in order to obtain
an accurate estimation. The evaluation was done by moving a tablet instead of a robotic platform,
which does not take into consideration the reliability of the odometry of the robot. The main problem
of this method is that it can only be applied on static objects, as the image acquirement process takes
a certain amount of time. As people move in the environment, the acquisition of images can be
compromised and the estimation of the 3D coordinates may give incorrect results.

In contrast to these works, our solution uses robot pose information, person bounding box
information, and depth sensor input to reliably approximate the orientation of the user with respect
to the robot, and to provide best effort estimates of the distance toward the user. This method proves
simple and efficient when the movement towards a user is done in steps, based on distance intervals.
We explore the details in Section 3.3.

2.4. Human Activity Recognition (HAR)

The problem of recognizing human actions has great practical applicability which made it become
one of the most attractive research fields. Many factors can define an action, such as the posture of
the person performing it, the objects with which the person interacts, the environment in which the
action is performed, the speed with which it is performed, but also factors related to the quality of the
data collected. All this makes the problem of recognizing human actions a complex and challenging
one, but even so, recently proposed deep learning-based solutions have obtained very good results on
the known benchmarks. Some of them [25–27] have been integrated into robotic systems in order to
improve the interaction between people and robot, turning the robot into a proactive one, capable of
understanding what action a person performs.

Rezazadegan et al. explain how techniques proposed for HAR should be adapted for use on
a robot [28]. They start from the fact that most of the datasets used for HAR are recorded using
static cameras, while the robot is a mobile platform that can move during the action. To solve this
challenge, they proposed a method that works in two steps. In a first stage, generic action region
proposals are generated, which have a good potential to locate one human action in unconstrained
videos, regardless of camera motion. In a second step, they use convolutional neural networks to
extract features to classify the action. They also proposed two datasets: one achieved through a careful
composition of camera footage and the other through acquisition by a mobile robot.

Chiang et al. [29] proposed a culture-aware HAR system composed of two important components:
an ontology which aims to link activities with culture-specific properties extracted from the context
by experts and a module based on Bayesian Networks to expand the ontology with probabilistic
reasoning and link the knowledge therein with the recognition results provided by the HAR system.
To test this proposed system, they used two types of scenarios: one offline with images collected
from the Internet and one online with images collected using the Pepper robot. An important aspect,
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highlighted by them based on the experimental results obtained, is related to the importance of
selecting the appropriate distances and orientations for the robot to capture all the user’s gestures.

Recently, various types of methods have been proposed that have obtained good results for this
problem. The best-performing solutions for methods based on 3D skeleton joints [30–33] combining
the advantages of two important types of networks: Temporal Convolutional Neural Network [34]
used to capture temporal dependencies and Graph Convolutional Neural Network [35] used to model
spatial dependencies. In contrast, the solution we propose, starting from the analyzed models and the
observations that we presented in the previous works [36,37], is based on a multi-stage architecture
based on linear layers used to extract features and long short-term memory layers used to model the
sequence of frames to obtain the correct action. Thus, our contribution consists in proposing a model
with a relatively small number of parameters, which can be used in real-time scenarios, but with the
ability to differentiate between similar actions. This last aspect is possible due to the improvement of
the prediction from one stage to another.

2.5. Speech Recognition, Command Processing, and Dialogue Management

Verbal interaction is the most successful form of communication between humans. To make the
interactions more natural, attractive, and easy for the users, any social robot should be able to interact
with the user thorough verbal interactions. During the last two decades, major progress has been
achieved in the different aspects of the human–machine verbal interactions, such as in the Automatic
Speech Recognition (ASR), Natural Languages Understanding (NLU), Dialogue Management (DM),
and speech syntheses (TTS) fields. This progress enables developers to create complex and reliable
speech interaction systems.

Many researchers addressed the different fields of the human–machine verbal interactions,
and they offered different solutions for the issues that were identified such as in [38–40] for the
ASR, in [41] for the NLU, in [42] for the DM, and in [43] for the TTS.

Potbora el al. [44] present a detailed concept of an architecture for human–robot interaction
systems that includes speech interactions with the Pepper robot. The authors found that the build-in
speech recognition module of Pepper (which is based on the NUANCE engine) is limited as it supports
only few languages and the embedded recognition-library can recognize only phrases that are include
in a predefined set. Therefore, the authors aimed to develop their own speech recognition module in
order to fulfill the requirements of a real conversation. Perera et al. [45] found some limitations with the
built-in speech recognition module of Pepper, and they used Pepper’s tablet to bypass those limitations.

Recognizing these limitations ourselves, our solution consists in a cloud-based pipeline of
services that provide ASR, NLU, DM, and TTS functionality for a consistent (and extendable)
set of languages. One added benefit of our solution and its integration interface is that it is not
specific to a robotic platform deployment and can be used separately in other applications requiring
voice-based interactions.

2.6. Integration with Smart Environments

The smart environments are nowadays more and more evolved with various ways of integrating
the sensors and actuators in a centralized or decentralized way. Commercial solutions are available,
yet most of them are proprietary and offer little support in customizing them.

Most of the existing systems for smart environment integration are focusing on integrating the
robot with standardized platforms for smart environments. This is usually performed using centralized
gateways which integrate the sensors and offer remote access to the data. Depending on the use case,
the robot can be integrated as a source of information [46,47] or be used as an interface to interact with
and gather data from the smart system [48].

In [49], the Pepper Robot is integrated with a fully functional smart home called iHouse.
The system uses the NaoQi framework to perform speech to text, then Api.ai as a natural language
processing tool to classify the utterance and match it to an action. The uAAL (universAAL) platform is
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then used to facilitate the communication between the robot and the smart home through the uAAL
middleware. All the smart devices are integrated using the ECHONET protocol. The ECHONET
objects are translated into uAAL resources (ontologies, objects) and passed back to robot through
the middleware. The proposed solution is very robust and make use of standardised open source
platforms and systems.

Similar to the work in [47], our smart environment integration solution considers the robotic
platform as a means to interact with and collect data from the environment. We make it easy to use the
smart environment integration in robotics projects by providing a mechanism to transform external
data sources in ROS nodes; thus, keeping a uniform (topic based) data communication and actuation
process within the AMIRO framework.

2.7. Behavior Management

Behavior management is a central component of any social robotics platform as it builds the
robot life cycle, controlling the way in which the robot behaves in different environment and user
interaction situations. Its importance stems from the fact the active and fail-safe behaviors it composes
contribute directly to the sense of naturalness perceived by human users. Nocentini et al. [50]
provide a comprehensive survey of behavioral models for social robots, covering topics of cognitive
architectures, behavioral adaptation, and empathy in very diverse (but also very specific) use cases
and deployments. The authors highlight the fact that establishing an HRI benchmark that comes close
to usual human–human interaction is an enormous challenge, which is why the papers in their survey
focus on very specific use cases, wherein both classical planning, as well as learning frameworks,
are used to define robot behavior.

