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Abstract: With the development of researches on single image super-resolution (SISR) based on
convolutional neural networks (CNN), the quality of recovered images has been remarkably promoted.
Since then, many deep learning-based models have been proposed, which have outperformed
the traditional SISR algorithms. According to the results of extensive experiments, the feature
representations of the model can be enhanced by increasing the depth and width of the network,
which can ultimately improve the image reconstruction quality. However, a larger network generally
consumes more computational and memory resources, making it difficult to train the network and
increasing the prediction time. In view of the above problems, a novel deeply-recursive low- and
high-frequency fusing network (DRFFN) for SISR tasks is proposed in this paper, which adopts
the structure of parallel branches to extract the low- and high-frequency information of the image,
respectively. The different complexities of the branches can reflect the frequency characteristic of
the diverse image information. Moreover, an effective channel-wise attention mechanism based
on variance (VCA) is designed to make the information distribution of each feature map more
reasonably with different variances. Owing to model structure (i.e., cascading recursive learning
of recursive units), DRFFN and DRFFN-L are very compact, where the weights are shared by all
convolutional recursions. Comprehensive benchmark evaluations in standard benchmark datasets
well demonstrate that DRFFN outperforms the most existing models and has achieved competitive,
quantitative, and visual results.
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1. Introduction

With the super-resolution (SR) technique, the corresponding high-resolution (HR) images can
be reconstructed based on an observed low-resolution (LR) image, which is a very important image
processing technique for low-level tasks in computer vision. SR is an ill-posed reverse problem because
multiple HR images can be recovered from a single LR image. In addition to improving the image
perception quality, SR can also boost the performances of other computer vision tasks, such as image
classification, image segmentation, object detection, and object tracking. SR has been widely used in the
fields of medical imaging [1], surveillance imaging [2], and remote sensing imaging [3,4], where more
image details are required. As an important part of SR, SISR has been investigated extensively and
thoroughly by many research groups in the past two decades, and a variety of classic algorithms
have been proposed, including edge-based method, block-based method, statistics-based method,
prediction-based method, and sparse representation method. In recent years, deep neural networks,
especially convolutional neural networks have demonstrated great performances in computer vision
and image processing tasks. Since Dong et al. [5,6] introduced the deep neural network to SISR,
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the quality of the recovered image has been remarkably improved, surpassing that obtained with
the traditional classical SISR algorithms [7–9]. Moreover, the end-to-end automatic reconstruction
network structure makes it possible to conveniently regain HR images, thus avoiding the tedious
steps of manual handling. Stimulated by the advantages of deep neural networks, numerous classic
SISR algorithms based on deep neural networks [5,10–28] have been put forward in the past six years,
which has significantly promoted the development of SISR.

According to the results of SRCNN [5] (Depth = 3, Filters = 64), the image quality cannot be
improved based on the network depth, but VDSR [10] (Depth = 20, filters = 64) showed experimentally
that better image quality can be obtained using a deeper network. EDSR [11] (Depth = 65, Filters = 256)
and MemNet [29] (Depth = 80, Filters = 64) further demonstrated the performance improvements
achieved benefited from the depth and width of network. In RCAN [12] (Depth = 500, Filters = 64),
over 400 convolutional layers were employed to improve the image quality. At present, a popular
approach is to enhance the feature representation capability by continuously deepening and widening
the network, to fit the training data of a great many HR-LR samples, and finally improve the perceived
quality of SR images. However, the model with excessive depth and width tends to consume
significantly more computational resources and memory space, thus reducing the inference speed,
which makes it more difficult to applicate SISR in practice on account of limited hardware and software
resources, while users always expect to get HR images as fast as possible.

In the work of Zhao et al. [30], an iterative projection process was employed to refine the
high-frequency texture details. The Deep Back-Projection Networks (DBPNs) were proposed by
Haris et al. [13], in which, the iterative up- and down-sampling layers are exploited to provide an error
feedback mechanism to project errors at each stage representing different types of image degradation
and high-resolution components. Yajun et al. [14] argued that the image information became more
complex with the increase of frequency, thus multiple models were needed to restore the image
information. The deep network has advantages in the reconstruction of high-frequency information
while the shallow network is beneficial to the recovery of low-frequency information.

The above-mentioned issues are addressed well by continuously combining the high- and
low-frequency information of the image, which will be elaborated on in Section 3 and the prominent
result of model is shown in Figure 1. An image mainly consists of the content of low-frequency and
high-frequency information, where the former with a slow change in color and texture (i.e., image area
with gradual change) is a comprehensive measure of the intensity of the whole image, while the latter
with the dramatic variance between adjacent regions (i.e., image area with rapid change) can be used
to measure the image edge and contour. Therefore, in the image details, the gray value changes fast
(i.e., the high-frequency information).
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2. Related Works 

