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Abstract: A thermal protection system (TPS) is designed and fabricated to protect a hypersonic
vehicle from extreme conditions. Good condition of the TPS panels is necessary for the next flight
mission. A loose bolted joint is a crucial defect in a metallic TPS panel. This study introduces an
experimental method to investigate the dynamic characteristics and state of health of a metallic TPS
panel through an operational modal analysis (OMA). Experimental investigations were implemented
under free-free supports to account for a healthy state, the insulation effect, and fastener failures.
The dynamic deformations resulted from an impulse force were measured using a non-contact
three-dimensional point tracking (3DPT) method. Using changes in natural frequencies, the damping
ratio, and operational deflection shapes (ODSs) due to the TPS failure, we were able to detect loose
bolted joints. Moreover, we also developed an in-house program based on a modal assurance criterion
(MAC) to detect the state of damage of test structures. In a damage state, such as a loose bolted joint,
the stiffness of the TPS panel was reduced, which resulted in changes in the natural frequency and the
damping ratio. The calculated MAC values were less than one, which pointed out possible damage
in the test TPS panels. Our results also demonstrated that a combination of the 3DPT-based OMA
method and the MAC achieved good robustness and sufficient accuracy in damage identification for
complex aerospace structures such as TPS structures.

Keywords: damage detection; thermal protection system; point tracking; operational deflection
shape; modal assurance criterion; dynamic characteristics

1. Introduction

A thermal protection system (TPS) is necessary for hypersonic aircraft and spacecraft to withstand
aerodynamic heating and acoustic loads during hypersonic flight. The TPS panel serves as a shielding
cover for the fuselage of the vehicle and endures possible impact damage from debris [1,2]. Several types
of TPS, such as metallic TPS [3], multilayer TPS [4], integrated TPS [5], and bioinspired TPS [6], have been
proposed and investigated through the thermal [7–9] and thermo-mechanical performance [10] tests.

A vehicle’s fuselage can be exposed to more extreme thermal, pressure, and impact loads if a TPS
panel becomes damaged [11–14]. Thus, the TPS panel must be in good condition before launch because
of its critical role in protecting the vehicle’s structures, subsystems, and even humans. Understanding
the structural response and damage state of the TPS panel is important in design and maintenance
processes. Chen et al. [15] presented an analysis method to study the panel flutter of a metallic TPS.
They calculated natural frequencies and predicted critical dynamic flutter. They concluded that the

Sensors 2020, 20, 7185; doi:10.3390/s20247185 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-9362-5795
http://dx.doi.org/10.3390/s20247185
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/24/7185?type=check_update&version=2


Sensors 2020, 20, 7185 2 of 24

outer sandwich of the metallic TPS panel was not susceptible to panel flutter but the panel-to-panel
seals of the metallic TPS panel were susceptible to panel flutter. Tobe et al. [16] developed a method for
localizing fastener failure and material optimization in TPS panels. They employed accelerometers
to measure dynamic response of TPS panels under an impulse force. However, due to restrictions of
the experimental apparatus, the dynamic characteristics of the TPS panel could not be sufficiently
considered and their damage investigation of the TPS panel was limited. Since the inspection of the
TPS panel by traditional methods is laborious and expensive [17], what remains to be developed is a
new and simple inspection method that has high accuracy and less inspection time. The purpose of
this paper is to present a structural health monitoring (SHM) method which improves the performance
of conventional methods for investigating the damage state of the TPS panel in the laboratory.

We designed metallic TPS panels to be connected to the vehicle’s fuselage via mechanically bolted
joints that provide functions of structural connections, energy dissipation, and vibration damping
in a metallic TPS panel. Figure 1a,b shows an example of TPS panels with fasteners as structural
connections at four corners of the panel. Damage modes of bolted joints such as self-loosening,
fatigue, and separation can lead to the penetration of hot air into the interior of the vehicle, which might
result in the catastrophic loss of the vehicle. In our previous study [10], a metallic TPS panel was
investigated in a thermomechanical experiment and simulation. Figure 1c shows a picture of the
current metallic TPS panel. We found that after several simulated missions, there was a permanent
deformation of the metallic TPS panel that was due to the plastic deformation of the bolted joint
structures, which resulted in the reduction of the clamping forces of the fasteners. Consequently, the TPS
panel would be vulnerable to deflection and damage under vibration loads in the next mission, and thus
the goal of TPS reusability would not be achieved. Therefore, the damage due to bolted joint failure is
the main concern in our current research.

Figure 1. Use of fasteners in thermal protection system (TPS) panels: (a) metallic TPS panel designed
for the X-33 spaceplane [18], (b) ceramic-metallic TPS panel designed for the SHEFEX II [19], and (c)
metallic TPS panel designed for the current study.

One of the traditional methods to detect damage employs visual inspection. This method is
adequate if the damage is visible on the surface of the TPS panel, such as cracks, holes, and fractures.
However, if the features are not visible on the surface, such as damage to a bolted joint or damage in
interior components, then visual inspection is not sufficient. The primary methods used to detect bolted
joint damage or invisible damage usually utilize the dynamic characteristics of the structure. Damage to
structures causes changes to the modal parameters of the structure, such as the natural frequency,
damping ratio, and mode shape, compared with the initial or fully healthy state. Therefore, bolted joint
damage in structures also causes changes in the dynamic characteristics [16]. Conversely, we can
detect the damage or failure by identifying the changes in the modal parameters, such as the natural
frequencies [20] and the damping ratios [21].