The specific use case deployments are in keeping with observations made by user preference
assessment research [3,5] which notice that users prefer social robotics solutions that have predictable
and robust (even if reduced) behaviors, that fulfill a concrete user need, over general interaction and
proactive robot behavior which does not work reliably. This is in keeping with the uncanny valley
effect [51], which is noticeable in recent general solutions for social robotics.

The solutions discussed at the beginning of this section [6,8] implement behavior management
using state machine [6] or Belief Desire Intent (BDI)-like frameworks [8], that help them implement
specific user assistance scenarios (e.g., detecting erroneously executed activities [6]).

In a manner similar to the mentioned works, our own behavior management frameworks [22]
works by constructing a basic behavior execution graph, whereby nodes are linked via success and
failure edges. Execution of specific basic behaviors can be preempted when more important desires arise.
The importance and order of basic behavior execution are controlled via a priority queue mechanism.
This allows us to implement the sequence of actions needed for the assistance scenario presented
in Section 5. We give more details of its implementation, as well as future extension possibilities
in Section 3.7.

3. Proposed Framework

The proposed framework addresses the major requirements for a social assistive robot,
while maintaining a high degree of modularity in building and integrating new modules inside
the system. The main modules of the system are listed below.

• Navigation and obstacle avoidance
• Person recognition and coordinate estimation
• Human activity recognition
• Speech recognition and dialogue management
• Integration with smart environments
• Behavior composition

The dialogue, person recognition, robot localization, and smart environment integration modules
are always active and can be run asynchronously, as the robot can perceive voice commands,
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humans, and localize itself while performing any other tasks. The navigation and obstacle avoidance and
the activity recognition modules require activation by the other modules and can be run one at the time.
The behavior composition (planning) module is responsible with activating and deactivating the other
modules based on the current objective.

The system can be triggered to act by commands sent either by the dialogue module or by any
objective currently active in the behavior composition module. The dialogue module can start certain
scenarios such as finding a person, showing the health status or interacting with the smart environment.

3.1. Architecture and Implementation

The architecture of the system is built on top of the ROS framework. Each module offers a set
of ROS publishers and subscribers which are integrated in the system architecture. From a module
deployment perspective, the AMIRO architecture distributes its services on machines running in the
cloud or constituting the cloud-edge (https://github.com/aimas-upb/amiro/, https://github.com/
aimas-upb/sparc).

The building block services of the AMIRO platform and the principle information exchange
between them are shown in Figure 1. The main components of the system and the ones which constitute
the cloud-edge are represented with green border. The orange squares symbolize the services that
are running on cloud, while the blue ones are the modules operating on the robot. The information
exchanged between the cloud-edge components and the rest of the system is transmitted through
ROS channels, while the information between cloud-edge components is directly passed as function
parameters inside the main program.

The advantage of this architecture and its deployment is the fact that each node can be run
on separate machines, allowing the separation of concerns and facilitating the deployment of the
system. As such, the robotic platform is used for data acquisition and actuation through the ROS
topics. The ROS Master runs on a cloud edge device (e.g., a local server), together with the ROS
nodes responsible for navigation, vision, and behavior composition (planning) modules, given that
these services require a higher data traffic and more computing resources to provide effective results.
The Storage, Smart Environment, and Health Management, as well as the services in the dialogue
module are running in the cloud, and their implementation and interfacing options allow them to run
as separate services for other applications, other than the AMIRO platform.

The deployment of the system is justified by the real-time requirements of the project. The fast
response of the system is conditioned by the intrinsic capabilities of the robot and the volume of the data
to be processed. The techniques used in the vision component require strong computational capabilities,
while the robot used to test the framework did not match those requirements. Moreover, the framework
should be easy to integrate with multiple robots, so it should not impose computational requirements
on the robotic platform. These are the main reasons behind the choice of the cloud-edge modules.
We chose to use local data processing instead of cloud processing by taking into consideration
the amount of information needed to be transmitted over the internet. To have fast responses,
the bandwidth of the internet connection should be large enough to not add latency while passing
visual information. This is also the case for the navigation component, as the experiments proved that
the bandwidth was a limitation for higher distances. For the other modules, we decided to utilize cloud
connection, as there are few requirements in terms of internet connection, given the small amount of
exchanged data.

https://github.com/aimas-upb/amiro/
https://github.com/aimas-upb/sparc
https://github.com/aimas-upb/sparc
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Figure 1. AMIRO System Architecture—block diagram. The green boxes represent the cloud-edge
components, orange boxes represent cloud services, and blue boxes represent modules operating on the
robot. If the arrow between boxes is black, then it represents an internal call, if is dotted it represents a
call to a cloud service and if it is blue arrows then it symbolizes a communication through ROS.

The Behavior Composition (Planning) module is at the center of the system, subscribed to the
central Storage for data acquisition and publishing commands to all the other modules. The planning
module runs directly on the machine hosting the ROS master node.

The Navigation module is responsible with robot movements inside the environment and is
triggered by the Planning module. The module performs data acquisition and the processing of the
SLAM algorithms on a cloud edge node (e.g., a local server).

The Vision module integrates the object recognition, object segmentation, and the activity
recognition components. When an object detection occurs, the 2D position estimates are forwarded
to the Navigation module, which computes the 3D position on the map, based on the current
robot estimated pose. As most of the used algorithms require powerful parallel computation and
real-time data acquisition from the cameras, the module runs directly on the machine hosting the ROS
master node.

The Dialogue module can send new tasks to the Planning module based on the current dialogue
with the user and offer Text-to-Speech capabilities when required. The module can use any microphone
input and is deployed as a separate service, running in the cloud. This allows it to be easily used for
other speech-based applications.

The Smart Environment and Health Management module gathers user health (blood pressure,
heart rate, steps, and sleep), environment information (room temperature, humidity, and luminosity),
and provides the necessary topics to actuate different smart devices (e.g., smart lighting and smart
blinds). The information can be requested by the Planning module to be uttered or displayed to the
user. The module can also insert new tasks to the Planning module based on the reminders or calendar
events of the user. This module is also deployed as a cloud-based service allowing it to be easily
integrated in other systems. The module also provides a web interface facilitating classical interactions
with the AMIRO platform.
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3.2. Speech Recognition, Command Processing, and Dialogue Management

The ability to interact in natural language is essential in developing a social robotic platform.
It makes the interaction between the user and the robot easier, more natural and more attractive.

The module is composed of five components: Audio Preprocessing, Automatic Speech
Recognition (ASR), Natural Language Understanding (NLU), Dialogue Management (DM),
and Text-to-Speech (TTS) Synthesis. It supports three languages: English, Romanian, and French.