2.1. Residual Learning 

Compared to learning the original input, residual learning attains the different values of the 
signal, which simplifies the learning process. Before the residual structure of ResNet was proposed, 
it was difficult for researchers to alleviate the problem of gradient vanishing or explosion caused by 
the increase of network depth, although adding the Batch Normalization [32] layers and employing 
various activation functions such as ReLU [33], the result was unsatisfactory. By introducing the 
residual structure into the model to simplify the gradient spread, it can fundamentally address such 
issues. According to the scope of influence, the residual learning can be generally classified into the 
two categories of global residual learning (GRL) and local residual learning (LRL). GRL only learns 
the residual between the input image and the target image, avoiding complex transformation from 
one entire image to another. As the residual error is close to zero in most areas, the complexity and 
learning difficulty of the model are greatly reduced. VDSR [10] initially used GRL to gain enormous 
performance improvement, outperforming SRCNN [5]. DRRN [16] and DRCN [34] also boosted their 
SR performances by adopting GRL. LRL is used to alleviate the degradation with the increase of 
network depth and to reduce the training difficulty, which is exploited in the SR models of EDSR [11], 
RCAN [12], RDN [17], and ESRGAN [18], respectively. 

GRL is integrated into DRFFN after shallow convolution and before image reconstruction, while 
LRL is adopted in the low-frequency module of the model to speed up the transmission of 
information flow. 

2.2. Recursive Learning 

Recursive learning applies the same module recursively for many times to increase the network 
depth and expand the receptive field, to improve the effect of SR. During the whole process, all 
recursive modules share parameters, immensely reducing the number of network parameters. 

DRCN [34] repeatedly applies the same recursive unit (up to 16 convolutional recursions) and 
reaches a receptive field of 41 × 41, which is three times larger than the 13 × 13 receptive field of 
SRCNN [5], without increasing the number of parameters. DRRN [16] consists of a series of residual 
units named recursive block in which the weights are shared. Even though 52 convolutional layers 
are in the network, the model can still be easily trained. MemNet [29] adopts a memory block 
composed of a six-recursive-ResBlock, which can be used to explicitly mine persistent memory using 
an adaptive learning process, and inside the network, several memory blocks are stacked with a form 
of dense connections to implement image reconstruction operation. SRFBN [19] adopts a feedback 
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The contributions of this paper mainly include the following three aspects:

• Proposing a deeply recursive low- and high-frequency fusing network (DRFFN) for SISR tasks,
this network adopts the structure of parallel branches to extract the low- and high-frequency
information of the image, respectively. The different complexities of the branches can reflect the
frequency characteristics of diverse image information.

• Proposing a channel attention mechanism based on variance (VCA), it focuses the feature map
with a smaller variance for the low-frequency branches due to uniform information distribution,
while the channel with a larger variance is concerned for the high-frequency branches because of
the vast deviation in information distribution.

• Proposing the cascading recursive learning of recursive units to keep DRFFN compact, where a
deep recursive layer is learned, and the weights are shared by all convolutional recursions. It is
worth mentioning that the performance of DRFFN is significantly improved by increasing depth
without incurring any additional weight parameters, and it had the best performance among
various methods in the experiments on all benchmark datasets.

2. Related Works

2.1. Residual Learning

Compared to learning the original input, residual learning attains the different values of the
signal, which simplifies the learning process. Before the residual structure of ResNet was proposed,
it was difficult for researchers to alleviate the problem of gradient vanishing or explosion caused by
the increase of network depth, although adding the Batch Normalization [32] layers and employing
various activation functions such as ReLU [33], the result was unsatisfactory. By introducing the
residual structure into the model to simplify the gradient spread, it can fundamentally address such
issues. According to the scope of influence, the residual learning can be generally classified into the
two categories of global residual learning (GRL) and local residual learning (LRL). GRL only learns
the residual between the input image and the target image, avoiding complex transformation from
one entire image to another. As the residual error is close to zero in most areas, the complexity and
learning difficulty of the model are greatly reduced. VDSR [10] initially used GRL to gain enormous
performance improvement, outperforming SRCNN [5]. DRRN [16] and DRCN [34] also boosted their
SR performances by adopting GRL. LRL is used to alleviate the degradation with the increase of
network depth and to reduce the training difficulty, which is exploited in the SR models of EDSR [11],
RCAN [12], RDN [17], and ESRGAN [18], respectively.

GRL is integrated into DRFFN after shallow convolution and before image reconstruction,
while LRL is adopted in the low-frequency module of the model to speed up the transmission of
information flow.

2.2. Recursive Learning

Recursive learning applies the same module recursively for many times to increase the network
depth and expand the receptive field, to improve the effect of SR. During the whole process, all recursive
modules share parameters, immensely reducing the number of network parameters.

DRCN [34] repeatedly applies the same recursive unit (up to 16 convolutional recursions) and
reaches a receptive field of 41 × 41, which is three times larger than the 13 × 13 receptive field of
SRCNN [5], without increasing the number of parameters. DRRN [16] consists of a series of residual
units named recursive block in which the weights are shared. Even though 52 convolutional layers
are in the network, the model can still be easily trained. MemNet [29] adopts a memory block
composed of a six-recursive-ResBlock, which can be used to explicitly mine persistent memory using
an adaptive learning process, and inside the network, several memory blocks are stacked with a form
of dense connections to implement image reconstruction operation. SRFBN [19] adopts a feedback
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mechanism with recurrent structure, and a feedback network based on recursive learning was proposed,
providing strong early reconstruction ability while requiring only a few parameters.