Sensors 2020, 20, 7185 3 of 24

Along with changes in natural frequencies and damping ratios, a change in mode shapes is also
considered for damage detections. The mode shapes are less sensitive to environmental effects, such as
temperature, than natural frequencies [22]. The modal assurance criterion (MAC), which indicates
changes in mode shapes, has commonly been used for model validation [23]. Orlowitz et al. [24]
used accelerometers mounted on a square-plate structure to measure the structural dynamics. A large
number of predefined points on the structure were used to obtain mode shapes, and MAC values
were compared to each other to validate the proposed experimental methods. Nguyen et al. [25] used
a laser vibrometer to obtain mode shapes of a composite disc from a large number of predefined
measurement points and calculated MACs for damage detection. The use of the MAC in damage
detection requires detailed mode shapes (many points) and higher frequency modes to obtain better
results [26]. Other considerations of damage detections are the Modal Curvature method (MCM) [27]
and Modal Flexibility method (MFM) [28]. Pandey et al. [29] presented a damage detection method
based on changes in mode shape curvature which was known as the MCM. The curvature values
were computed from the displacement mode shape using the central difference operator. It assumed
that damage-associated stiffness reduction increased the curvature. The damage localization can be
determined by evaluating the largest computed MCM value. This methodology demonstrated a high
level of damage sensitivity. However, the MCM also presented some drawbacks; one of them is
errors due to the application of the central difference approximation method to displacement mode
shapes [30]. It might result in a false damage localization [31]. The MCM alone is not recommended
for damage identification, it may be used in conjunction with other sub-optimal modal parameters [32].
Later on, Pandey and Biswas [28] proposed an approach for damage detection based on flexibility
change of the structure. The MFM defines the flexibility matrix as the inverse of the stiffness matrix.
The flexibility matrix could be determined with fewer modes than was required for the stiffness matrix.
Estimation of damage locations based on the modal flexibility method depends on the number of
sensors used and distance of the sensors to the damaged location.

Several experimental methods have been used for damage detection of structures:
accelerometers [16,33], laser displacement measurement [34,35], photogrammetry [36–39],
infrared thermography [40], and ultrasound [41]. Among them, the method that uses accelerometers
has the effect of mass loading for lightweight structures and a labor-intensive and time-consuming
process for large structures. In addition, the contact measurement is pointwise and limited to only a few
locations. These limitations have been solved by recent progress in non-contact measurement methods,
which are able to measure displacements or temperature without invading the structures [34,40,42].
In the non-contact method using infrared thermography, the structure being heated detects cracks
or damage, while the non-contact method using ultrasound is also suitable for cracks or damage
in small-scale structures. Moreover, the non-contact method using a laser has difficulty with large
displacement measurement or the presence of large rigid body motions and needs much acquisition
time for a large number of measurement points. In addition, the full-field mode shape measurement
requires much inspection time in these existing contact and non-contact methods.

The non-contact method using photogrammetry along with vibration tests is preferred for damage
detection based on the changes in the dynamic characteristics of structures [43]. By tracking movements
of exterior features of a structure that appear on digital images captured by cameras, the displacement
can be calculated by photogrammetry theory and its modal parameters can be estimated for damage
detection. The digital image correlation (DIC) method is a kind of photogrammetry method that
measures the full-field deformation of structure in various fields of research, such as for vibration [44],
crack monitoring [45–47], high-temperature structures [48–50], electronic packaging [51–53], and small
structures [54,55]. The identification of a whole area displacement field or operating deflection shape
(ODS) is one of the most interesting features using the DIC method [56]. Thus, the use of the DIC
method in vibration and modal analysis has become common [57]. Wu et al. [58] used the DIC
method to measure displacements and strains in rotating wind turbine blades, and they used the blade
displacement in the frequency domain to identify faults. Helfrick et al. [59] used the DIC to detect
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damage based on changes in the curvature of the structure’s displaced shape. The damages were
created as cracks presenting in a beam structure.

Moreover, the three-dimensional point tracking (3DPT) method is also a kind of photogrammetry
method that uses a pair of digital cameras to measure 3D displacements of discrete points attached
to a structure [60]. The 3DPT uses removable optical targets attached to the surface of a structure.
The removable optical targets make the 3DPT method preferable if the structures in service are inspected
and require decontamination to the test structure. A TPS panel assembled on a hypersonic vehicle is
an example. The use of the 3DPT method in vibration analysis has become very popular, and both
laboratory vibration measurements and large-scale outdoor measurements have been reported [60–62].
Poozesh et al. [60] successfully tested and validated the 3DPT method in a large-area measurement
of wind turbine blades. Warren et al. [61] compared the mode shapes of a base-upright structure
obtained from accelerometers, 3D laser vibrometers, full-field DIC, and 3DPT methods. MAC values
were determined to validate the measurement methods. They reviewed similar results from each
method and showed that the 3DPT method was the most suitable method for measuring the dynamic
characteristics of a structure. In addition, for a typical application that requires a small amount of
data storage and short computation time, the 3DPT is preferable over the DIC method because the
measurement of the discrete points has a smaller amount of data storage [61]. By attaching multiple
points on a testing structure, the 3DPT becomes a special laser vibrometer measurement method that
can simultaneously measure responses of predefined points. Note that any signs of damage that
cause changes in modal parameters are important in the TPS panel. When a sign of the damage was
detected, the TPS panel would be inspected immediately by removing the TPS panel from the vehicle’s
structure. Therefore, we only focus on the damage existence in the TPS panel rather than localizing
exactly the position.

From the above-mentioned methods with 3DPT and MAC, we find that (1) using 3DPT for
detecting damage in a structure based on dynamic measurement, we can obtain more data compared
with the traditional pointwise measurement method, and data storage and computation time are
reduced compared with the full-field DIC method but precise mode shapes of the testing structure are
still guaranteed. (2) Using MAC for damage detection, we can detect changes in global mode shapes of
a testing structure. MAC is well suited for modal analysis of large-scale structures using a simultaneous
measuring response method. Therefore, we employed the 3DPT method in conjunction with the MAC,
which is a non-contact image-based method, to investigate dynamic characteristics, to obtain detailed
mode shapes, and to identify damage states in the metallic TPS panel that are associated with the
bolted joint loosening.

