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Abstract: Oxford Nanopore sequencing is an important sequencing technology, which reads the
nucleotide sequence by detecting the electrical current signal changes when DNA molecule is forced
to pass through a biological nanopore. The research on signal simulation of nanopore sequencing
is highly desirable for method developments of nanopore sequencing applications. To improve the
simulation accuracy, we propose a novel signal simulation method based on Bi-directional Gated
Recurrent Units (BiGRU). In this method, the signal processing model based on BiGRU is built to
replace the traditional low-pass filter to post-process the ground-truth signal calculated by the input
nucleotide sequence and nanopore sequencing pore model. Gaussian noise is then added to the
filtered signal to generate the final simulated signal. This method can accurately model the relation
between ground-truth signal and real-world sequencing signal through experimental sequencing
data. The simulation results reveal that the proposed method utilizing the powerful learning ability
of the neural network can generate the simulated signal that is closer to the real-world sequencing
signal in the time and frequency domains than the existing simulation method.

Keywords: ONT nanopore sequencing; Bi-directional gated recurrent units; signal simulation;
neural network

1. Introduction

Nanopore-based sequencing technology is a new generation of sequencing technology, which has
been rapidly developed in recent years [1,2]. It can detect the nucleotide sequences passing through the
pores embedded in the membrane separating the two electrolyte chambers [3]. By applying a proper
electric potential over the membrane, the nucleotide sequence can pass through the nanopore at an
appropriate speed under the control of a DNA-translocating motor protein [4]. The bases in the pore
change the nanopore conductance, causing changes in the current trace which can be used to determine
the base types. Nanopore sequencing technology owns the advantages of long sequencing reads [5],
real-time sequencing data analysis [6], and no PCR amplification [7]. In addition to nucleic acid
sequencing, it also has great potential in virus sensing, protein sensing, and protein sequencing [8–10].
However, the weak signals on single-molecule level to be detected and relatively high complex
sequencing environment will cause extremely noisy output signals, which is challenging for further
base calling [11]. To solve this problem, a variety of digital signal analysis algorithms have been
developed for nanopore sequencing applications [12–14]. Researchers usually use experimental data
or simulated data to optimize and test the performance of these new algorithms [15]. Compared with
experimental data, simulated data can greatly save the cost of research, reduce the difficulty of data
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analysis, and improve the efficiency of research. Therefore, more accurate simulation of nanopore
sequencing data is highly desirable for method developments of nanopore sequencing technology.

The simulation methods of nanopore sequencing data can be divided into two categories:
nanopore sequencing read simulation and nanopore sequencing signal simulation. ReadSim, SiLiCO,
and NanoSim [16] are sequencing read simulators that generate the simulated reads by utilizing
the input nucleotide sequence and configuration file, where the configuration file contains a set of
parameters, such as insertion rate, deletion rate, substitution rate, read length, etc. The main difference
among these three read simulators is that ReadSim uses the fixed configuration file, SiLiCO uses
the configuration file provided by the user, and NanoSim uses the experimental data to learn the
configuration file to be used in the simulation stage. DeepSimulator [17,18] is the first simulator that
can simulate nanopore sequencing signals. Firstly, it generates a ground-truth signal corresponding
to the input nucleotide sequence according to the nanopore sequencing pore model provided by
Oxford Nanopore Technology (ONT) and the repeat time distribution of real sequencing signals.
The ground-truth signal is an idealized simulated signal without any randomization. Next, it adopts a
low-pass filter to filter out the high-frequency components embedded in the ground-truth signal that
are not related to the real signal. Finally, to make the filtered signal without noise characteristic closer
to the noisy nanopore raw signal, Gaussian noise is added to the filtered signal to generate the final
simulated signal. Since the low-pass filter attenuates all high-frequency components that are higher
than the cutoff frequency, it will inevitably attenuate the high-frequency components related to the real
signal. For some input nucleotide sequences, there may be a large deviation between the simulated
signals and the real signals, which causes inconvenience to the users who are concerned about the
signal outputs.