Figure 2 illustrates DRFFN, where the deeply recursive fusion module (DRFM) can be utilized
circularly as a recursive unit without adding new convolution parameters. Figure 3 shows that each
DRFM is composed of two cascaded branches which also employ the recursive structure, and the
low-frequency module (LFM) and high-frequency module (HFM) are recursive units of branches,
respectively. The recursive structure allows us to design very deep networks while prevent incurring
more parameters. Though a deeply recursive network involves fewer parameters, it cannot avoid
high computational costs, which will greatly increase the risk of gradient vanishing or exploding.
Referencing [19,35–37] the aforementioned GRL and LRL in DRFFN are introduced to address
the problem.
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maps that are more significant for the final tasks, so that the relationships between feature maps can 
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branches, where the former pays more attention to channels with low variance, while the latter 
focuses on channels with high variance. The experimental results show that the channel attention 

Figure 2. The overall architecture of DRFFN. The red dotted rectangle represents the trunk part of
the network, which consists of the four parts of FE, recursive-in-recursive (RIR), UPAND RE, and the
detailed description is provided in Section 3.2. The deeply recursive frequency fusing module (DRFFM)
is the primary unit of the network.
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2.3. Attention Mechanism

Spatial locations and channels in the network contribute to super-resolution in varying degrees,
and not all features are equally important to super-resolution. In general, the attention mechanism
can guide how to reallocate available resources according to the informative features of the input.
This mechanism can be designed from the two dimensions of image control and image channel,
based on which the mechanism can be divided into the two categories of spatial attention (SA) and
channel attention (CA). In SelNet [38], a novel selection unit acts as a gate between convolutional
layers, which only allows selected values from the feature maps to pass. In RCAN [12], a channel
attention mechanism is employed in each local residual block by which the model focus on selective
feature maps that are more significant for the final tasks, so that the relationships between feature
maps can be effectively modeled. In SRRAM [15], an SR network is built based on a new attention
method fusing the two mechanisms (SA and CA) with the residual attention module (RAM), which is
a basic part of SRRAM consisting of residual blocks based on SA and CA.

The VCA proposed in this paper is for both low-frequency and high-frequency cascaded
branches, where the former pays more attention to channels with low variance, while the latter
focuses on channels with high variance. The experimental results show that the channel attention
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mechanism can be employed to effectively improve the performance of the model according to the
information characteristics.

3. Proposed Method

3.1. Network Architecture

The proposed network aims to learn the mapping relation between the LR images and HR images,
and the overall architecture of DRFFN is illustrated in Figure 2. The proposed network consists of
the following four parts: (1) the feature extraction part, (2) the recursion-in-recursion low- and high-
frequency fusing part, (3) the upsampling part with sub-pixel, (4) the image reconstruction part with
three channels (color image) or single-channel (grayscale image). ILR and IHR denote the input LR
image and the corresponding output HR image, respectively. Initially, the feature extraction part
comprised of two convolutional layers extracts the original features from the low-resolution input,
as shown in Equation (1):

G0 = fFE
(
ILR

)
(1)

where fFE(·) denotes the shallow feature extraction comprised of two convolutional layers, and G0

represents the extracted feature maps to be fed into the first deeply recursive low- and high-frequency
fusing module (DRFFM), which is described in detail in Section 3.2. The trunk of the network consists of
recursive-in-recursive (RIR) units, by which G0 is imported through n iterations before Gn is exported,
and the intermediate results of each iteration are subsequently concatenated and fused. Finally, G0 is
added using a global skip connection. For details, see Equations (2)–(6):

G1 = f 1
RIR(G0) (2)

G2 = f 2
RIR(G1) (3)

Gt = f t
RIR(· · · f

1
RIR(G0) · ··) (4)

Gn = f n
RIR( f n−1

RIR (· · · f 1
RIR(G0) · ··))) (5)

GR = f1×1[G1, G2, · · ·, Gt, · · ·, Gn] + G0 (6)

where f t
RIR(·) denotes the t-th DRFFM, Gt is the output of the t-th DRFFM and the input of the (t + 1)-th

DRFFM, [G1, · · ·, Gn] and f1×1 represents the concatenation operation and convolution with 1 × 1 kernel
size for aggregation, respectively.

The sub-pixel convolution layer with a larger receptive field is adopted as for the upsampling
part and image reconstruction part, which can offer more contextual information to produce more
realistic details, and this has been demonstrated by many algorithms such as [17,23,28,39]. At the end
of the network, one convolution layer is adopted for reconstruction. The mathematical representations
of the above two parts are presented in Equations (7) and (8):

GU = fUP(GR) (7)

ISR = fRE(GU) (8)

where fUP(·) and fRE(·) are the upsampling and reconstruction operators, respectively. ISR is the
ultimate inference of DRFFN: a super-resolution image.

Because the peak signal-to-noise ratio (PSNR) is highly correlated with the pixel-wise difference,
the pixel loss is one of the most popular choices used to measure the reconstruction errors, so that
the pixel values of the generated HR image will be close enough to the ground truth I. The pixel loss
measures in the convolutional neural network for the image super-resolution mainly include the `1 loss
(i.e., the mean absolute error) and the `2 loss (i.e., the mean square error). During the training process,
the `1 loss shows more enhanced performance and convergence than the `2 loss [11,28,35], because the
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`2 loss puts more emphasis on larger errors than small errors and thus often generates too smooth
results, while the `1 loss considers a more balanced error distribution, which makes it more robust.
According to the above analysis, `1 loss is employed as the loss function to optimize the SR network.