In this paper, we present a highly efficient 3DPT method in a conjunction with the MAC to
investigate the dynamic characteristics of a complex structure; that is, a metallic TPS panel that consists
of bolted joints, insulation layers, a load-carrying plate, and washers. We focus on detecting damage
existence in the TPS panel rather than localized damage. Three damage levels represented three cases
of the number of damaged corners. For the experiment, we provided a discussion of good selections
of the aperture and suspension system by quantifying rigid body motions and rigid body natural
frequencies. Then, an operational modal analysis (OMA), or ODS measurement during modal tests,
was performed. The modal parameters, namely, the natural frequency, mode shape, and damping ratio,
were identified with the aid of the OMA. The results of the 3DPT method have also been validated
using the benchmark modal data from the accelerometers. The damage states were detected by
comparing the natural frequencies and damping ratios with those of a healthy TPS panel. By taking
advantage of the simultaneous multi-point measurement data, the ODSs were constructed and the
modal matrix of the TPS panel was obtained from each measurement. The modal matrices of the first
four modes were then processed to obtain MAC values which were used to identify the damage states.
The signal-to-noise ratio of the captured images was too small in a certain area because of the limited
resolution of cameras, intrinsic noise, low impact energy due to localized excitation, and infinitesimal
deformation at the high frequency of the TPS panel. To remedy this drawback, a phase-based motion
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magnification was used. The results obtained from the 3DPT method demonstrated the advantage of
using a non-wired setup and simultaneous measuring responses over the use of a single measuring
response by an accelerometer. By using simultaneous multi-point measurement data for the MAC
calculation, the 3DPT method reduced processing times significantly in the damage detection of a
complex structure.

2. Theoretical Background

This section presents the theoretical background of our study. Equation (1) is the governing
differential equation of a multi degree-of-freedom system (multi-DOF) for the forced vibration of a
structure in a matrix form.

[M]
{ ..
x(t)

}
+ [C]

{ .
x(t)

}
+ [K]

{
x(t)

}
=

{
f (t)

}
, (1)

where M, C, and K are the mass, damping, and stiffness matrices, respectively; x and f are vectors of
the displacement and load, respectively.

The frequency response function (FRF) at a specific frequency (jω), H(jω), is calculated by dividing
the spectrum of output to input signals. For a certain degree of freedom p and an excitation force at the
q-th degree of freedom, the FRF is defined as Hpq = Xp/Fq.

The frequency-domain ODS is simply defined as the forced response at a specific frequency (jω0),
as shown in Equation (2). We assumed the linearity of the structure to obtain the ODS. Equation (2)
shows that the component of an ODS vector is defined as the multiplication of the row of FRFs
corresponding to the excitation DOF and the Fourier transform of an excitation force.{

ODS( jω0)
}
= [H( jω0)]

{
F( jω0)

}
(2)

where F(jω0) is the force in the frequency domain at a specific frequency (jω0).
It is clear that the ODS is dependent on the applied excitation force. However, in the field of

OMA, the frequency response function cannot be obtained since the applied excitation is not available.
Therefore, the ODS FRF or transmissibility function can be used to obtain modal parameters in the
OMA [63,64]. The ODS FRF under an excitation condition between the output and the reference output
(Xref) was defined as the ratio between the two responses X(jω) and Xref(jω).

The ODS can be obtained directly by extracting the relative magnitude and phase from a set of
ODS FRF measurements at a frequency of interest. Every row or column of the FRF matrix contains
the same mode shape and its components. Thus, we only need one row or column of the FRF matrix to
measure the modal parameters of the structure. In this study, we used two experimental methods.
The first one was the roving excitation force and fixing response (single accelerometer) and the second
one was a simultaneous multi-response measurement and the fixing excitation force. The experimental
methods demonstrated the advantage of using a simultaneous measuring response (3DPT) over the
use of a single measuring response (accelerometer).

Estimates of the modal parameters from the measured ODS FRFs were obtained by curve fitting
ODS FRFs data [65–67] using the ME’scopeTM software (Vibrant technology, Inc.) for the roving
excitation and using in-house Python code in 3DPT-based ARAMIS® software [68] for the simultaneous
measuring response. Under a forced vibration, the structure deforms as a combination of multiple
modes. For structures that have low values of damping, the modal frequencies are far apart from
each other and the frequency at the resonance peak in the ODS FRF is taken as the modal frequency.
However, for structures that have high values of damping, the ODSs contain many closely spaced
modes or much participation from neighboring modes [69,70]. In this study, we considered the
modal frequencies only to be obtained from curve fitting FRFs of a single predefined DOF under a
particular impact point. Thus, the closely spaced modes may make one averaged mode in the band of
curve fitting.
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3. Material and Methods

3.1. Material Preparation

The metallic TPS panel used in the experiments consisted of an Inconel 625 for the front plate,
a titanium Ti-6Al-4V alloy for the back structure, bolted joints made of stainless steel S304, spacers and
washers, and thermal fibrous insulation material. The nominal dimensions of the TPS panel are
170 mm × 170 mm × 29.54 mm. The front plate with an overhang at four edges is called a front
load-carrying plate. The size of this front load-carrying plate was 240 mm × 240 mm × 2.54 mm.
The overhang made an overlapping area between adjacent TPS panels, which helped to prevent an
inflow of hot air. Figure 2 shows the metallic TPS panel with components and detailed dimensions.
Table 1 shows the size and weight of the components in the TPS panel.

Figure 2. A metallic TPS panel for dynamic testing: (a) side view and (b) top view of the metallic TPS
panel, (c) 3D model of the metallic TPS panel, (d) the bolted joint, (e) washer.

Table 1. Experimental cases for dynamic characteristics and damage states of the TPS panel.

Components Load-Carrying Plate Back Plate Fibrous Insulation Layer Fully-Assembled TPS Panel

Size (mm) 240 × 240 170 × 170 170 × 170
Weight (g) 1229 137 72 1547

In this study, we collected three cases of experimental data which included the tests of a single
load-carrying plate (Inconel plate), a metallic TPS panel without thermal fibrous insulation material,
and a fully assembled metallic TPS panel. First, the single load-carrying plate was tested because this
plate was one of the most important components of the TPS panel which was dominant in the weight
of the TPS panel. We investigated the dynamic characteristics of this plate and the relationship of its
dynamic characteristics to those of the TPS panel. The second case was for the assembled TPS panel
without fibrous insulation material, called the skeleton of the TPS panel. This was to show how much
damping was involved without the addition of the fibrous insulation material (nonstructural mass).
The third case was for the fully assembled TPS panel which was divided into four test sub-cases to
study dynamic characteristics of the TPS panel under healthy conditions and damage conditions at
specific bolted joints.