To further improve the simulation accuracy of Oxford Nanopore sequencing signals, we propose a
signal simulation method based on Bi-directional Gated Recurrent Units (BiGRU). For the convenience
of description, we named the proposed method NanosigSim (https://github.com/zpllx/NanosigSim).
BiGRU is a type of artificial neural network, which has been widely used in the field of basecalling to
model the sequencing raw signal data. Specifically, by building a signal processing model based on
BiGRU instead of using a low-pass filter, the ground-truth signal calculated from the input nucleotide
sequence and pore model can be filtered more accurately, and then the final simulated signals can be
generated by adding Gaussian noise to the filtered signals. The proposed signal processing model has
a novel architecture that couples a three-layer BiGRU and a fully connected layer. This enables it to
model the relationship between ground-truth signals and real-world sequencing signals accurately.
Utilizing BiGRU neural network to learn the time-frequency characteristics of real-world sequencing
signals from empirical data, the proposed method shows higher accuracy in the simulation of nanopore
signals than DeepSimulator on four biological sequencing samples. The experimental data also verify
the accuracy of the proposed signal simulation method regarding the time and frequency domains.

2. Materials and Methods

2.1. Main Workflow

Based on the research of DeepSimulator, we propose a novel nanopore sequencing signal
simulation method based on BiGRU. DeepSimulator is the first simulator that completely simulates
the entire pipeline of nanopore sequencing, which can generate simulated signals and simulated reads
simultaneously. The nanopore sequencing pipeline mainly includes three stages: sample preparation,
current signal collection and basecalling [19]. Correspondingly, the main workflow of DeepSimulator
consists of a sequence generator module, a signal generator module and a basecaller module.
The sequence generator module randomly selects the starting position on the input reference genome
sequence to generate relatively short sequences that satisfy the length distribution of real sequencing
reads. The signal generator module generates the simulated signals corresponding to the nucleotide
sequences output by the previous module according to the nanopore sequencing 6-mer pore model.

https://github.com/zpllx/NanosigSim
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The final basecaller module translates the simulated signals into simulated reads [20]. Our proposed
signal simulation method mainly improves the signal generator module of DeepSimulator. The main
workflow of our proposed signal simulation method is shown in Figure 1, which can simulate the
process of measuring the electrical current signal of an input nucleotide sequence using a nanopore
sequencer (such as MinION).

BiGRU-based 

signal processing model

Gaussian noise

Nucleotide sequence

Expected signal

Ground-truth signal

Filtered signal

 Simulated signal

CCGAATAAGTCA...TGCAGGGCTAA

Basecaller Guppy...

 Simulated readCTGAATAAGTCA...TCAGGGTCTAA

Pore model

Repeat time sample

AAAAAA  86.486336

AAAAAC  83.948838

AAAAAG  85.475368

AAAAAT  84.423907

       

       

       

TTTTTG  90.689915

TTTTTT  90.679010

Full connected layer

GRU GRU GRU

GRU GRU GRU

Figure 1. The main workflow of the proposed signal simulation method based on BiGRU (NanosigSim).
Given an input nucleotide sequence, this method first generates the expected signal by the pore model.
Then, the expected signal is used to produce the ground-truth signal according to the repeat length
distribution. Finally, to simulate the real-world sequencing signal, it applies BiGRU-based signal
processing model and adds the Gaussian noise on the ground-truth signal.

The nanopore sequencing signal is mainly influenced by the 5 or 6 bases occupying the pore at
the same time. The 6-mer pore model provided by ONT contains the expected current signal value
corresponding to each 6-mer [21]. Given an input nucleotide sequence X = x1, x2, . . . , xT with T
bases, the first step in the process of outputting its corresponding simulated signal is to convert it
into the expected signal sequence Y = y1, y2, . . . , yT−5 via the pore model, where yi represents the
corresponding expected signal value of the 6-mer starting from position i in X.

With the current MinION pore chemistry, ONT reports that the single-stranded nucleotide
sequence passes through the pore at a speed around 450 bp/s, and the sampling frequency of
sequencing signal is 4 kHz. Thus, there are on average 8–9 discrete measurements per 6-mer,
although the number varies because of the fluctuating translocation speed of the motor protein.
To convert the expected signal sequence to the electrical current signal sequence which can be put
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into a basecaller, we need to repeat each signal value several times in the expected signal sequence.
The repeat time of expected signal is obtained from the real-world experimental data, which satisfies the
mixture alpha distribution. The signal sequence generated by the above process is called ground-truth
signal, and the signal has a similar length distribution with the real sequencing signal.