Given a batch of N training pairs: N ILR image patches and their counterparts IHR (i.e.,
{
ILR
i , IHR

i

}N

i=1
),

the loss function of the network is as shown in Equation (9):

L(θ) =
1
N

N∑
i=1

‖<(ILR
i ) − IHR

i ‖1 (9)

where <(·) denotes the function of the SR model and θ represents the set of all network
parameters learned.

3.2. Deeply Recursive Frequency Fusing Module

As the main component of DRFFN, DRFFM is designed with two branches used to extract the
low-frequency information and high-frequency information of the image, respectively. As illustrated in
Figure 3, the upper branch of DRFFM is comprised of multiple LFMs, while the lower one is composed
of HFMs. LFM and HFM and these two branches will be introduced in detail in Sections 3.3 and 3.4.
To efficiently utilize the feature map information, each branch ultimately makes full use of all the
information of extracted intermediate layers by concatenating the medial results instead of simply
adding them, as a result of which, the feature representation capability of the network is enhanced.
At the end of DRFFM, the outputs of two branches are added together and then exported through a
convolution layer to fuse the restored low- and high-frequency information of the degraded image.
Let Gt−1 and Gt be the input and output of the t− th DRFFM, respectively. Sequentially, the extraction
of low- and high-frequency features is as given in Equations (10)–(14):

Di
L = f i

L(· · · f
2
L ( f 1

L (Gt−1)) · ··) (10)

Di
H = f i

H(· · · f
2
H( f 1

H(Gt−1)) · ··) (11)

DL = f1x1[D1
L, D2

L, · · ·, Di
L, · · ·, Dn

L] (12)

DH = f1x1[D1
H, D2

H, · · ·, Di
H, · · ·, Dn

H] (13)

Gt = DL + DH (14)

where f i
L(·) and f i

H(·) denote the i− th LFM and HFM operations, while Di
L and Di

H represent the i− th
outputs of LFM and HFM, respectively.

3.3. Low-Frequency Module

As shown in Figure 4, LFM is the primary unit of the low-frequency information extraction
branch of the model. Techniques, such as feature fusion, residual learning, and attention mechanism,
are applied to extract the intensively low-frequency information of the image. LFM integrates the
results of three convolution groups (each convolution group contains three convolution layers) and
one compression group through convolution with a kernel size of 1 × 1, then the original input is
added to form LRL, and the information is passed into the channel attention block to improve the
utilization efficiency of channels. As a result, a residual attention subnet is formed by constructing a
GRL structure within the interval of LFM. Let B be the result of group convolution and local residual
learning, and for the details of LFM operation, see Equations (15) and (16):

B = f1x1[ fGC(Di−1
L ), fGC( fGC(Di−1

L )), fGC( fGC( fGC(Di−1
L )))] + Di−1

L (15)

Di
L = fCA−L(B) + Di−1

L (16)
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where fGC(·) denotes the group convolution operation and fCA−L(·) adjusts the importance of channels
according to the smaller variance.
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3.4. High-Frequency Module

In D-DBPN [13], they proposed an iterative error-correcting feedback mechanism for SR, and both
the up- and down-projection errors are calculated to guide the reconstruction, to obtain better results.
Inspired by this scheme, the high-frequency information can be recovered by refining the projection
error step by step. Specifically, as shown in Figure 5, HFM downsamples and upsamples the input
feature maps to increase and reduce the resolution, thereupon built the difference between input and
output, which is used as the first projection error and fed into the next iteration, and it undergoes
three iterations in total. All iteration results are merged and further processed by a residual attention
subnet to recover the high-frequency information of the image, and it is implemented similarly in the
LFM. Let C j

e be the j− th backward projection error between the scaling input and the previous error.
The complete procedure of HFM operation is given in Equations (17)–(20):

C1
e = fDU(Di−1

H ) −Di−1
H (17)

C j
e = fDU(C

j−1
e ) −C j−1

e (18)

Ce = f1x1[C1
e , C2

e , · · ·, C j
e, · · ·, Cn

e ] (19)

Di
H = fCA−H(Ce) (20)

where fDU(·) denotes the down- and up-sampling operations used to obtain the projection error,
and fCA−H(·) recalibrates the available resources towards channels with higher variance.
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3.5. Channel Attention Block

The attention mechanism can act as a kind of constraint to assemble available resources to achieve
the most informative elements of an input. In the early research, attention was mainly applied in a
deep neural network for image classification [36,40,41], and the accuracy of image classification was
significantly improved in these works. Recently, some researchers introduced attention to low-level
computer vision tasks such as SISR (i.e., the feature channels are weighted according to their relative
importance) and achieved significant improvement of performance. In RCAN [12], a channel attention
mechanism was put forward, which can adaptively rescale the channel-wise features by considering the
interdependencies among channels. In SRRAM [15], a new attention method is presented, consisting of
the residual attention module (RAM), a new channel-wise and spatial attention mechanism which
is optimized for SR, and a new fused attention mechanism combining the above. In DRLN [20],
the Laplacian attention mechanism is proposed, based on which, the crucial features can be modeled
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to learn the inter- and intra-dependencies between the feature maps. RCAN [12] and DRLN [20]
adopted global average pooling and a simple gating mechanism with sigmoid function widely used
in high-level computer vision tasks, such as image classification and object detection, to realize the
channel attention mechanism. However, SR aims to restore a variety of frequency components of
images, so it is more reasonable to determine the attention feature maps using the frequency statistics
of the channels. Although the high-frequency statistics of the channels was considered in SRRAM
by using the variance rather than the average for the pooling method, it omitted the low-frequency
components of an image.