A photo of the test TPS panel is shown in Figure 3a. To make the healthy condition, a torque
wrench with a torque value of 4 N·m for the bolted joints was used, as shown in Figure 3b. Note that
the bolt type used in the TPS panel was M5 with a grade of 6.8 which was recommended to tighten
at a torque value of less than 4.56 N·m [71]. The damage state was made by loosening a bolted joint,
as shown in Figure 3c. The three damage states of the bolted joint were defined as a bolt loosened at
corner 1, bolts loosened at both corners 1 and 3, and bolts loosened at both corners 1 and 4. The details
of experimental cases are listed in Table 2.
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Figure 3. Testing structure. (a) the healthy condition of the TPS panel: a torque value of 4 N·m was
maintained for four bolted joints at four corners, (b) a typical bolted joint in healthy condition, (c) a
typical case of damaged bolted joint at zero torque value.

Table 2. Experimental cases for dynamic characteristics and damage states of the TPS panel.

Case Load-Carrying Plate
Assembled TPS Panel

without Fibrous
Insulation Material

Assembled TPS Panel with Fibrous Insulation Material

State Single plate Healthy condition Healthy condition Damage at specific corners(#)

#1 #1 and #3 #1 and #4

3.2. Experimental Setup

Figure 4 shows the experimental setup for dynamic tests using a high-speed 3DPT method and a
roving method with an accelerometer. Two high-speed cameras (Photron FASTCAM APX RS) with a
resolution of 1024 × 1024 pixels and 50 mm focal lengths (Nikon AF NIKKOR) were used to capture
the vibration of the TPS panel. The rigid body motion generated by an impulse force (impact hammer)
under the free-free boundary condition was designed to be no larger than 100 mm so that the motion
was within the field of view in the measurement of out-of-plane deformations. In this measurement
frame rate was selected as 3000 frames per second, the shutter speed was set at 1/6000 of a second,
and an aperture size of f/11 was selected. Optical targets were attached to the front surface of the test
structure in such a way that the overall shape formed by the attached targets could represent the shape
of the test structure. Two high-speed cameras were set on a tripod stand with a built-in spirit level to
ensure a horizontal level. Before starting the measurement with the 3DPT method, the camera system
was calibrated to identify the distance and the angle between the two cameras.

According to the practices guide [72], for the DIC provided by the international digital image
correlation society, the stereo angle of the two cameras with the current focal lengths was set at
15 degrees to reduce out-of-plane uncertainty. In the calibration result, the working distance was
950 mm. The calibration deviation was determined as 0.015 pixels, which corresponded to 0.004 mm
for the measurement volume of 270 mm × 270 mm × 270 mm. The depth-of-field of the calibrated
system (270 mm) guaranteed a good focus for the rigid body motion limit of 100 mm. The spatial
resolution was calculated as 0.26 mm/pixel. The sensitivity of the out-of-plane measurement was
approximately 1/30 pixels, which corresponded to roughly 10 µm for this test [73]. The noise floor
was estimated by taking a series of 100 images at rest. The average filter was applied to reduce the
noise in the measurement system, and Figure 5a shows that the noise floor was mostly below 35 µm.
Maximum and minimum displacements in a measurement, including self-deformations and rigid
body motions, are shown in Figure 5b. The rigid body motions, which ranged from −30 to 90 mm,
were well within the depth-of-field of the calibrated cameras. Note that the selected aperture f/11 was
appropriate to prevent motion blur. Figure 5c shows the impulse force history and its autospectrum.
After several trials, we found that the impulse force should not exceed a certain value (less than 200 N)
to guarantee the rigid body motion limit of 100 mm.
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Figure 4. Experimental setup for a dynamic test using high-speed three-dimensional point tracking
(3DPT) and an accelerometer.

Figure 5. Out-of-plane deformations at rest and displacement at deformed stages: (a) out-of-plane
deformation at rest, (b) out-of-plane displacements of two target points (1 and 2) including rigid body
motion. Note: the dashed data of point 2 indicates several missing data, and (c) an impulse force
history and its autospectrum.
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The camera system was placed to face the front surface of the test structure on which the optical
targets were attached. Two fine-nylon bands were used to suspend the test structure vertically to
make a free-free boundary condition. Three rigid body natural frequencies of the system, 4 Hz,
11 Hz, and 17 Hz, were obtained from the experiment. Note that these three frequencies satisfied
the requirement of free-free support conditions, which was no more than one-tenth of the frequency
of the lowest elastic mode (192 Hz as presented in Section 4.1) [74–76]. Therefore, the use of two
fine-nylon bands for the suspension system in this study was sufficiently soft for reducing the errors of
stiff supports in the measured modal frequencies. A photoelectric sensor was placed right behind the
test structure so that an electrical signal was sent out to trigger the cameras when the impact hammer
passed the light transmitter of the photoelectric sensor, as shown in Figure 4. Note that the impact
point was chosen at the overhang area of the front load-carrying plate, as shown in Figure 4. If the
impact point was on the back of the structure (titanium plate), the fibrous insulation material of the
TPS structure would absorb the impact energy and the test structure would not be excited well. The
cameras captured the images of the test structure, which included several images prior to the impact
and numerous images during impact. The captured images were then processed with the 3DPT-based
ARAMIS® software to obtain the out-of-plane deformation. The measured deformation from the 3DPT
method was then transferred from the time domain to the frequency domain to obtain the ODS FRF
functions of the test structure. The spectrum averaging technique and Savitzky–Golay smoothing
method were used to reduce the noises of signals.