Audio Preprocessing: This component is responsible with extracting the data that is related to
the dialogue module from the profile of each user as well as from the robot’s settings such as the
speech language, the voice that the user prefers to be used in the TTS component for the generated
audio files, the bit depth of the audio as well as other useful data that ensure the best results for the
dialogue component.

Automatic Speech Recognition (ASR): This component is responsible to convert the speech
command received from the user to text. The component uses the Google Cloud Speech-to-Text API
(https://cloud.google.com/speech-to-text/) as the speech recognition engine.

Natural Language Understanding (NLU): This component is responsible for generating a
machine-readable representation which allows the robot to understand the command of the user.
The component receives a text from the ASR from which it extracts and classifies different intents
and entities. Figure 2 illustrates the input and output of the component. In this example, the user
asks from the system, through a speech command, to display his/her blood pressure. The user used
the “Display my blood pressure” command, but he/she could have used other alternative commands
such as “show my blood pressure”, “display my blood pressure measurements”, and “show my
systolic and diastolic pressures”. The NLU analyses the transcribed text of the voice command
(that is received from the ASR) and extracts the intent and entities of the user. In the illustrated
example, the intent is “get_health” and the entities are the “health_entity” (blood pressure) and the
“output_entity” (display). In the case in which the user gives the same command without specifying
an “output_entity” such as in the case of the “What is my blood pressure”, the NLU will consider
the default value of the entity (visual and phonetic or in other words display and say). In addition,
in the NLU component, any mistakes that may happen during the ASR step are corrected. To make
this possible, for each language, multiple intents were created to which different entities have been
associated. The component uses the wit.ai (https://wit.ai/) API as the NLU solution.

Figure 2. The input and output of the NLU.

Dialogue Management (DM): This component is responsible for maintaining the state and flow of
the current conversation. This module decides what should be the answer of the robot according to
the machine-readable representation received from the NLU. In addition, the component maintains a
history of the current interaction, as the information that is required for an action to be executed by
the robot may be provided by the user through a single interaction or through multiple interactions.

https://cloud.google.com/speech-to-text/
https://wit.ai/
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To achieve this, RASA (https://rasa.com/) is used. In RASA, several stories are created, each story
consisting of a series of interactions between the user and the robot as illustrated in Figure 3.

Figure 3. A RASA story.

Text-to-Speech (TTS) Synthesis: This component is responsible to convert the text received from
the DM into an artificial human speech audio file that will be heard over the phonetic output the robot.
For the English and French languages the Google Cloud Text-to-Speech API (https://cloud.google.
com/text-to-speech/) is used as the TTS engine, while for the Romanian language, the Responsive
Voice API (https://responsivevoice.org/) is used as the TTS engine.

The output of the system is translated to a command sent to the planning module. The planning
module matches the dialogue command by intent and entity to a certain action that the robot must take.

3.3. Person Recognition and Coordinate Estimation

The 3D coordinates estimation module is approximating the real position of a target relatively to
the current position of the robot. It associates a 3D position for every person detected by the object
detector, using the visual information acquired by the sensors.

The detection component of the module uses YOLOv3 system [52] to compute bounding boxes
of the people in the images and FaceNet architecture [53] to recognize the faces. The information
extracted by the two methods is aggregated in order to obtain a more accurate representation of the
individuals in the images, for a more precise estimation of their 3D coordinates.

The computation of the estimated position integrates the position of the detection in the RGB
image, the distance to the detected area observed by the depth sensor and the values of the angles of
the RGB camera with respect to the vertical and horizontal axes. The approximated coordinates are
calculated according to the following formulas.

α = h f ovcamera ∗ ((widthimage/2− ximage_detection)/(widthimage/2))
β = v f ovcamera ∗ ((yimage_detection − heightimage/2)/(heightimage/2))
x = d ∗ cos(α + yaw_anglerobothead)

y = d ∗ sin(α + yaw_anglerobothead)

z = d ∗ sin(β + pitch_anglerobothead)

In the above formulas, α and β are additional computed values which represent the angles of
the detected person with respect to the position of the sensor. The constants v f ovcamera and h f ovcamera

symbolizes the maximum angles of the field of view of the RGB sensor on the vertical and horizontal
axes. For the computation of the 3D coordinates (x, y, z), d represents the distance to the detected
person acquired by the depth sensor, while the yaw_angle and pitch_angle variables indicate the Euler
angles of the sensors when recording the RGB-D images. A clearer representation of the variables used
in the formulas is presented in Figure 4. A detailed section about the mathematics behind the method
can be found in [54].

https://rasa.com/
https://cloud.google.com/text-to-speech/
https://cloud.google.com/text-to-speech/
https://responsivevoice.org/
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Figure 4. Graphical representation of variables in the formulas for the estimation of the 3D coordinates
of detected people. (x, y, z) are the estimated person coordinates with the robot map frame. α and β are
the angles of the detected person with respect to the position of the sensor. v f ovcamera and h f ovcamera

are maximum angles for vertical and horizontal field of view, respectively. d is the distance to the
detected person as perceived by the depth sensor.

3.4. Navigation and Obstacle Avoidance Module

Robot navigation is required in any robotic assistive scenario. The ability to have the platform
move to the person in need can provide a much better assistance. The robotic platform must be able
to move to a person while being aware of any obstacles on the trajectory. Safety is a very important
aspect when having a robot interacting in a live environment with other humans; therefore, the robot
must take decisions fast and reliably when moving.

The main aspects of robotic navigation are being able to detect obstacles, planning the path
accordingly and being able to localize oneself inside the environment. The detection of obstacles is
usually performed by mapping the surroundings with distance measuring sensors. The localization is
then performed on the mapped environment by matching the sensor input to a position on the map.

As the navigation module is required by all the other modules integrated in the system, it provides
the necessary ROS topics to allow movement to a certain coordinate on the map, forward or rotational
movements and emergency stop.

The navigation module is an external system composed of a 360◦RP1 Lidar (https://www.slamtec.
com/en/Lidar/A1/) attached to an acquisition board, running as an edge ROS node which exposes
the laser scans on a ROS topic. The laser scans are then taken in by the proposed system and integrated
into the SLAM module. The SLAM module was realized based on Hector SLAM [55] and tuned to
work with the equipment. This was preferable to the usage of the default robot sensors due to the
limitations in range. This has the benefit of having an external navigation system which can be easily
removed and placed on a different robot with minimum configuration effort. More details about the
general architecture of the system can be found in [22].

3.5. Activity Recognition

To have a robot that can interact with humans, the robot must identify the actions performed by
the person it is monitoring or to whom it must send a notification. Thus, the module for recognizing
human activities was included in the proposed framework for the Pepper robot, to obtain a socially
assistive robot.