Experimental results show that the plain feature map has a lower variance where little differences
existed between pixels, while a bigger variance is reflected in the sharpened regions of the channel.
Accordingly, a new global pooling method based on variance rather than global average is proposed
in this paper. Let T be input with C feature maps with the size of H ×W. The channel-wise statistic
S ∈ RC can be acquired by compressing T from H ×W ×C to 1× 1×C, as shown in Equation (21):

Sk = NGVP(Tk) =
1

H ×W

H∑
i=1

W∑
j=1

Tk(i, j) k ∈ [1, C] (21)

where Tk(i, j) is the value at position (i, j) of the k-th feature map. NGVP(·) represents the global
variance pooling function. To recalibrate the channel-wise feature from the condensed information
(i.e., channel compression), a simple gating mechanism with sigmoid function is exploited, which is also

opted in [12,15,20], and then obtain the new feature distribution result
∧

T, as shown in Equations (22)
and (23):

∧

T = T × σ(S) (22)

∧

T = T × (1− σ(S)) (23)

where σ(·) and × denote the sigmoid function and the element-wise product, respectively. As HFM
aims to extract the high-frequency features, the calibration strategy prefers the channel with relatively
larger variance. The channel attention block (CAB) inside of HFM makes full use of feature maps
according to Equation (22), and the CAB inside of LFM follows the rules in Equation (23) and prefers
channels with smaller variance. The structure of the CAB is as shown in Figure 6.
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Figure 6. Details of channel attention block (CAB) of variance (VCA) which categorize CA-H and CA-L.
(a) channel-wise attention block based on high variance (CA-H); (b) channel-wise attention block based
on low variance (CA-L).
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3.6. Implementation Details

In this section, the implementation details of DRFFN are presented in each cascading
recursion-in-recursion block, where three DRFFMs (n = 3) in which two parallel branches are
established, including three LFMs and HFMs. LFM consists of six convolutional layers and one channel
attention module, while HFM consists of three downsampling-upsampling pairs and one channel
attention module. For DRFFMs, LFMs, and HFMs, the intermediate outputs are concatenated and
then compressed. Except for the initial convolutional layer and the last convolutional layer where
a single-channel is set to match the gray images or three-channels are set to match the color images,
the number of feature maps of all convolution layers is set to 64. The kernel size of all convolution
layers is set to 3 × 3 apart from the compression unit and upsampling part. Each convolution
follows a nonlinear activation function, a variation of the rectified linear unit (ReLU) [33]: Parametric
Rectified Linear Unit (PReLU) [42], which can accept the negative value and express richer information.
All convolutions are padded with zeros to keep the consistent size of feature maps. In the channel
attention block, the channel scaling factor is set to 4. As in [11,21,23,26,43,44], a post-upsampling
pattern is also used instead of pre-sampling to achieve more efficient implementation, and also to
avoid side artifacts and expensive cost of time and space.

4. Experiments

4.1. Datasets

During the experiments, the DIV2K (2K resolution) [45], one of the most popular publicly
available benchmark dataset with high quality is employed, to train the model. The performance of
DRFFN is evaluated on five standard benchmark datasets widely used in the SR: Set5 [31], Set14 [37],
BSD100 [46], Urban100 [47], and Manga109 [48]. Set5, Set14, and BSD100 consist of natural images,
while Urban100 includes 100 images with architectural structures. The Manga109 dataset is composed
of Japanese manga comics images generated by a computer, which are very different from natural
images. The PSNR and the structural similarity (SSIM) [49] are adopted as metrics for evaluation.
To fairly compare with state-of-the-art methods, DRFFN follows the same evaluation procedure by
calculating PSNR and SSIM on the luminance channel (i.e., the Y-channel in YCbCr (Y, Cb, Cr) color
space) and removing boundary (6+ scale) pixels from the border.

4.2. Training Settings

The LR images are acquired by downsampling the HR images using the Bicubic kernel with
a scale factor of (×2, ×3, ×4). The size of the non-overlapping patch is 64 × 64 randomly cropped
from LR space as input, and the batch size is set to 32. Data augmentation is realized by randomly
rotating for (90◦, 180◦, 270◦) and via horizontally and vertically flipping. To optimize the model,
Adam [50] is exploited to minimize the L1 loss function with the default parameters of β1= 0.9,
β2= 0.999, and ε = 10−8. The initial learning rate is set to 10−4 and decreased to half of that after every
2 × 105 iterations. All RGB channels participate in training and evaluation instead of transforming
into the YCbCr space before feeding it into networks, and only the Y-channel is used as a traditionally
training strategy. The weights are initialized using the method described in He et al., [41], and the
biases are initialized to zero. The model is constructed using the PyTorch framework [50] on two
NVIDIA GeForce RTX 2080 Ti GPUs for training and testing.