At the same time, we also used an accelerometer to measure the response of the test structure.
The roving impact hammer method was used to obtain the FRFs at predefined points on the test
structure [63,69,77,78]. An accelerometer was attached at a fixed point near the corner, and the impact
hammer was used to excite the TPS panel at marked points to define its mode shapes. We used 36
marked points and 25 marked points in the load-carrying plate and the back structure (titanium),
respectively. Figure 6 shows the schematic and the numbering system of the marked points in the test
structure. The signals from both the accelerometer and the excitation force of the impact hammer were
then processed in both B&K PulseTM and ME’scope software. One FRF between each impact point and
the fixed response point was computed with five spectrum averages and an exponential window for
a measurement frequency span of 800 Hz and 800 frequency lines. The 61-time impact made a full
FRF matrix.

Figure 6. Schematic of test structure and numbering system: (a) load-carrying plate with numbering
system of 36 marked points, the metallic TPS panel: (b) front load-carrying plate and (c) back structure
(titanium) with numbering system of 61 marked points.

In the theory of experimental modal analysis (EMA), the modal parameters, the natural frequency,
damping ratio, and mode shape of the test structure, were obtained from the FRF, which is defined
as the complex ratio of the output to the input. Because of the limitation of the current hardware,
the input signal from the impact hammer and the output response from the high-speed cameras were
not sampled simultaneously. Therefore, the FRF could not be obtained and the OMA was used instead.
This method used the output response to characterize the modal parameters of the test structure.
The impact force was assumed to be the unknown excitation force and the measured response of
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the test structure was used to compute the ODS FRF and to construct the ODS [79]. This new type
of measurement is called ODS FRF measurement [33,69,78] or transmissibility measurement [77,80].
If the ODS at or near a resonant frequency would be dominated by a single corresponding mode
shape at that resonant frequency, then the ODS could be approximate to the mode shape [63,66,78].
Therefore, in this study, we used the ODSs from the ODS FRF measurement to compare them with the
mode shapes from the roving hammer method and the mode shapes from the numerical simulation
method in the validation.

A drawback of the displacement-based measurement method, such as the 3DPT method, is that
when a structure is excited with only a small amount of energy, the structure may experience such a
small deformation that it is not perceptible by the raw data of the 3DPT method. This can be explained
by a small magnitude of displacement at high frequencies, and hence it misses a natural frequency
corresponding to a particular mode. After many impact trials in this study, we determined the optimal
impact point to be a point in the overhang area on the back surface of the front load-carrying plate
(Inconel), as shown in Figure 4. Since the amount of excitation energy was not enough to drive the
whole structure, a certain mode was not excited much and was not seen clearly in the original ODS
FRF curve. The problem of undiscovered modes was also mentioned in Reference [24]. For a complex
geometry such as the proposed metallic TPS panel in this measurement, it was difficult to extract all
the modes from the OMA test because of a localized excitation point in the OMA laboratory test [81].
A method to find the undiscovered modes is necessary.

The study on the vibration measurement using the 3DPT and phase-based motion magnification
method has been widely adopted to identify the modal parameters and structural dynamics of
structures. Wadhwa et al. [82,83] developed a process of phase-based video motion and published
a MATLAB-based program [82]. Chen et al. [84] first used the phase-based motion magnification to
identify the modal analysis of simple structures. They demonstrated the algorithm’s capability of
identifying the ODSs of a cantilever beam from a video motion and compared the results with those
measured by a laser vibrometer. With that they confirmed the accuracy of the method and concluded
that the phase-based motion magnification would be readily adaptable to the SHM of structures
in real applications. Poozesh et al. [85] and Sarrafi et al. [86] successfully used the phase-based
motion magnification technique with small amplitude tests, including the use of small exciters or high
frequency, to identify the ODSs of a vibrating structure that could not be determined by a traditional
photogrammetry method. Civera et al. [87] used the phase-based motion magnification to study
damage detection and localization in ODSs. The results showed that model-based SHM could be
performed on modal data with phase-based motion magnification technique.

In this study, the signal-to-noise ratio in the series of the captured images was improved using the
phase-based motion magnification, in order to use the 3DPT method to identify dynamic characteristics
of the metallic TPS panel in the above-mentioned conditions. The motion of the captured images that
had unclear peaks in the ODS FRF curve was magnified by a certain magnification factor.

We used a phase-based motion magnification technique for a case study of a healthy
fully-assembled TPS panel. A magnification factor was applied to a specific bandwidth of the
frequency domain. The algorithm decomposed the input signals into the local spatial amplitude and
phase signals using complex steerable pyramid filters. After the reconstruction of images, a higher
amplitude at the magnified frequency band was achieved. The requirements of the magnification
parameters are as follows: frame rate, magnification bandwidth, and magnification factor. Figure 7
shows an overview of the combination of motion magnification and the 3DPT method to obtain
magnified displacements of the TPS panel.
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Figure 7. Procedure for capturing a series of images and magnifying captured images using the
3DPT method.

3.3. Validation

We needed to validate the proposed measurement method for the test structure using the
OMA-based 3DPT method with the dynamic characteristics of the load-carrying plate, and we also
performed a finite element analysis of the load-carrying plate. Additionally, we included the results
of the dynamic characteristics from the accelerometer measurement. The comparison in the natural
frequencies and mode shapes between the measurements (3DPT and roving hammer) and the finite
element analysis are shown in Figures 8 and 9.

Figure 8a shows the deformation responses of the load-carrying plate in the time domain measured
by the 3DPT method. A fast Fourier transform (FFT) was performed on the measured responses of the
load-carrying plate. Figure 8b shows the ODS FRF results of a single FFT, the averaged results of 20
ODS FRFs, and the smoothing curve of the averaged result (Savitzky–Golay smoothing method with
an order of three and a window width of five measured by the 3DPT. There are four peaks on the ODS
FRFs of the load-carrying plate using the 3DPT method. Figure 8c also shows similar values of peaked
frequencies that exist on the FRF curves of the load-carrying plate measured by the roving hammer
method. There is good agreement of measured frequencies between the 3DPT method and the roving
hammer method.