The simulated ground-truth signal is composed of a series of square waves, whose spectrum is
the combination of infinite sine waves. To simulate the nanopore sequencing signal more realistically,
it is necessary to filter the high-frequency components embedded in the square waves. DeepSimulator
uses a low-pass filter which is realized by convoluting the ground-truth signal with a windowed-sinc
function to achieve this process. Considering that the speed of single-stranded nucleotide sequence
passing through the nanopore is around 450 bp/s, the cutoff frequency of the low-pass filter should
be larger than 450 Hz. When the cutoff frequency is set to 950 Hz, the simulated signal which is
most similar to the real signal can be generated. Different from DeepSimulator, we build a signal
processing model based on BiGRU to process the ground-truth signal. The proposed signal processing
model can model the relation between ground-truth signal and real-world sequencing signal through
experimental data to accurately filter out the useless high-frequency components. This design can
greatly improve the simulation accuracy of nanopore sequencing signal. The specific implementation
details of the proposed signal processing model are described below.

Compared with the real-world sequencing signal, the filtered signals output by the low-pass
filter and the proposed signal processing model do not contain any noise characteristics, while the
complex sequencing environment will output the real sequencing signal with a low signal-to-noise
ratio. By adding Gaussian noise to each position of the simulated signal, the complex sequencing
environment can be simulated. Changing the variance of the Gaussian noise added later can effectively
control the quality of the output simulated signal.

2.2. Gated Recurrent Units Neural Network

GRU is a popular variant of recurrent neural network, which can effectively solve the gradient
problem during back propagation through the network [22]. Compared with long short-term memory
(LSTM) [23], another variant of recurrent neural network, GRU not only inherits the gate control
principle of LSTM, but also simplifies the structure of neurons and reduces the complexity of
the model. GRU has the advantages of fewer parameters, simpler structure, easier computation,
and stronger convergence.

The GRU network structure includes two gates and two states, which are update gate z, reset gate
r, hidden state h, and candidate state h′. In Figure 2, it represents the value of the input signal at time t,
ht−1 represents the hidden state at the previous time, and the hidden state ht at time t is determined
by it and ht−1. Given the input signal it and hidden state ht−1, GRU first calculates update gate zt

and reset gate rt, which control how to get ht from it and ht−1. In this structure, the update gate zt is
calculated by Equation (1) and the reset gate rt is calculated by Equation (2), where σ is the sigmoid
function σ (z) = 1/ (1 + e−z); Wz and Wr are the update gate weight and reset gate weight respectively;
and bz and br are biases.

zt = σ (Wz [ht−1, it] + bz) (1)

rt = σ (Wr [ht−1, it] + br) (2)

Then, the unit computes the candidate state h′t using the reset gate rt, i.e.,

h′t = tanh (W [rt ◦ ht−1, it]) (3)

where ◦ represents the element-wise vector product and W represents the weight matrix. If the
component of the reset gate vector is close to 0, it will reduce the impact of the previous state. Finally,
the overall output ht of GRU network is a linear combination of h′t and ht−1, i.e.,

ht = (1− zt) ◦ ht−1 + zt ◦ h′t (4)
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Figure 2. The specific structure of GRU neural network.

2.3. Proposed Signal Processing Model Based on BiGRU

To more accurately simulate the real-world nanopore sequencing signals, a key step in
DeepSimulator’s signal generator module is using a low-pass filter to post-process the ground-truth
signals. A low-pass filter is a filter that passes signals with a frequency lower than the selected cutoff
frequency and attenuates signals with a frequency higher than the cutoff frequency. Although the
low-pass filter can filter out high-frequency components that are not related to the real signals, it also
filters out high-frequency components related to the real signals, resulting in a large distortion between
the simulated signals and the real signals. To solve this problem, we build a signal processing model
based on BiGRU to post-process the ground-truth signals. The proposed model can learn how to filter
out the irrelevant high-frequency components accurately from the experimental data and retain the
useful high-frequency components, generating simulated signals closer to the real-world signals.

The network architecture of the signal processing model based on BiGRU proposed in this study
is shown in Figure 3. This model combines a three-layer BiGRU and a fully connected layer to
post-process the ground-truth signals. The normalized ground-truth signal I = i1, i2, . . . , iT is used
as the input of the model and the output of the model is the filtered signal O = o1, o2, . . . , oT with the
same length as the input signal. The final simulated signal is generated by adding Gaussian noise to
the output signal.