4.3. Ablation Studies

4.3.1. Skip Connections

Skip connections can significantly improve the SR performance to attain a high-quality
reconstructed image, and such connections can be roughly classified into global connections,
local connections, and recursive connections in the model, whose effectiveness is reflected in two
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folds: (1) Residual learning built by skip connections can simplify the network, strengthen gradient
propagation, ensure certain gradient and prevent the gradient from disappearing. (2) The structure
of skip connections can accelerate gradient flow. Furthermore, the study of [51] shows that skip
connections would break the symmetry of the network, hence greatly alleviating the degradation of
the neural network, which can reduce the difficulty of deeply network training. Table 1 shows the
average PSNR on the Set14 dataset for the scale factor of 2. The experimental results prove that the
PSNR is higher when the skip connections are employed, while the performance degrades apparently
when the connections are abandoned. This indicates that merely deepening the network without skip
connections will not yield benefits.

Table 1. Ablation results of different modules combined with the DRFFN are reported by showing the
best PSNR (dB) values on Set5 (×4) in 100 epochs.

Module Name Options

Skip Connection
√

×
√

×
√

×
√

Concatenation Aggregation ×
√ √

× ×
√ √

Variance-based Channel Attention × × ×
√ √ √ √

PSNR (dB) 32.35 32.33 32.43 32.41 32.47 32.45 32.50

4.3.2. Concatenation Aggregation

With the increase of network depth, a large number of feature maps will be generated during
the implementation in neural networks, which contain a mass of available information for the final
task. To make full use of the intermediate feature resources, many networks employ the feature
fusion technique to achieve feature reuse. At present, such a technique mainly includes two types:
the element-wise add as presented in [52] and channel-wise concatenation proposed in [53]. The former
simply superimposes the pixel information among the same locations of the feature map, enhancing the
correct signal while also amplifying the wrong signal. While the latter retains all feature dimensions
and can make full use of the interrelation of feature dimensions to enhance the overall quality of the
image, rather than reinforcing the information in a single feature map. The input and output of SR
are highly correlated, and all feature maps between the two ends present intensive interdependence.
Therefore, concatenation is a better choice than summation in SR tasks, which can obtain better results.
All modules in DRFFN widely employ the concatenation aggregation method to boost the performance
of the network. As listed in Table 1, the experimental results demonstrate the advantages of the
selected method.

4.3.3. Variance-Based Channel Attention

Recently, the attention mechanism has been introduced into the SR model to improve network
performance in various works, including DRLN [20], RCAN [12], and SRRAM [15]. In these works,
an extremely important operation is global pooling, which is mainly based on the global average
or global maximum, and only a few methods take into account the variance of the feature map.
DRFFN subdivides VCA into the low variance-oriented and high variance-oriented patterns according
to the differences in information distribution of diverse feature channels, rather than simply applying
the attention mechanism based on variance. The results of a PSNR comparison between the networks
with and without VCA are listed in Table 1, while the results of comparing the performance of attention
mechanism with that of various algorithms mentioned above are exhibited in Table 2. The results show
that different variance tendencies can be used to enhance useful features and restrain useless features,
to improve the accuracy of image reconstruction. VCA is one of the most critical conditions to ensure
the performance of DRFFN.
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Table 2. Public benchmark datasets test results (PSNR/SSIM).

Method Scale
Set5 Set14 BSD100 Urban100 Manga109

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic

×2

33.68/0.9304 30.24/0.8691 29.56/0.8453 26.88/0.8405 30.80/0.9399
SRCNN 36.66/0.9542 32.45/0.9067 31.36/0.8879 29.51/0.8946 35.60/0.9663

FSRCNN 36.98/0.9556 32.62/0.9087 31.50/0.8904 29.85/0.9009 36.67/0.9710
VDSR 37.53/0.9587 33.05/0.9127 31.90/0.8960 30.77/0.9141 37.22/0.9750

LapSRN 37.52/0.9591 32.99/0.9124 31.80/0.8949 30.41/0.9101 37.27/0.9740
EDSR 38.11/0.9602 33.92/0.9195 32.32/0.9013 32.93/0.9351 39.10/0.9773

MemNet 37.78/0.9597 33.28/0.9142 32.08/0.8978 31.31/0.9195 37.72/0.9740
D-DBPN 38.09/0.9600 33.85/0.9190 32.27/0.9000 32.55/0.9324 38.89/0.9775
CARN 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 38.36/0.9764

SRRAM 37.82/0.9592 33.48/0.9171 32.12/0.8983 32.05/0.9264 38.89/0.9775
SRFBN 38.11/0.9609 33.82/0.9196 32.29/0.9010 32.62/0.9328 38.86/0.9774
DRLN 38.27/0.9616 34.28/0.9231 32.44/0.9028 33.37/0.9390 39.58/0.9786