Figure 8. The response and spectral data of the load-carrying plate at a point near the corner:
(a) time domain, (b) frequency domain using 3DPT, (c) frequency domain using an accelerometer and
roving hammer.
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Figure 9. Natural frequencies and mode shapes of the load-carrying plate: (a) operational mode
shapes with corresponding natural frequencies measured by the 3DPT method, (b) mode shapes with
corresponding natural frequencies measured by the roving hammer method, (c) modal parameters
obtained by the finite element analysis (FEA) method.

An eigenvalue frequency analysis of the front carrying-load plate was carried out in ABAQUS
finite element analysis (FEA) software. C3D8R elements with eight-node linear brick and reduced
integration were used. There were 78,148 elements in total. The measured response of optical targets
was then used to obtain the ODSs of the load-carrying plate by an in-house Python code. Because the
ODSs were not scaled by the impact force, they were also called unscaled mode shapes or operational
shapes, as shown in Figure 9a. Note that the contour color defined in the ARAMIS® software follows
the scale from −1 to 1 while it is an absolute scale from 0 to 1 in the ME’scopeTM software (Figure 9b)
and FEA (Figure 9c). In the overall results, the natural frequencies and mode shapes from the
3DPT method were similar to those from the roving hammer method and the finite element analysis.
Hence, the current 3DPT method achieves acceptable accuracy and is appropriate for investigating the
characteristics of the TPS panel throughout this study.

3.4. Damage Detection Method

We used two methods to evaluate the damage states of the TPS panel. The first method was
based on the change in natural frequencies and damping ratios. The other method evaluated the mode
shapes based on the MAC. In this study, among many damage states of the TPS panel, bolted joint
loosening was critical for the safety of a vehicle. Loose bolted joints also made significant changes in
frequencies, damping ratios, and mode shapes of the metallic TPS panel in most test cases. We focused
on this damaging problem to investigate the applicability of our damage detection method.

It is a very important but difficult to define the threshold of a damage state because there
is a measurement uncertainty due to noises of acquisition devices and environmental conditions.
This measurement uncertainty causes a small change in frequencies, damping ratios, and mode
shapes. Therefore, an appropriate experimental setup is needed to minimize noise. We assumed
that the camera system was well calibrated and the optical targets had good contrast. Three factors,
namely, lighting, camera positioning, and optical targets, were regulated until most of the noise floor
was within the desired accuracy. The temperature of the environmental ambient was also maintained
at room temperature. The maximum noise floor was 35 µm while the maximum deformation response
of the TPS panel was approximately 300 µm. This represented a maximum measurement uncertainty
of 11.6%. For a single TPS panel, we used this threshold for the damage detection.



Sensors 2020, 20, 7185 13 of 24

The MAC provides a measure of consistency between estimates of a mode shape. This method
compares the mode shape vectors between healthy and damaged cases and gives a MAC value for
each mode. If the two-mode shapes are the same then the MAC value will be one; otherwise, it will be
zero if they are completely different. The mathematical representation of the MAC is expressed in
Equation (3).

MAC(u, d)r =

∣∣∣{ψur
}T{ψdr

}∣∣∣2{
ψur

}T{ψur
}{
ψdr

}T{ψdr
} , (3)

where ψur is an undamaged mode shape, ψdr is a damaged mode shape, the subscript r represents the
r-th mode, and the superscript T indicates the transpose of a vector.

The flowchart of the proposed damage detection method using a combination of the 3DPT and
MAC methods is shown in Figure 10. The deformation response of predefined DOFs (optical targets)
in a case study was exported from the 3DPT-based ARAMIS® software. The spectrum data for the
deformation response was calculated using the FFT algorithm in MATLAB program. The natural
frequencies were at peaks of the ODS FRF curves and the damping ratios were calculated by the
half-power method. Modal vectors were calculated by examining the imaginary parts of the ODS FRF.
The modal vector of the r-th mode was scaled with the maximum value among predefined DOFs of
the r-th mode. The MAC matrix was then obtained from Equation (3) to evaluate the consistency of
two case studies. The damage detection was then identified based on changes in natural frequencies,
damping ratios, and mode shapes.

Figure 10. Flowchart of proposed damage detection using 3DPT and modal assurance criterion
(MAC) method.

4. Results and Discussion

4.1. Dynamic Characteristics of a Healthy Fully-Assembled TPS Panel

This section presents the dynamic characteristics of a healthy fully-assembled TPS panel measured
by the roving hammer method. Figure 11 shows the FRF curve of the measurement response at point
16 on the front surface of the healthy fully-assembled TPS panel. The peaks in the FRF curve are clearly
identified. The first four natural frequencies were 192 Hz, 330 Hz, 361 Hz, and 464 Hz.

Figure 11. Frequency response function (FRF) of the healthy fully-assembled TPS panel at measurement
point 16.
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We used the FRFs data of 61 marked points on both the load-carrying plate and the back structure
(titanium) to construct the first four mode shapes of the healthy fully-assembled TPS panel. ME’s Scope
software provides the mode shapes corresponding to the natural frequencies, as shown in Figure 12.
The mode shapes obtained from the proposed metallic TPS panel under the free-free condition agreed
well with those from the free-free vibration of a sandwich panel in Reference [88]. The mode shapes in
Figure 12 confirmed a similarity to those of the load-carrying plate (Figure 9) because of the dominant
weight of the load-carrying plate in the TPS panel.

The TPS panel twisted and formed the torsional mode for the first mode and showed the bending
modes for the second and third modes. The fourth mode was a kind of coupled bending-torsion mode
which contained both a bending component and a twisting component.

Next, we measured the dynamic characteristics of the healthy fully-assembled TPS panel by the
3DPT in the simultaneous measuring response (optical targets). Figure 13 shows the response of the
points of interest on the front surface of the TPS panel. As discussed earlier, for the impact point on
the TPS panel, the impact hammer drove an amount of energy that could not generate significant
deformation at the central area of the front plate of the TPS panel. Therefore, there was only a small
deformation response at the center area (point 2) while there was a larger deformation response at the
edge area (point 1).