Concat Concat Concat

Full connected layer

Input

BiGRU

(3 layers)

Concatenate

Output

Output signal

Ground-truth signal

GRU GRU GRU

GRU GRU GRU

Figure 3. The network architecture of signal processing model based on BiGRU, which is composed of
a three-layer BiGRU and a fully connected layer. Given a ground-truth signal, the signal processing
model will output its corresponding filtered signal after calculation.
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The core module of the above ground-truth signal processing model is the BiGRU network.
When using the GRU network to process the ground-truth signal, the output signal value ot at the
time t is not only related to the present input signal value, but also related to the input signal values
previous and afterward. To connect the output value at the current time with the state at the time before
and after, the ground-truth signal is processed by the BiGRU network, and the output signal value
ot is more accurate through forward and backward calculation. The basic unit of the BiGRU model
consists of a forward-propagating GRU unit and a backward-propagating GRU unit. The hidden state
ht at time t is obtained by concatenating the forward hidden state h f

t and the backward hidden state hr
t .

The specific calculation process is as follows:

h f
t = GRU

(
h f

t−1, it

)
(5)

hr
t = GRU

(
hr

t+1, it
)

(6)

ht = h f
t ||h

r
t (7)

where || denotes concatenation of vectors. The signal processing model proposed in this study adopts
three-layer BiGRU. Using multi-layer BiGRU can increase the parameters of the model and improve
the learning ability of the model. Figure 4 shows the structure diagram of the three-layer BiGRU
network used in this paper.

i

(1)
h

(2)
h

(3)
h

h

Figure 4. The structure of the three-layer BiGRU network.

The output vector of the last layer of the three-layer BiGRU network is then fed into the fully
connected layer, and the output of the fully connected layer is the final filtered signal. The novelty
of our proposed model is to use neural networks to learn the relationship between ground-truth
signals and corresponding real-world sequencing signals. Compared with the low-pass filter of the
DeepSimulator’s signal generator module, the proposed signal processing model can efficiently and
accurately filter out the useless high-frequency components embedded in the ground-truth signal,
generating simulated signal which is more similar to the real-world signal in the time domain and
frequency domain.

2.4. Parameter Training of Proposed Signal Processing Model

To make the proposed signal processing model able to process the ground-truth signal correctly,
it is necessary to use training data to train the parameters of the model. Through parameter training,
the model can learn the internal relationship between the ground-truth signal and the real sequencing
signal which can achieve efficient and accurate signal filtering. The parameter training process of
the signal processing model mainly includes four major steps: preparing supervised training data,
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defining the loss function, initializing the model parameters, and iterating the model parameters using
the optimization algorithm.

The first step of parameter training is the preparation of the supervised training data in advance.
In this model, the input vector is the ground-truth signal calculated by the nucleotide sequence and
6-mer pore model, and the output vector is the filtered signal with high-frequency characteristics
similar to the real sequencing signal. Therefore, the supervised training data should include the real
sequencing signals and the corresponding ground-truth signals. The sequencing signal generated by
MinION sequencing platform [24] of ONT is stored in fast5 file [25], which is an HDF5 file format.
In this study, the sequencing signal is extracted by h5py library of Python. After getting the real
sequencing signal, the key to preparing supervised training data is to calculate the ground-truth signal
corresponding to the sequencing signal. This process can be achieved by using continuous wavelet
dynamic time warping (cwDTW) to label the sequencing signal [26].

Given the sequencing signal sequence and the reference genome sequence, the goal of signal
labeling is to linearly map each position on the sequencing signal sequence to a corresponding base on
the genome sequence. Firstly, the sequencing signal sequence is translated to a sequencing read which
is then aligned with the reference genome using the gene sequence alignment algorithm [27,28]. Then,
according to the results of alignment, the expected signal sequence can be calculated based on genomic
sequence fragment and the known 6-mer pore model. Finally, cwDTW algorithm is utilized to complete
the end-to-end mapping between the sequencing signal sequence and the expected signal sequence.
As shown in Figure 5, according to the mapping results, the expected signal value corresponding to
each position in the sequencing signal sequence can be obtained, and the corresponding ground-truth
signal is then outputted.

Figure 5. The supervised training data of signal processing model, including the real sequencing signal
and the corresponding ground-truth signal. The ground-truth signal is calculated by labeling the real
sequencing signal.