Given that the problem of human action recognition is a very popular one and it has great
practical applicability, several datasets have been developed. One of these is NTU RGB+D [56,57]
which includes samples for 120 actions. One of the modalities provided by this dataset is composed of

https://www.slamtec.com/en/Lidar/A1/
https://www.slamtec.com/en/Lidar/A1/
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skeletal data collected using Microsoft Kinect v2. In the module for recognizing human activities for
the Pepper robot, we decided to use this format for the data that characterized a human action. As the
robot is not equipped with such a sensor, we had to find a solution to collect the data in a similar
format. Thus, we decided to use a pretrained OpenPose [58] model to determine the human posture,
in 2D format, starting from the RGB images collected by the robot. To extend these coordinates to 3D
ones, it was necessary to make a spatial alignment of the RGB images with the depth maps, as well as
a temporal alignment, because the frame rates for the two cameras of the robot were different. In order
to obtain a module capable of correctly recognizing human action regardless of the lengths of the
segments that make up the subject’s posture, a normalization was applied. In order to achieve this
normalization, some standard dimensions were calculated for each type of segment, averaging the
dimensions in the samples included in the NTU RGB+D dataset [56,57].

The pipeline of the entire integration process is shown in Figure 5, and the network architecture
used as a human action classifier is presented in Figure 6. In the paper [36], we presented an architecture
that failed to correctly differentiate similar actions (such as drink water and sneeze/cough or hand waving
and pointing to something). Thus, we decided to propose a new extended architecture that contains two
additional stages that receive as input the sequence processed with the coordinates of the skeletons
but also takes into account information from the previous stage. Each stage uses a series of linear
layers to extract features from the skeletal coordinate sequence and an LSTM network for analyzing
these temporal sequences. A loss function was applied for each stage. The action classifier used was
trained on the NTU RGB+D dataset [56] and then specialized on a dataset collected using the Pepper
robot. The dataset collected with the Pepper robot contains a subset of eight actions considered to be
relevant and challenging for a robot used as a personal assistant. Because there are very similar actions
(e.g., playing with phone/tablet and typing on a keyboard), within this subset of selected actions, a complex
model was needed to be able to differentiate the actions correctly. Thus, we proposed an architecture
composed of three stages. After this classifier was trained, the result provided by stage three was used
as the final prediction. The architecture of the classifier is an improved version of a model tested and
analyzed in our previous work [37].

c)

a)

b)

d)

Data Acquisition

OpenPose

Convert skeleton

Normalization

Model fine-
tuned on the

proposed dataset

Analysis and pro-
cessing module

Predicted values

Planning module
Based on ROS messages Start prediction?

The selected action

RGB+D Images

3D Skeletons

3D Skeletons

Figure 5. The architecture of the complete integration process of the human action recognition module.



Sensors 2020, 20, 7271 16 of 34

Figure 6. The architecture of the neural network used to recognize human action.

3.6. Smart Environment and Health Management

The smart environment interactions module is a plug-and-play module used to further increase
the capabilities of the system and provide better care services. The capabilities to sense certain
parameters inside the environment like humidity, temperature, and light intensity can help the system
in performing automated tasks based on the human preferences. The interactions with the light
switches, blinds, and other actuators inside the environment can further increase the comfort level of
the human in need. Currently, the system integrates the actuating commands and can be triggered
either by a voice command or by interacting with the user interface.

In contrast with most of the existing solutions, the module focuses on bringing the smart devices
closer to the standardized frameworks for robotic interaction. The system facilitates the integration
of additional sensors through custom-made ROS nodes and messages. Additional edge nodes can
be integrated in the system by simply publishing the acquired data to the corresponding ROS topics
using the predefined messages. This allows the system to gather data from any sensor placed inside
the environment. In order to actuate additional edge nodes like smart lighting and smart blinds,
the ROS nodes must have a unique name and offer the topic on which the system should send the
corresponding message.

The health management module extracts available health information from the storage unit like
heart rate, blood pressure measurements, steps, and sleep information. The module integrates various
health sensors which are saved in the storage unit. The robot is then able to display the information to
the end user. The system also integrates a notification mechanism which can trigger the robot to start
an action. For example, when the user is required to take a blood pressure measurement, the robot can
be triggered to navigate to the person position and remind him.

3.7. Behavior Composition

The guiding principle of the current behavior composition module is that of easiness and
robustness in bringing together the basic behavior functionality aspects discussed in previous sections.

Formally, the behavior composition module represents a behavior as a task execution graph G.
Each node TG

i (type, priority) in the graph constitutes an instance of a task, having a type and a priority
value. The type of the task is given by the functionality modules presented in previous sections
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(e.g., Say, MoveTo, Search—look for a given target around the robot, Listen—restrict speech recognition
to a specific answer from the user, and RecognizeActivity). The priority value is the same for all tasks TG

i
of an execution graph G and will influence the order in which tasks from different execution graphs
will be scheduled for running by the task execution engine from Figure 7.

Tasks are atomic in execution, meaning that they cannot be paused. A task TG
i can end in

success or failure and for each case it may be connected with another task in the execution graph G

(e.g., TG
i

success−−−→ TG
j , TG

i
f ailure−−−→ TG

k ). When a task TGa

i from execution graph Ga finishes execution

(either in success or fail) its connected task (e.g., TGa

j for success, or TGa

k for failure) is retrieved. Let TGb

l

be the task with the highest priority in the priority queue. As TGb

l is part of another execution graph
Gb, task TGa

j (or TGa

k in case of failure) will be reinserted in the priority queue to be executed later,

after all tasks from execution graph Gb have ended. This mechanism enables behavior preemption and is
a means to ensure that the robot can react to more important events, while still being able to complete
all launched behaviors.

The current implementation has three sources of input for both simple and complex behaviors:
the smart environment (the CAMI platform [59]), user voice commands (e.g., “Display my health
status” and “Go to Alex”), and the web-based user interface used to test the triggering of each task.)
The developer is tasked with creating handlers for the events coming from these input sources.
A handler constructs the execution graph G that constitutes the behavior activated in response
to the triggering event. We refer the reader to previous work [22] for details and examples of
instantiating a complex behavior (e.g., finding a user to deliver a notification coming from the smart
environment platform).

Figure 7. Conceptual overview of the information flow within the behavior execution module.
New behaviors can be created based on events from three external or user interaction based sources:
the smart environment (CAMI Platform), user voice commands (e.g., “What is my health status?”),
or the user interface (on the robot tablet or an external web browser). Tasks that form the execution
graph of a behavior are inserted in an execution queue based on their assigned priority. The priority
enables a preemption mechanism (i.e., more urgent behaviors can pause and override currently
executing ones).

Integration of Behavior Planning—Future Perspective

The current behavior management method operates based on predefined plans (task sequences,
together with error contingency tasks) for the specific complex behaviors that we sought to evaluate
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(see Section 5. However, even a conceptually simple task, such as navigating to the known (or assumed)
position of a user, can become complex if the robot has to navigate in between rooms and one of the
doors is locked, or its path is blocked. The navigation task must then be broken down into sub-tasks
that involve logical way points (e.g., navigating from current position to room door, crossing door
if open, and moving to target position in next room). Contingency situations (e.g., door closed and
obstacle on path) can be solved by re-planning (such as asking for human help to remove open the
door or remove the object).