DRFFN(Ours) 38.16/0.9649 34.02/0.9248 32.23/0.9075 32.81/0.9369 39.45/0.9781

Bicubic

×3

30.40/0.8686 27.54/0.7741 27.21/0.7389 24.46/0.7349 26.95/0.8556
SRCNN 32.75/0.9090 29.29/0.8215 28.41/0.7863 26.24/0.7991 30.48/0.9117

FSRCNN 33.16/0.9140 29.42/0.8242 28.52/0.7893 26.41/0.8064 31.10/0.9210
VDSR 33.66/0.9213 29.78/0.8318 28.83/0.7976 27.14/0.8279 32.01/0.9340

LapSRN 33.82/0.9227 29.79/0.8320 28.82/0.7973 27.07/0.8271 32.21/0.9350
EDSR 34.65/0.9280 30.52/0.8462 29.25/0.8093 28.80/0.8653 34.17/0.9476

MemNet 34.09/0.9248 30.00/0.8350 28.96/0.8001 27.56/0.8376 32.51/0.9369
CARN 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 33.49/0.9440

SRRAM 34.30/0.9256 30.32/0.8417 29.07/0.8039 28.12/0.8507 /
SRFBN 34.70/0.9292 30.51/0.8461 29.24/0.8084 28.73/0.8641 /
DRLN 34.78/0.9303 30.73/0.8488 29.36/0.8117 29.21/0.8772 34.71/0.9509

DRFFN(Ours) 34.81/0.9458 30.85/0.8634 29.39/0.8289 28.66/0.8544 34.38/0.9518

Bicubic

×4

28.43/0.8109 26.00/0.7023 25.96/0.6678 23.14/0.6574 24.89/0.7866
SRCNN 30.48/0.8628 27.50/0.7513 26.90/0.7103 24.52/0.7226 27.58/0.8555

FSRCNN 30.70/0.8657 27.59/0.7535 26.96/0.7128 24.60/0.7258 27.90/0.8610
VDSR 31.25/0.8838 28.02/0.7678 27.29/0.7252 25.18/0.7525 28.83/0.8870

LapSRN 31.54/0.8866 28.09/0.7694 27.32/0.7264 25.21/0.7553 29.09/0.8900
EDSR 32.46/0.8968 28.80/0.7876 27.71/0.7420 26.64/0.8033 31.02/0.9184

MemNet 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630 29.42/0.8942
D-DBPN 32.47/0.8980 28.82/0.7860 27.72/0.7400 26.38/0.7946 30.91/0.9137
CARN 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 30.40/0.9082

SRRAM 32.13/0.8932 28.54/0.7800 27.56/0.7650 26.05/0.7834 /
SRFBN 32.47/0.8983 28.81/0.7868 27.72/0.7409 26.60/0.8051 31.15/0.9160
DRLN 32.63/0.9002 28.94/0.7900 27.83/0.7444 26.98/0.8119 31.54/0.9196

DRFFN(Ours) 32.50/0.9077 28.88/0.8002 27.78/0.7550 26.25/0.7735 31.08/0.9185

4.4. Model Analyses

Depth analysis. In this subsection, the basic network depth of DRFFN are investigated,
including the number of DRFFM (denoted as D for short) and the number of LFM or HFM (denoted as
N for short) employed in each branch of the network. Some strategies are taken to attempt to trade off

D against N by regulating values of D and N in the experiments. Starting from the case with D = 1
and N = 3 (D1N3), DRFFN gradually increases D or N, and the results are presented in the red and
blue lines in Figure 7, respectively. It is observed from figures that the larger D or N is, the better
performance is acquired, and it appears that it is more effective to increase D than N.
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Parameter quantitative analysis. The number of network parameters plays a vital role in the
scale and performance of the model. Abundant parameters can improve the learning capacity of
the model, while more parameters will result in overfitting problems in the case of limited training
samples and consume more computing and storage resources thus generate declining performance.
DRFFN introduces a recursive structure to share parameters, which greatly reduces the number of
parameters, improving model ability as well as ensuring the quality of reconstruction. The performance
and the numbers of parameters are compared between DRFFN and eight state-of-the-art SR methods
and the result is shown in Figure 8, where it is clear that DRFFN achieves a much better performance
while maintaining fewer parameters.Sensors 2020, 20, x FOR PEER REVIEW 13 of 19 
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In some lightweight networks such as MobileNet [54], an effective convolution termed depth-wise
separable convolution combining depth-wise (DW) and point-wise (PW) convolutions is used to
extract feature map, which has fewer parameters and a lower cost of computation. The number of
model parameters is an important factor for SISR in real applications, and thus DRFFN is reinvented to
significantly reduce the number of parameters by introducing the depth-wise separable convolution
into DRFFN, which is called DRFFN-L. As shown in Figure 8, the DRFFN-L model with a trunk of
D2N3 exhibits better performance and fewer parameters than VDSR [10], LapSRN [22], MemNet [29],
and CARN [28], which fully proves that DRFFN and DRFFN-L can provide better performance.