In addition to preparing supervised training data in advance, another key to parameter training
is to define the loss function of the model. Suppose the input ground-truth signal of model is
I = i1, i2, . . . , iT , its corresponding real sequencing signal is R = r1, r2, . . . , rT , and the output signal of
signal processing model is O = o1, o2, . . . , oT . The loss function used in this study is the Log-Cosh loss
function, that is
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L (R, O) =
T

∑
i=1

log (cosh (oi − ri)) (8)

After the definition of the model’s loss function, the model parameters are initialized.
The initialization of neural network parameters is an important basic part of training process, which will
have an important impact on the performance and convergence speed of the model. We use the Xavier
initialization method to initialize the model parameters, that is, the model parameters are initialized to

a uniform distribution within the interval
[
−
√

6
ni+no

,
√

6
ni+no

]
, where ni represents the input vector

dimension of each layer of the network and no represents the output vector dimension.
The goal of the parameter training is to find the parameters of the network that minimize the

loss function, which can be achieved by applying an optimization algorithm to iterate parameters.
We choose the Adam adaptive optimizer with the learning rate of 0.0001 to minimize the Log-Cosh
loss to achieve parameter training, which is a popular adaptive optimization algorithm. We set the
batch size as 128 and the number of iterations as 1000 during training. The proposed signal processing
model based on BiGRU is implemented using Tensorflow [29]. The training process of the model is
illustrated in Figure 6, which shows the loss value change with respect to the training iteration steps.

Figure 6. The loss value change with respect to the training iteration steps.

2.5. Datasets

We have used the existing datasets sequenced on MinION R9.4 flowcells to train and evaluate
the performance of the proposed signal simulation method [30]. Specifically, the training dataset
consists of 4000 Lambda virus reads and 4000 Escherichia coli reads (http://gigadb.org/dataset/100425),
and the test dataset consists of 4467 Acinetobacter pittii reads, 15,178 Klebsiella pneumoniae reads,
16,742 Serratia marcescens reads, and 11,047 Staphylococcus aureus reads (https://bridges.monash.
edu/articles/Raw_fast5s/7676174).

2.6. Analysis Methods of Simulation Results

We use DeepSimulator1.5 and the proposed BiGRU-based simulation method to generate the
simulated signals corresponding to each real sequencing signal in the test dataset and compare the two
simulated signals from multiple aspects. For DeepSimulator, the cutoff frequency was set to 950 Hz,
the mean value of the Gaussian noise was set to 0 pA, and the standard deviation of the Gaussian noise
was set to 2.0. The standard deviation of the Gaussian noise in our simulation method was also set to

http://gigadb.org/dataset/100425
https://bridges.monash.edu/articles/Raw_fast5s/7676174
https://bridges.monash.edu/articles/Raw_fast5s/7676174
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2.0 for fair comparison. The noise level of DeepSimulator and our method was the same. In the two
signal simulation methods, the added Gaussian noise was random noise not correlated in time. Firstly,
the two different filtered signal waveforms, which are output by the signal processing model based on
BiGRU and the low-pass filter respectively, were compared. Then we employed dynamic time warping
(DTW) algorithm [31] and continuous wavelet transform (CWT) algorithm to evaluate the similarity
between the two simulated signals and the real sequencing signals. Finally, the error characteristics
of the three sequencing reads generated from the simulated signals and the real sequencing signals
were analyzed.

3. Results and Discussion

3.1. Waveform Comparison of Two Filtered Signals

To verify whether the proposed BiGRU-based signal processing model can efficiently and
accurately filter out the useless high-frequency components embedded in the ground-truth signal,
the low-pass filter of the DeepSimulator’s signal generator module and the proposed signal processing
model were used to process the ground-truth signal independently. The comparison results of the
filtered signal waveforms are shown in Figure 7. In general, although the two filtered signals are
slightly different in specific details, they both retain the main characteristics of the ground-truth signal.
According to the signal waveforms, it can be observed that, compared with the traditional low-pass
filter, the signal processing model based on BiGRU only filters the signal at the 6-mer change in the
ground-truth signal, which is more in line with the real nanopore sequencing data. The comparison
results indicate that the proposed model can accurately learn the internal relationship between the
ground-truth signal and the real sequencing signal.