In future work we plan on enabling such high-level plan decomposition in a declarative manner
using the ROSPlan [60] framework. The method will act as an extension of the current behavior
execution, by using planning and re-planning calls to create tasks to be inserted in the priority
queue. Each task will be also linked to an actionlib (http://wiki.ros.org/actionlib/) instance. The ROS
actionlib package adopts asynchronous communication and consists of several tools to create an
action server and client that are communicating based on an action specification that defines the
goal, feedback, and result messages. These messages are inserted in a knowledge base of the ROSPlan
planning node to inform on plan execution or need of re-planning.

The ROSPlan framework demands for both the domain and problem file. It is composed of
separated nodes that cooperate together to achieve a goal. The problem generator node is responsible
to regenerate the problem file relying on the domain file and the knowledge base. The planning node is
worked as a wrapper for several AI planner to generate the plan. We intend to integrate the POPF2 [61]
planner, which is a temporal and metric planner, that can generate a temporal plan considering the
duration of actions, or the distance between locations and the available paths. As the implementation
is currently ongoing, we leave the experimentation and evaluation of this approach as future work.

4. Experiments

To assess the reliability of the functionality modules presented in Section 3, we conducted tests for
each module individually using datasets collected directly from the Pepper robot (e.g., vision, depth,
and audio data) in our laboratory setting. It was necessary to collect these datasets because we wanted
all the evaluations to be performed using data from the robot. All these experiments performed for the
proposed models using data collected using the Pepper robot have as main purpose the validation of
the utility of the proposed submodules on the Pepper robotic platform. Moreover, for some modules,
it was mandatory to collect data to obtain a solution capable of running in a real-time scenario made
using the robotic platform. For example, if we only used benchmarks for the human actions recognition
module, then the results obtained were not satisfactory. This is because most datasets are collected
using static cameras, those that provide skeletal data have this data extracted using Microsoft Kinect
(in the pipeline proposed by us, the coordinates are extracted using OpenPose [58] and transformed
into a format similar to the one used by Microsoft Kinect), the frame rate of the cameras used to collect
these datasets is higher than the of the Pepper robot.

The datasets that we collected using the Pepper robot and that were used to perform the
experiments presented in this section are the following.

• Robotic perception dataset for HAR—we used this dataset to test the new approach proposed for the
human action recognition module. We proposed and described this dataset in previous work [36],
and the improvement results obtained with the current method are presented in Section 4.4.

• Robotic dataset for coordinate estimation—we collected this dataset to be able to estimate the
coordinates of the subject relative to the robot’s position. This dataset is proposed in this paper
and detailed in Section 4.2.

• Speech dataset—we collected this dataset to evaluate the quality of the speech recognition
(for three languages) when dealing with users speech that is collected using the microphone
that is integrated within the Pepper robot. Moreover, we used this dataset to evaluate our
implementation of the NLU and DM components. The quality of the microphone, the linguistic
accent of the user, the environmental noises, and the distance between the user and the

http://wiki.ros.org/actionlib/
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microphone affect the results of the speech recognition. In addition, we were not able to identify
datasets that cover the commands that we are targeting for the English, Romanian and French
languages. Therefore, we have decided to collect our dataset using the Pepper robot. This dataset
is proposed in this paper and detailed in Section 4.1.

We can provide access to these datasets upon request.
In the following we detail the experiments performed for each functionality module, describe the

used performance metrics, and discuss the obtained results.

4.1. Speech Recognition, Command Processing, and Dialogue Management

The implementation of the dialogue module has been evaluated by 20 users: 14 users evaluated
the Romanian and English languages (same users for both languages), while the French language was
evaluated by 6 users.

Using voice commands, the user initiated 190 interactions for the English language, 220 interactions for
the Romanian language, and 23 interactions for the French language. Therefore, a total of 5878 interactions
were collected (2660 in English, 3080 in Romanian, and 138 in French).

Some samples of the ASR evaluation results are illustrated in Table 2, while Table 3 exemplifies
evaluation result samples of the NLU and DM components. The intent and entities columns represent
what the NLU extracted from the command of the user, the output column represents the answer of
the system decided in the DM. The output column illustrates between parentheses the type of system
output (visual or phonetic). The evaluation of the TTS component is currently in progress, as well as a
more extensive evaluation of the dialogue module using the French language.

Table 2. Samples from the ASR evaluation results.

Language User’s Command Recognition Percentage

EN Display my blood pressure. 92.86%
EN Show my blood pressure. 85.71%
EN What is my blood pressure? 92.86%
EN How much have I walked today 85.71%
EN How much did I walked today 78.57%
EN Display my calendar. 100.00%
EN What plans do I have for today? 92.86%
EN What plans do I have scheduled for tomorrow? 78.57%
EN How will be the weather tomorrow? 92.86%

RO Cum stau cu sănătatea? 92.86%
RO Afis, ează cât îmi este tensiunea. 85.71%
RO Arată-mi cât îmi este tensiunea. 78.57%
RO Ce planuri am mâine? 92.86%
RO Cum va fi vremea mâine? 100.00%

FR Quel est mon état de santé? 83.33%
FR Qui es-tu? 100.00%
FR Afficher mon calendrier. 100.00%

The overall obtained results are satisfying. In Table 2, one can observe some significant differences
between the recognition accuracy of commands with similar semantics, or even similar wording.
The error analysis that we performed showed that this was not caused by insufficiency of the language
models for the employed ASR solution. Rather, the errors stem from a high degree of variability in the
ambient noise conditions, the loudness of the speaker voice, as well as the accent in the user voice,
as the ASR recognition accuracy varied significantly between the users as illustrated in Figure 8.
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Table 3. Samples of the evaluation results for the dialogue module.

Language User’s Command Intent Entities Output

EN
Display my
blood pressure. get_health

health_entity: blood pressure
output_entity: display

Your blood pressure
is 126/79 mmHg. (Visual)

EN
What is my
blood pressure? get_health

health_entity: blood pressure
output_entity: none (default)

Your blood pressure
is 126/79 mmHg.
(Visual & Phonetic)

EN
How will be the
weather tomorrow? get_weather

location_entity: none
(GPS_current_location)
output_entity: none (default)

The weather will be
sunny in Bucharest.
(Visual & Phonetic)

EN
Say how much have
I walked yesterday get_health

health_entity: walked
(GPS_current_location)
output_entity: say

Yesterday, you have
walked 5167 steps.
(Phonetic)

RO
Afis, ează cât îmi
este tensiunea. get_health

health_entity: tensiunea
output_entity: afis, ează

Tensiunea dumneavoastră
este 126/79 mmHg. (Visual)

RO
Cum stau
cu sănătatea? get_health

health_entity: sănătatea
output_entity: none (default)

Suntet, i bine.
(Visual & Phonetic)

RO
Ce planuri
am mâine? get_calendar

dateandtime_entity: mâine
output_entity: none (default)

Mâine avet, i planificat...
(Visual & Phonetic)

FR Qui es-tu? get_info
info_entity: tu output_entity:
none (default)

Je suis Pepper,
votre assistant personnel.
(Visual & Phonetic)

FR
Quel est mon
état de santé? get_health

health_entity: état de santé
output_entity: none (default)

Tu vas bien.
(Visual & Phonetic)

Figure 8. ASR Recognition percentage for each user—English language.