Figure 12. Mode shapes of the healthy fully-assembled TPS panel corresponding to the first four
natural frequencies.

Figure 13. Response of the healthy fully-assembled TPS panel: (a) an undeformed state and (b) a
deformed state with the points of interest, (c) response history of the points of interest.

The spectrum of the deformation response (point 1) was obtained by an FFT with a uniform
window function. Note that the use of an exponential window function in the FFTs might add artificial
damping to the measurements [89]; therefore, we decided to use the uniform window function in the
FFTs because the most important information on deformation responses was in the initial part of the
time record (within 0.3 s). Figure 14 shows the single spectrum of the response and the averaged
spectrum of 20 ODS FRFs. There are three peaks, 192 Hz, 332 Hz, and 467 Hz, in the ODS FRF curve.
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A small unclear peak at 362 Hz showed that there might be a natural mode at that frequency but it
could not be identified clearly. A possible reason is that the deformation obtained by the 3DPT method
at the central area of the TPS panel was very small (signal-to-noise was about 1), so the peak was not
recognized clearly at 362 Hz in the 3DPT measurement method. Note that there was a bending mode at
361 Hz measured by an accelerometer, where the most deformation was exhibited at the center area of
the TPS panel. Generally, an accelerometer is more sensitive than any deformation measurement sensor
since the acceleration is a frequency square order bigger than the deformation. This is a drawback
of the displacement-based measurement method in measuring dynamic characteristics of complex
structures if the deformation is small due to localized excitation.

The series of the captured images of the vibration test was processed to magnify the motion
using a phase-based magnification method, as discussed earlier. The frame rate was 3000 frames
per second, the magnification factor was three times, and the frequency band was from 355 Hz to
365 Hz. Then the magnified images were processed with the 3DPT algorithm to obtain the magnified
displacements. The result of the new spectral data after the motion magnification is shown in Figure 15.
The signal-to-noise ratio increased significantly. The peak at 362 Hz was shown clearly in the new
spectral data. The ODSs of the healthy fully-assembled TPS panel are shown in Figure 16. The natural
frequencies and corresponding ODSs obtained from the 3DPT method and the motion magnification
agreed well with those from the accelerometer measurement method.

Figure 14. Spectral data of the healthy fully-assembled TPS panel.

Figure 15. Spectral data of the healthy fully-assembled TPS panel after applying motion magnification.

Figure 16. Operating deflection shapes at natural frequencies: healthy fully-assembled TPS panel.
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The fibrous insulation material was removed from the healthy fully-assembled TPS panel to study
the effect of the fibrous insulation material on the structural dynamics of the TPS panel. A torque
value of 4 Nm was maintained. The results of the dynamic test of the skeleton TPS panel are shown in
Figure 17. The deformation of a point of interest on the front plate of the TPS panel is shown in Figure 17a.
The spectrum data of the deformation response are shown in Figure 17b. Obviously, the deformation
history of the skeleton TPS panel without the fibrous insulation material lasted longer than that from
the healthy fully-assembled TPS panel with the fibrous insulation material (Figure 13c) because of
the damping effects of the fibrous insulation material. This also resulted in a clear peak at the third
natural mode (363 Hz), as shown in Figure 17b. The natural frequencies of the skeleton TPS panel
increased correspondingly from the TPS panel with the fibrous insulation material. Because the fibrous
insulation material was considered to be a non-structural mass, the increase in the natural frequencies
was due to the decrease in the mass of the skeleton TPS panel without the fibrous insulation material.

Figure 17. Dynamic characteristics of the skeleton TPS panel (TPS panel without fibrous insulation
material): (a) deformation response of a point on the front plate of the TPS panel, (b) spectral data of
the deformation response.

4.2. Damage Detection

Figure 18 shows the ODS FRF curves of the TPS panel with damage at specific corners. In general,
the natural frequencies of the damaged TPS panels changed from the healthy fully-assembled TPS
panel. Specifically, the natural frequencies decreased due to the degradation of the rigidity of the TPS
panels as they were damaged. The degradations increased with an increase in the number of damaged
corners. Figure 18a,c,e shows the deformation responses of the TPS panel with damage at corner #1,
at both corners #1 and #3, and at both corners #1 and #4, respectively. Because of a single damaged
corner, the TPS panel with damage at corner #1 had higher rigidity than the other two cases (damage
at both corners). This resulted in higher natural frequencies of the TPS panel with damage at a single
corner, as shown in Figure 18b,d,f. Moreover, we can see that the damage at both corners #1 and #3
(two bolted joints in the diagonal line) resulted in a high rigidity of the TPS panel compared to the
damage at both corners 1 and 4 (two bolted joints in the vertical line). A summary of the changes in
natural frequencies of the test structures and the percent differences from the healthy condition are
listed in Table 3. The frequency changes were significant. Therefore, changes in the natural frequencies
can be used to detect damage to the TPS panel.

The calculated spectrum curves of the test structures were fitted with the smoothing technique.
The smoothing curves were plotted along with the calculated spectrum curves. Modal damping was
also estimated from these smoothing spectrum curves. The half-power bandwidth method was used to
calculate the damping ratio. The effect of the fibrous insulation material was described by considering
the damping ratio of each test case. The bandwidth was calculated using a 3 dB cut-off frequency,
and the damping ratios of the first natural mode of each test case are listed in Table 4. As we can
see from the damping ratios, the single load-carrying plate had the lowest damping ratio. The TPS
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panel with the fibrous insulation material had a higher damping ratio than the TPS without the fibrous
insulation material because of the damping ability of the fibrous insulation material.

Table 3. Summary of the change in natural frequencies of the test cases.

Mode
Load-Carrying

Plate (Hz)

Assembled
Panel with

Insulation (Hz)

Assembled
Panel without
Insulation (Hz)

Damage at Specific Corners (#)

#1 #1 and #3 #1 and #4

(Hz) % diff. (Hz) % diff. (Hz) % diff.