(a) Low-pass filter (b) BiGRU-based signal processing model

Figure 7. Waveform comparison of two filtered signals from different signal processing methods:
(a) the filtered signal output by low-pass filter; and (b) the filtered signal output by BiGRU-based
signal processing model. Compared with low-pass filter, BiGRU-based signal processing model only
processes the signal at the 6-mer change, which is more reasonable.

3.2. Analysis of Simulated Signals Using DTW Algorithm

The final simulated signals can be generated by adding Gaussian noise to the filtered signals.
As shown in Figure 8, both DeepSimulator and NanosigSim can generate the simulated signals similar
to the real sequencing signal waveform. To quantitatively analyze the similarity between the two
simulated signals and the real sequencing signal, we employed DTW algorithm for signal analysis,
which is a standard method to check the difference between two signals. We tested the performance
on the randomly selected 1000 sequencing samples in the test dataset. The average normalized DTW
distance between the simulated signals generated by NanosigSim and the real sequencing signals is
0.121, which is about 7.5% lower than that of DeepSimulator (0.132). This indicates that the proposed
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method can generate the simulated signals closer to the real sequencing signals. Figure 9 shows the
experimental results of 1000 sequencing samples. Each point in the figure represents a sequencing
sample and the red line is the diagonal line. The points above the red line mean NanosigSim is better,
while the points below the red line mean DeepSimulator is better. According to the statistical results,
about 89.1% of the test samples show that NanosigSim has higher accuracy.

Figure 8. The comparison between: (a) the real sequencing signal waveform; (b) the simulated
signal waveform from DeepSimulator; and (c) the simulated signal waveform from NanosigSim.
The simulated signals from both DeepSimulator and NanosigSim are similar to the real
sequencing signal.

Figure 9. The similarity comparison between the two simulated signals and the real sequencing signal
based on DTW distance. Any point above the red line means our simulation is better, whereas any
point below means DeepSimulator is better.

3.3. Analysis of Simulated Signals Using CWT Algorithm

In addition to comparing the DTW distance between the simulated signals and the real sequencing
signals, we also used CWT algorithm to perform time–frequency analysis on the three signals. The CWT
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spectrum of each signal is depicted in Figure 10. Overall, the CWT spectrums of the two simulated
signals are very similar to that of real sequencing signal, but the spectrum of the simulated signal
generated by NanosigSim is more similar to the spectrum of real sequencing signal, especially the
high-frequency part. To quantitatively measure the similarity between the simulated signals and the
real signal in terms of the CWT spectrum, we calculated the Pearson correlation coefficient (PCC)
between the spectrums of two simulated signals and the spectrum of the real signal and further
calculated the PCC in the low-frequency and high-frequency parts of the CWT spectrum. The PCC is
a standard method used to calculate the correlation between two CWT spectrums. The calculation
results are shown in Table 1.

(c) NanosigSim

(a) Real sequencing (b) DeepSimulator

Figure 10. The CWT spectrums of: (a) the real sequencing signal; (b) the simulated signal from
DeepSimulator; and (c) the simulated signal from NanosigSim. The CWT spectrum for NanosigSim is
more similar to the spectrum for the real signal than that for DeepSimulator, which means that our
proposed method is better.

Table 1 shows that the PCC between the spectrum of the simulated signal generated by
NanosigSim and the spectrum of real sequencing signal is improved by 9.08% compared with
DeepSimulator. Moreover, the improvement of PCC in the high-frequency part is even higher (18.88%),
which further suggests that the high-frequency details processed by the signal processing model based
on BiGRU are indeed consistent with the real sequencing signal and the proposed simulation method
effectively improves the signal simulation accuracy.
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Table 1. PCC comparison between the CWT spectrums of different signals.

PCC (All) PCC (Low-Frequency) PCC (High-Frequency)

DeepSimulator 0.837 0.939 0.715
NanosigSim 0.913 0.964 0.850

Improvement 9.08% 2.27% 18.88%

3.4. Analysis of Simulated Reads

An important indicator for evaluating the quality of simulated signals is to compare whether
the simulated reads generated by the simulated signals have similar error characteristics to the real
sequencing reads. We used Guppy, the newest official basecaller, to basecall the two simulated signals
and the real sequencing signals, respectively. Then, edlib software [32] was adopted to calculate the
error characteristics of simulated reads and real sequencing reads, including insertion rate, deletion rate,
and substitution rate. The statistical results obtained on the four biological samples provided by the
test dataset are shown in Figure 11. Since many factors such as the sequencing biological species and
the experimental purpose will influence the read accuracy, the error rates of the four real sequencing
reads are quite different. The two simulated reads generated by DeepSimulator and NanosigSim have
similar error rates. However, in terms of the specific distribution of the three types of errors, the two
simulated reads are not similar. For the three errors in the simulated reads generated by DeepSimulator,
substitution accounts for the largest proportion, followed by insertion and deletion. Among the errors
in our simulated reads, insertion accounts for the most, followed by substitution and deletion.