With respect to the intent detection objective performed by the NLU component, we show the
obtained confusion matrices in Tables 4–6. The average intent detection rate is of 93.38%, 92.11%,
and 80.43%, respectively, for the English, Romanian, and French languages.
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Table 4. Confusion matrix for the intent detection for the English language.

EN get_health get_info get_weather get_calendar no_detected

get_health 1419 32 0 0 5

get_info 24 386 2 1 8

get_weather 0 2 354 41 11

get_calendar 1 2 37 325 10

no_detected 0 0 0 0 0

Table 5. Confusion matrix for the intent detection for the Romanian language.

RO get_health get_info get_weather get_calendar no_detected

get_health 1658 37 0 0 10

get_info 41 418 1 3 15

get_weather 1 1 394 51 11

get_calendar 3 1 48 367 20

no_detected 0 0 0 0 0

Table 6. Confusion matrix for the intent detection for the French language.

FR get_health get_info get_weather get_calendar no_detected

get_health 48 4 0 0 5

get_info 2 29 0 1 2

get_weather 0 0 19 5 2

get_calendar 0 1 4 15 1

no_detected 0 0 0 0 0

4.2. Person Recognition and Coordinate Estimation

As the qualitative evaluation of the 3D coordinates estimation module requires the positioning
error given the real position of people in the images, we created a new RGB-D dataset. The dataset
consists of a collection of RGB-D images of people placed in various positions, alongside the Euler
angles of the cameras at the recording moment.

We collected images from 17 people from 4 different distances, in 5 distinct postures with the
cameras placed in 5 separate angles. The variety of positions provide 100 configurations for one
person and for each configuration we acquired a number of 5 images. This combines into a dataset of
8500 RGB-D images (17 × 100 × 5).

As the framework requires detecting people in various scenarios, the people in the dataset were
placed in 5 different postures, as follows.

(a) Standing facing the camera
(b) Standing with the back to the camera
(c) Sitting at a desk
(d) Sitting on a couch
(e) Lying on a couch

Figure 9 is a visual exemplification of the 5 postures of the people.
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Figure 9. People postures used in the dataset.

To change the target position in the frame, the acquisition of the images vary both in terms of
camera angles and placement in the environment. The variations are comprised into 5 configurations
presented in Figure 10. The rationale behind the configurations was to simulate the various situations
in which the system could detect a person. The interpretation of the Figure 10 is listed below.

(a) Rotated to the right, centered
(b) Rotated to the left, centered
(c) Zero rotation, centered
(d) Zero rotation, 1 meter displacement to the right
(e) Zero rotation, 1 meter displacement to the left

Figure 10. Sensors positions used in the dataset.

In terms of distance to the target, the sensors were placed at 2, 3, 4, and 5 m away from the people,
taking into consideration the maximum range of the depth sensor and the objectives of the evaluation
method. Positioning people at 1 meter distance to the camera would not suit the variation of the
camera angles and the postures required in the evaluation.

To assess the performance of the coordinates estimation module we computed Mean Absolute
Error (MAE) and Mean Squared Error (MSE). Table 7 presents the overall errors obtained by the
module on the whole dataset, while Tables 8–10 show, respectively, the errors by grouping by distance
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to the target, by posture of the person, and by camera position. The reported error values are expected
given the accuracy of the depth sensor on the robot where the system was tested. The precision of
the depth sensor is not exact and it decreases with the distance. As the values on all the three axes of
the coordinates are estimated based on the distance computed by the depth sensor, the errors of the
estimation are directly proportional with the accuracy of the depth sensor. Though the error is around
0.4 m, it is good enough for the purpose of the project. The output of the 3D coordinates estimation
module is used as input by the navigation component in the Move to target action. When moving to
a person, the robot does not need to match the exact location of that person, but it needs to come in
his/hers proximity. Given the requirements of the project, the reported errors are satisfactory.

Table 7. Overall errors of the coordinates estimation module on the dataset.

Error
Coordinates

x y z

MAE (m) 0.47 0.36 0.28

MSE (m) 0.38 0.40 0.15

Table 8. Errors of the coordinates estimation module by distance to the target.

Distance to Target (m)
MAE (m) MSE (m)

x y z x y z

2 0.44 0.47 0.31 0.28 0.67 0.16

3 0.22 0.43 0.27 0.09 0.58 0.14

4 0.51 0.29 0.25 0.40 0.21 0.13

5 0.72 0.26 0.30 0.74 0.13 0.16

Table 9. Errors of the coordinates estimation module by person postures.

Person Posture
MAE (m) MSE (m)

x y z x y z

Standing, facing the camera 0.38 0.10 0.16 0.21 0.02 0.03

Standing, back to the camera 0.38 0.10 0.14 0.21 0.02 0.03

Sitting at desk 0.56 0.43 0.21 0.51 0.32 0.09

Sitting on couch 0.52 0.60 0.21 0.47 0.84 0.06

Lying on couch 0.53 0.58 0.69 0.49 0.79 0.52

Table 10. Errors of the coordinates estimation module by sensors positions.

Sensors Position
MAE (m) MSE (m)

x y z x y z

Centered, no rotation 0.33 0.16 0.27 0.18 0.05 0.14

Centered, right rotation 0.52 0.58 0.26 0.48 0.83 0.14

Centered, left rotation 0.54 0.22 0.31 0.41 0.13 0.16

1 m to right, no rotation 0.51 0.54 0.29 0.46 0.79 0.16

1 m to left, no rotation 0.46 0.30 0.28 0.35 0.19 0.14

In terms of person detection, the error corresponds to the error obtained by the YOLO system.
As the dataset does not include the ground truth bounding boxes of the people in the images, we can
evaluate the precision of the detection component using a counting-based evaluation, tallying the
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number of detections in the images. The results of the performed evaluation are shown in Tables 11–13.
By analyzing the results, the inference is that the component lacks precision when people are lying
down. In all the other postures, the system performs well. The lighting conditions influence the results
of the module, but do not change the results drastically. Examples for the performance of the YOLO
system in different lighting conditions on images acquired by the robotic platform we use in this
project can be found in [54].