1 151 192 196 173 9.9 165 14 142 26
2 220 332 337 248 25.3 216 34.9 214 35.5
3 256 362 363 312 13.8 310 14.3 281 22.3
4 380 467 477 442 5.3 342 26.7 424 9.2

Figure 18. Deformation response and spectral data of the damaged TPS panels: (a) deformation
response and (b) spectral data of damage at corner 1, (c) deformation response and (d) spectral data of
damage at both corners 1 and 3, and (e) deformation response and (f) spectral data of damage at both
corners 1 and 4.

Table 4. Summary of the damping ratio of the first natural mode.

Mode Load-Carrying Plate
Assembled
Panel with
Insulation

Assembled Panel
without Insulation

Damage at
Corner #1

Damage at
Corners #1 and #3

Damage at
Corners #1 and #4

1 0.9% 1.1% 1.3% 1.63% 1.7% 2.4%

The damping ratios of the damaged cases were higher than those of the healthy fully-assembled
TPS panel because the thickness of the insulation layer increased (increase of porosity) as the damage
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occurred (loosening of the bolted joints), which resulted in the high damping capacity of the fibrous
insulation material [90]. The damping ratio of the damaged TPS panels at a single corner was lower
than that of the TPS panels at two damaged corners. The damping ratio of the TPS panel with damage
along the diagonal line (corners #1 and #3) was lower than that of the TPS panel with damage along
the vertical line (corners #1 and #4) because the damage along the diagonal line still guaranteed
the compaction of the fibrous insulation material while the greater expansion of the insulation layer
occurred in the damage along the vertical line. These results indicated that changes in damping ratios
can also be used to detect the damage states of the TPS panel.

The ODSs of the test cases are summarized in Figure 19. The ODSs of the test cases were clearly
related to the ODSs of the load-carrying plate. The ODSs of the healthy fully-assembled TPS panel
with or without the fibrous insulation material were almost the same as the ODSs of the load-carrying
plate. The first ODS of the test TPS panels in all conditions was the torsional mode, which was identical
to the first ODS of the load-carrying plate.

Figure 19. Summary of the operational deflection shapes (ODSs) at the first four natural frequencies:
single load-carrying plate, skeleton TPS panel (without fibrous insulation material), healthy assembled
TPS panel, damage at specific corners. Note: the order of the corners in all ODSs are the same in the
current view.

The second ODS of the test TPS panels was different for damaged cases. The TPS panel with the
damage at the single corner (corner #1) showed an asymmetrical deflection shape which deflected
much at the edge close to the damaged corner. Although there was damage in the bolted joints along
the diagonal line (corners #1 and #3), the second ODS in this case still did not change much from the
healthy state. This might have been due to the symmetry of the damaged positions to the center point.
The second ODS of the TPS panel with damage to the bolted joints along the vertical line (corners #1
and 4) had the highest deflection at the two edges (between corners #1 and #4 and between corners #1
and #3) and at the middle areas along the vertical center axis. This bending ODS was symmetric about
the vertical center axis.

The third ODS of the test TPS panels also showed different shapes for each damaged case.
The bending shape of the TPS panel with the damage at the single corner was slightly different from
the healthy case. The third ODS of the TPS panel with damage at two corners along the diagonal
line (corners #1 and #3) had a bending shape symmetric to the diagonal line because there was no
constraint along the diagonal line due to damages. For the TPS panel with damage at the two corners
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along the vertical line (corners #1 and #4), the highest deflection was found near the edge (between
corners #1 and #4) due to the untied constraint along the vertical line.

Figure 20 shows the MACs between the reference mode shapes of the healthy structure and
mode shapes corresponding to the healthy case (Figure 20a) and mode shapes corresponding to the
damage cases (Figure 20b−d). The calculated MACs provided information as to how well the shapes
correlated. The calculated MAC values of the first four ODSs of the healthy TPS panel were 1 in
the main diagonal elements and less than 0.1 in the off-diagonal elements, which meant the MAC
calculation was accurate, as shown in Figure 20a. For the single TPS panel presented in this study,
the damage states were identified by a threshold of 0.88 (11.6% difference). The calculated MAC
between damage and healthy cases indicated significant changes in mode shapes, with values much
smaller than 0.88 for all four modes. The most remarkable changes increased with an increasing
number of damage corners. A major change occurred in the fourth mode with MAC decreasing to 0.45.
Therefore, we confirmed that damage can be detected with MAC reductions.

Figure 20. Calculated results of the MAC values: (a) self-comparison of a healthy state; comparison
between a healthy state and damage states: (b) damage at corner #1, (c) damage at corners #1 and #3,
and (d) damage at corners #1 and #4.

5. Conclusions

We successfully investigated the dynamic characteristics and damage detection using a
combination of the 3DPT and MAC methods. The ODSs of the healthy fully-assembled TPS panel or
damaged panels were related to the ODSs of the load-carrying plate because of the dominant weight of
the load-carrying plate in the metallic TPS panel. The proposed ODS FRF was an effective measurement
way to obtain the modal parameters: the natural frequencies, damping ratios, and the ODS of the test
structures. The 3DPT provides a fast and accurate way to assess the dynamic characteristics of complex
and large structures. In comparison with the conventional method of using accelerometers, the 3DPT
demonstrated the advantage of a non-wired setup and simultaneous multi-point measurement data.
This advantage reduced the processing time.

In damage detection, a frequency change in a particular natural mode or change in a specific
ODS may be a sign of failure. Note that the localized excitation could result in undiscovered modes in
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the OMA. The use of motion magnification is required for high-frequency modes to detect possible
damage to test structures. The obtained ODSs in this study were very useful for identifying unseen
damage, such as loosening of the bolted joints in the metallic TPS panel.

Decreased MAC values from case studies showed the damage levels of the metallic TPS panel,
specifically, the number of damaged corners. A combination of the 3DPT method and the MAC
provided an excellent approach to evaluate the ODSs and to identify the damage states of the metallic
TPS panel. We concluded that the proposed method is a practicable non-contact and SHM technique
that can be applied with high confidence to study the structural dynamics of a metallic TPS panel and
to identify the damage states of a metallic TPS panel due to loose bolted joints.
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