(a) (b) (c) (d)

Figure 11. The profiles of different types of reads, tested on the four biological samples provided
by the test dataset, which are basecalled using Guppy: (a) Acinetobacter pittii sample; (b) Klebsiella
pneumoniae sample; (c) Serratia marcescens sample; and (d) Staphylococcus aureus sample.

To compare the error characteristics of the two simulated reads and the four real reads in detail,
we further calculated the proportions of the three types of errors in the six reads. As shown in
Table 2, except for the Klebsiella pneumoniae sample, the simulated reads generated by NanosigSim
have a similar error distribution to the real sequencing reads. However, the difference between
the simulated reads generated by DeepSimulator and the real sequencing reads is large in terms of
the error distribution for all biological samples, which may be caused by inaccurate filtering of the
ground-truth signal by the low-pass filter. The analysis results of the simulated reads show that the
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nanopore sequencing signal simulation method proposed in this paper greatly improves the quality of
simulated signals.

Table 2. The error distribution of different types of reads, tested on the four real reads and the two
simulated reads, which are basecalled using Guppy.

Insertion Deletion Substitution

Acinetobacter pittii 35.54% 32.45% 32.01%
Klebsiella pneumoniae 31.31% 37.89% 30.80%

Serratia marcescens 35.06% 32.52% 32.42%
Staphylococcus aureus 41.64% 29.11% 29.25%

DeepSimulator 32.07% 30.36% 37.57%
NanosigSim 38.74% 30.04% 31.22%

3.5. Custom Model for Klebsiella Pneumoniae

For the Klebsiella pneumoniae sample, the two simulated reads generated by DeepSimulator and
NanosigSim are both quite different from the real sequencing reads. To further explore the scalability
of NanosigSim, we randomly selected 4000 sequencing reads from the Klebsiella pneumoniae sample
to train the BiGRU-based signal processing model, and the remaining sequencing reads were used as
the test dataset to verify the performance of the custom model for Klebsiella pneumoniae. As shown
in Figure 12, the simulated reads generated by the custom model for Klebsiella pneumoniae have
similar insertion rate and substitution rate as the real sequencing reads, while the deletion rate of
the simulated reads is smaller than that of the real sequencing reads. Compared with the other two
simulated reads, the error characteristics of the simulated reads generated by the custom model for
Klebsiella pneumoniae are closer to the real sequencing reads, which indicates that NanosigSim can
effectively learn the time–frequency characteristics of real sequencing signals. The simulation results
show that, compared with DeepSimulator, an obvious advantage of our simulation method is that it
can learn the corresponding time–frequency characteristics according to the provided training data
generated by different sequencing experiments.

Figure 12. The profiles of different types of reads, tested on the Klebsiella pneumoniae sample,
which are basecalled using Guppy. NanosigSim (Kp) means using the custom model for Klebsiella
pneumoniae to generate simulated reads. Compared with the other two simulated reads, the simulated
reads generated by NanosigSim (Kp) are more similar to the real reads in terms of error characteristics.
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4. Conclusions

In this paper, we propose a novel signal simulation method of nanopore sequencing based on
BiGRU. To improve the simulation accuracy of existing methods, we build a signal processing model
based on BiGRU to process the ground-truth signal calculated by the input nucleotide sequence
and nanopore sequencing pore model. Compared with low-pass filter, the proposed model can
effectively filter out unwanted high-frequency components embedded in the ground-truth signal and
retain the useful high-frequency components by using the efficient self-learning ability of the BiGRU
neural network. The simulation results show that the proposed method can provide high-quality
simulated data for the methods and tools developed for the applications of nanopore sequencing.
Although the proposed method can effectively improve the simulation accuracy, it inevitably requires
more computational resources. In the future, further structure optimization of the proposed signal
processing model is required to reduce the complexity of the signal simulation method.
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