Table 11. Average counting errors of the detection component for the custom dataset.

MAE 0.18

MAE excluding lying down posture 0.03

Table 12. Average counting errors of the detection component by person postures.

Person Posture MAE

Standing, facing the camera 0.00

Standing, back to the camera 0.00

Sitting at desk 0.10

Sitting on couch 0.03

Lying on couch 0.82

Table 13. Average counting errors of the detection component by distances.

Distance to Target
(m) MAE

MAE
Excluding Lying Down

Posture

2 0.09 0.02

3 0.16 0.03

4 0.23 0.04

5 0.22 0.04

4.3. Robot Navigation Module

In order to have a metric-based evaluation of the navigation module, the robot was made to
explore an area of 5 m × 2.5 m which was then used for three types of navigation experiments,
basic forward movements, simple one obstacle avoidance, and a slalom movement between two
consecutive obstacles. The first experiment was performed to show that having an external navigation
module ensures that the drift can be corrected using the odometry computed by the SLAM module.
The second and third experiment shows the navigation capabilities. The defined area with the robot
path for the third scenario can be seen in Figure 11.

Furthermore, larger-scale experiments were performed in order to force the planner to compute
new trajectories during the movement. The robot has to navigate on a 12 m long hallway in a straight
line, enter through a door, turn left, and navigate forward another 4 m while maintaining its positioning.
Then, obstacles were placed on the hallway in order to force the robot slalom between then in order to
reach its objective. The total distance navigated by the robot is approximately 17 m when no obstacles
were placed on the path and 18.2 m with obstacles. The navigation path can be seen in Figure 12.
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Figure 11. Navigation Area Path with two obstacles. The red dots are the laser scans produced by the
Lidar, the white dots are the laser scans produced by the robot, the green path is the A* computed
global path, and the red arrow is the goal position.

Figure 12. Navigation path on a larger scale experiment with obstacles placed on the hallway.

Due to the wheel drift, the robots’ own odometry comes with large errors in both translation and
rotation. The measurements performed show that the robotic platform has an error of about 10◦ on
every 360◦ rotation and a drift of about 1◦ on any one meter forward movement. The errors can be
influenced by many factors and need to be addressed in order to ensure a robust system.

The movement was controlled by the move_base ROS module using the DWA local planner [62]
and A* for global planning.

Each experiment was performed five times and the average dynamic time warping (DTW)
similarity score was computed between the planned path and the actual robot movement recorded
using the position computed by the SLAM algorithm. The results can be seen in Figure 13.
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(a) Forward movement (b) One obstacle avoidance

(c) Two obstacle avoidance
Figure 13. Navigation coordinate plots.

Figure 13a shows that the robot successfully keeps a straight line in its movement towards the
goal. Due to the way the DWA local planner is tuned, the robot prefers taking larger loops when
avoiding obstacles. Although this produces a longer path, it ensures smooth movements and avoids
collisions between the hands of the robot and the obstacles during rotations. The results can be seen
in Table 14.

Table 14. Navigation experiments results.

Plan
Distance (m)

Robot Traveled
Distance (m)

Time to Reach
the Goal (s)

DTW
Similarity
Score

Forward movement 2.6904 2.7145 8.12 1.7803

One obstacle avoidance 3.3636 3.4418 13.035 9.3428

Two obstacles avoidance 3.3908 4.2177 16.034 18.5864

The experiments performed on larger-scale scenarios were repeated five times each and the
average time and distance were recorded. The global planning distance is configured to 5 m. The global
planning can be seen in Figure 14. If no obstacles are placed on the hallway, the robot takes an average
of 54.41 s to reach the goal for an average distance of 17.05 m. When obstacles are used, the total
distance navigated by the robot increases to 18.24 m and it takes an average of 58.11 s to reach the goal.
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Figure 14. Global planner results for the larger scale experiment with obstacles on the hallway.

Furthermore, a mapping of the entire hallway was performed while manually giving goals to the
robot and can be visualized in Figure 15. The movement between goals was repeated 3 times.

Figure 15. Large scale indoor mapping results. Marked with the blue stars are the goals set to the robot.
The distances between goals are marked on the arrows.



Sensors 2020, 20, 7271 28 of 34

4.4. Activity Recognition

To check if a model that is trained on a dataset recorded under normal conditions can generalize
for data collected from the robot perspective, in previous work [36] we proposed a dataset collected
using the Pepper robot. To create this robotic dataset, we chose 8 existing actions in the NTU
RGB+D dataset [56] considered by us relevant for an assistive robot that could be used as a personal
assistant. Selected actions are drink water, standing up (from sitting position), hand waving,
playing with phone/tablet, typing on a keyboard, pointing at something, sneeze/cough, and touch
chest (stomachache/heart pain). Considering that the results obtained for this dataset were satisfactory
(presented in the Table 15), we decided to integrate an improved version in the robot’s framework to
be able to detect in real-time the actions performed by the user.

Table 15. The results obtained for the proposed architecture.

Scenario
Accuracy

Cross-Subject Cross-View

Trained on NTU RGB+D &
tested on NTU RGB+D—T1 75.21% 79.30%

Trained on NTU RGB+D &
tested on validation dataset—T2 60.37% 45.60%

Trained on validation dataset &
tested on validation dataset—T4 88.67% 89.12%

Trained on NTU RGB+D &
fine-tuned on validation dataset &
tested on validation dataset—T3

92.27% 91.63%

As can be seen from the results obtained in Table 15, this model has a high generalization capacity,
which results in poorer results for the T1 scenario, because we no longer have a specialized solution for
the examples in the NTU RGB+D dataset. However, we have a series of scenarios with better results,
those that involve the use of the robotic dataset.

Given that the proposed model (Figure 6) has a large number of parameters, and we want to
use it in scenarios that will run in real-time, we performed a series of performance tests. These tests
were performed using a computer that has a processor with 10 cores, 20 threads, and 128GB DDR4
memory support and two RTX 2080 TI graphics cards with a memory of 11GB each. The results
obtained are presented in Table 16. The measured inference time also includes the preprocessing that
must be performed, using the CPU, before the data are placed in the network. To determine these
results, 100 iterations were run for each scenario and an average of the results obtained for them
was performed.

Table 16. Inference time obtained for the proposed model obtained for a sequence with variable number
of frames.

Sequence Length Inference Time (msec)

5 6.376

10 12.435

15 18.796

20 24.689

25 30.665

30 36.925

60 72.968
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5. Evaluation Scenario

In order to test the robustness of the proposed robotic system, an evaluation scenario has been
proposed and implemented. The scenario incorporates the main components of the framework
illustrating a part of the basic functionalities of the integrated framework, as follows.

• voice recognition and comprehension;
• visual person finding;
• position estimation of a detected target;
• human action recognition;
• environment exploration and navigation;
• smart environment system interaction;
• actions planning and execution.