Prediction time analysis. Conventional experiments have demonstrated that the deeper model
may prolong the prediction time on object tasks. As the network depth increases, the number of the
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convolution kernel and intermediate channel are extended, which causes a large amount of computation
and storage and is intolerable for the high real-time task. To find an appropriate balance between
depth and real-time, therefore, is very important to improve the overall performance of the model.
The quantitative change relationship between the prediction time and network depth of several SR
models is presented in Figure 9. Although DRFFN is slightly inferior to other methods in real-time due
to the deeper network, its performance is significantly improved, acquiring the highest value of PSNR.
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4.5. Comparison with State-of-the-Art Models

In this section, DRFFN is compared with the state-of-the-art models including Bicubic, SRCNN [5],
FSRCNN [21], VDSR [10], LapSRN [22], EDSR [11], MemNet [29], D-DBPN [13], CARN [28],
SRRAM [15], SRFBN [19], and DRLN [20] in Table 2, providing test results on widely used public
benchmark datasets. Following a common setting and for impartial comparison, the metrics of
PSNR and SSIM are evaluated on the Y channel and ignore the same amount of pixels as scales from
the frontier. DRFFN with D = 2 and N = 3 is selected as the final large and lightweight networks,
respectively. The LR images are generated using bicubic interpolation (BI). Table 2 presents the ×2,
×3, and ×4 performances of classical methods, from which it is shown that DRFFN achieves the
distinguished results among all methods for comparison.

5. Discussion

The quantitative results are presented in Table 1. For×2 scale, DRFFN is almost superior to all other
methods except DRLN, and it is very close to EDSR, SRFBN, and D-DBPN on BSD100 and Urban00
datasets, with the maximum gap 0.12 dB. For ×3 scale, DRFFN outperforms all methods on Set5, Set14,
and BSD100 datasets, which is only slightly inferior to DRLN and EDSR on Urban100 and Manga109
datasets, closing to SRFBNF with a difference of 0.07 dB. For ×4 scale, DRFFN exhibits prominent
performance similar to DRLN, although mild performance degradation is appeared comparing to EDSR,
SRFBN, and D-DBPN on Urban100 and MANGA109 (only refers to SRFBN) datasets, DRFFN surpasses
all other compared methods on all provided datasets with a significant performance advantage.

DRLN employed 160 convolutional layers and the number of parameters reached 34M, while DRFFN
has a network depth of 74 and much fewer parameters of 8M. According to the analysis in Figure 9, it is not
surprising that DRLN has shown a strong learning capacity. EDSR utilizes 64 convolutional layers, however,
the number of feature maps of each convolutional layer reaches 256, which is far greater than that of
DRFFN (64). SRFBN and D-DBPN use DIV2K+Flickr2K [11] and DIV2K+Flickr2K+ImageNet [55] as
a dataset to train their models, respectively, and the training samples are much richer than DRFFN
(DIV2K). Nevertheless, DRFFN obtains competitive results and outperforms almost all comparative
methods in most cases.
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Four examples are picked for visualization to present the qualitative results with scale factor ×4
in Figure 10, which are from BSD100, Set14, Manga109, UrBan100, respectively. In “img_088.png”,
the koala’s toe contour recovered by other methods is very blurred and distorted to a certain extent.
DRFFN is relatively faithful to the ground-truth image, reconstructing the appropriate contour lines
and reducing ambiguity. In “ppt3.bmp”, other methods have produced serious blur and distortion,
especially the alphabets of “i” and “t” of the word “with”. SRCNN, VDSR, SRRAM, and D-DBPN
completely fail to restore the image. Although EDSR recovers part of the content, it is very unclear,
while DRFFN retrieves a clearly and sharply visible result. In “TasogareTsushin”, DRFFN restored
major information with the highest clarity, while SRCNN, VDSR, and SRRAM lost some details,
especially color and texture. EDSR and DDBPN restored a mass of content, however, which is not as
clear as DRFFN on the edge. In “img039.png”, all the other methods generated very fuzzy results,
where the top border in the lower right corner of the window is seriously distorted, and DRFFN restore
the main clear edge and contour, significantly achieving a better effect than other methods.
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From the above comparisons, it is observed that DRFFN successfully reconstructs the detailed
textures, edges, and structures, which exhibits robustness and effectiveness of DRFFN, attributing to
the mechanism of fusing low- and high-frequency.

6. Conclusions

This paper presents an effective and efficient algorithm based on DRFFN, which can improve the
performance of the SISR model, and this method can progressively restore the low- and high-frequency
information of images. Due to the use of recursive construction, the model solved the problem of
gradient vanishing even if the network is very deep. Meanwhile, the number of parameters is controlled
within a relatively low range by sharing filter weights. In addition, a channel attention mechanism based
on variance is developed to recalibrate the channel resources according to the frequency characteristics
of the feature maps, to recover the low-frequency and high-frequency information more effectively,
and then feature fusion is conducive to fully utilizing the interdependence of channels. The ablation
investigation results reveal that VCA plays a prominent role in improving the performance of the
SR model.

The comprehensive evaluation results with BI degradation models on standard benchmark
datasets well demonstrate that DRFFN outperforms most of the models in comparison and achieves
remarkable performance in terms of both quantitative and visual results.

In further works, the performance of the model will be improved continuously by trying to
expand the training set and suitably increase the network depth. Furthermore, the trained model can
also be used for high-level tasks in computer vision such as image segmentation, target detection,
target recognition to promote their performances and acquire more satisfactory results.
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