In the proposed scenario the robot interacts with a person that it needs to identify and assist in
performing a basic activity, as follows.

1. The Smart Environment and Health Management module sends an alert to the robot about the
temperature in the environment.

2. The robot initiates the visual search of the person in the environment. If the person is not identified
the behavior stops.

3. The robot goes to the position of the identified person. If the person cannot be reached the
behavior stops.

4. The robot announces the hydration notification and waits for an audio confirmation from the user.

(a) If the confirmation is received, the Action Recognition module is triggered to recognize the
drink water activity. If the action is not recognized, the robot will ask for an audio validation
of the performed activity.

(b) If the confirmation is not received, the robot will ask the user whether the hydration action
should be postponed.

5. Pepper sends an acknowledgment to the Smart Environment and Health Management module.

Figure 16 illustrates a visual representation of the interaction between tasks in the proposed
scenario. The color scheme used in the figure indicates the components where the tasks operate:
orange—Vision module, blue—Navigation module, green—dialogue module, and red—Planning module.
The interaction with Smart Environment and Health Management component is mediated by the
Planning component.

Figure 16. Interaction between tasks in the proposed scenario. Color coding relates to functionality
modules involved in the realization of the behavior: orange—Vision module, blue—Navigation module,
green—Dialogue module, and red—Behavior Composition module.
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Due to the current situation caused by the SARS-CoV-2 virus, no experiments could be performed
in real environments. Videos (http://aimas.cs.pub.ro/robin/en/rezultate/#demo) demonstrate a
deployment of the scenario in the laboratory.

The scenario was tested in lab environment conditions with several people. Videos contain a
part of the versions of the proposed scenario experimented with one user. The video exemplifies the
general functioning of the scenario alongside the functionality of each task.

A correct execution of the scenario is observed in the video and this complex behavior was
relatively easy to set up using the capabilities of the AMIRO framework. The exchange of information
between the modules is working correctly, with the robot being able to detect, recognize, and localize
the person in the environment alongside successful vocal interaction. The response time of the modules
is adequate for a meaningful human–robot interaction and the overall user experience is satisfactory.
During tests, however, we also observed a number of corner cases which need to be addressed before
such a scenario can be deployed on a larger scale, in very diverse environments (e.g., user homes or
various care facilities). For example, user identification by face recognition is impaired when the robot
camera is directly facing a light source, potentially causing the behavior to fail, even the user them self
can still be detected. This can be mitigated by enhancing the Look for task to include side movements
of the robot base, apart from its head rotation, to avoid direct light shining into the camera.

Another observation was made concerning the activity recognition performance. During the
evaluation of this scenario, we discovered a series of problems presented by the robotic system.
If the robot is too close to the subject, then the skeleton predicted by OpenPose [58] is incomplete.
Moreover, if there are occlusions with other objects, then the predicted skeleton is incomplete or
the coordinates of some joints are incorrectly predicted. Given that the module for recognizing
human activities was trained using samples in which the coordinates for all joints appeared, in such
situations with a partial skeleton poor results are obtained. Also, when the robot approaches the user,
the appearance in the camera may vary, leading to more difficult activity recognition. This can be
mitigated in two ways: by training against a more diverse dataset, becoming more robust against
joint occlusions or observation distance, as well as by enhancing the activity recognition task to include
a forwards–backwards movement of the mobile base, so as to obtain a similar user bounding box
proportion within the frame, like the ones in the dataset. These enhancements are part of our near-term
future work.

6. Conclusions and Future Work

Social robotics is a domain with a growing interest, be it for help in the retail, entertainment, home use,
or assisted living industries. Specifically, for the Active and Assisted Living (AAL) domain the
economic and care-related benefits are evident [2].

However, as outlined in the motivation of the paper, one central concern of current social
robotics deployments is the perception of usefulness and robustness of the provided robotic services.
Users, and seniors in particular, need to have clear expectations as to the capabilities of the robotic
services. When specific servicing scenarios (such as timely delivering of an important notification,
monitoring correct execution of the steps in an activity, and following the user around in a home
in telepresence scenarios) are exceeded to the benefit of general social abilities, the uncanny valley
effect needs to be addressed. This entails ensuring the reliability of vision, natural language and
context-aware functionalities in a great variety of possible deployment scenarios (e.g., single user at
home and multiple users in a care facility).

In this paper, we have presented the AMIRO social robotics framework, whose objective is to
address the first of the above discussed servicing paradigms: that of clear and robustly working
care scenarios. We presented its platform-independent implementation based on ROS, as well as its
deployment on a popular social robotics platform—the Pepper robot.

AMIRO contains functionality modules related to navigation, person detection and recognition,
natural language interaction and dialogue management, activity recognition, and general behavior

http://aimas.cs.pub.ro/robin/en/rezultate/#demo
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composition. We provided a performance metric-oriented evaluation of each functionality module,
based on input coming directly from the Pepper robot. This allowed us to specifically gauge
functionality limitations that are due to the Pepper robotic platform itself, or ones which can be
mitigated through future improvements of our modules. We discussed the results of these evaluations,
thus providing a reference of expectations with respect to the capabilities of the Pepper robotic platform
to any researcher and developer that wants to use it for complex scenarios.

Furthermore, we demonstrated the deployment of all developed functionality modules in a
scenario involving a specific use case—issuing health-related notifications to a user and actively
monitoring their response to the notification. The scenario is executed correctly in our lab setup,
as showcased in the filmed footage (http://aimas.cs.pub.ro/robin/en/rezultate/#demo), but the
discussion at the end of Section 5 reveals how additional improvements are mandatory, before even such
a specific scenario would be robustly enough handled to be deployed in more diverse environments.

In terms of individual functionality modules, immediate future work involves the following
aspects. The set of functionality modules will be extended with the ability to perceive emotions
from RGB data. The feature has already been implemented and tested separately, but is currently
not integrated with the rest of the AMIRO framework, and has not been evaluated on video from
Pepper’s cameras under different lighting conditions. The voice command module will be extended
to include additional languages and a richer set of commands, as it will be tested out in deployment
scenarios involving senior end-users from other countries. Furthermore, the proposed model for the
classification of human actions can be trained so that it can predict actions even in situations where,
for some frames, the detected skeleton is not complete. Extending the dataset collected with the Pepper
robot for a larger number of actions is another priority we have. In addition, the 3D coordinates
estimation module can be furthered improved by replacing the information coming from a depth
sensor with a more reliable data source. As the values of all components of the 3D coordinate are
computed based on the recorded depth, eliminating the errors in the depth data is expected to result in
more accurate estimations. Last, the behavior management module will be extended in the direction
explained in Section 3.7, leading to the ability to interweave predefined action sequences with planning
results, based on the ROSPlan framework, thereby enabling a flexible and more extendable behavior
composition functionality.
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