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Abstract: In this paper, a detail design procedure of the real-time trajectory tracking for the
nonholonomic wheeled mobile robot (NWMR) is proposed. A 9-axis micro electro-mechanical systems
(MEMS) inertial measurement unit (IMU) sensor is used to measure the posture of the NWMR,
the position information of NWMR and the hand-held device are acquired by global positioning
system (GPS) and then transmit via radio frequency (RF) module. In addition, in order to avoid the
gimbal lock produced by the posture computation from Euler angles, the quaternion is utilized to
compute the posture of the NWMR. Furthermore, the Kalman filter is used to filter out the readout
noise of the GPS and calculate the position of NWMR and then track the object. The simulation
results show the posture error between the NWMR and the hand-held device can converge to zero
after 3.928 seconds for the dynamic tracking. Lastly, the experimental results show the validation and
feasibility of the proposed results.

Keywords: nonholonomic; wheeled mobile robot (WMR); tracking control; global positioning
system (GPS); radio frequency (RF); Kalman filter; quaternion; trajectory tracking

1. Introduction

Wheeled mobile robot (WMR) has been utilized in many fields such as the automated guided
vehicle (AGV) [1,2], robotic cleaner [3], exploration robot [4,5] recently. The WMR has the capability to
respond flexibility by itself in various complex unknown environments. 9-axis IMU sensor integrated
with a three-axis accelerometer, a three-axis gyroscope, and a three-axis magnetometer is used to
estimate linear velocity, angular velocity and orientation of the body relative to the global reference
frame. Hence, the posture of the body can be obtained [6–8]. The free, open, and dependable nature of
GPS has led to the development of applications affecting every aspect of modern life. GPS is capable of
receiving signal from GPS satellites and someone can use these useful received information to calculate
the geographical position of the body [9,10].

Different types of the WMR had been proposed. Omnidirectional WMR (OWMR) is one of the
WMR that has the advantage of multimode action and high mobility [11–15]. NWMR is another type
of the WMR. Owing to the nonholonomic constraint, the moving characteristic of the NWMR is rolling
but not sliding, as a result, NWMR can not move laterally and difficult to turn the body in any direction.
The goal of the trajectory tracking is to design a motion controller of WMR for adjusting linear velocity
and angular velocity, so the WMR can track to the desired trajectory. The aim of the tracking controller
is to minimize the tracking errors between the real trajectory and the desired trajectory. These errors are
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arisen from slippage, disturbances and the measured error of sensor readout. A cross-coupled controller
is presented in [16]. The controller is used to reduce wheel slip of the vehicle. Sun and Yan presented an
evaluation method to estimate the unknown disturbance. The estimated information is compensated
by the controller of the NWMR, hence, the tracking error of the NWMR is repressed [17,18]. In [19],
Rayguru proposed a robust-observer based sliding mode controller to achieve the motion control
task in the presence of incomplete state measurements and sensor inaccuracies. A two-layer lateral
path tracking controller are presented in [20], the upper-layer controller is implemented with a linear
time-varying model predictive control (LTV-MPC) algorithm, the lower-layer controller is implemented
by a radial basis function neural network proportion-integral-derivative (RBFNN-PID) algorithm.
The advantage of the two-layer controller is that controller can track the reference paths accurately
while ensuring the stability of the vehicle, however, this type of the tracking controller suffers from
high computation. In [21], a single controller for simultaneous stabilization and trajectory tracking
of NWMR is proposed. A controller with time-varying parameters is designed to stabilize the error
system. Then, the geometric analysis method is used to guarantee that the controller inputs stay in
the restricted input domain. Hence the controller can prevent the actuator from saturation and the
stability of the system is improved. Kanayama and Sanhoury presented the design of the tracking
controllers with stability [22,23]. These two types of tracking controller based on the direct Lyapunov
method are used for solving the lateral error issue. The advantages of these two tracking controllers
are less computational complexity and fast response to the tracking error.

The contribution of this paper is to implement the real-time trajectory tracking for NWMR. IMU,
GPS and RF sensors are integrated into NWMR. In order to be implemented into the resource limited
embedded system, a low computational complexity, fast response to tracking error and stability of
tracking controller were key factors and need be traded off. Hence, the conventional Kalman filter [24]
and tracking controller proposed by [23] are utilized. The rest of this paper is organized as follows:
Section 2 illustrates the system function block and system flow chart of proposed NWMR. Section 3
presents the kinematic model of the NWMR, the design of the tracking controller on the NWMR
is discussed. In Section 4, the algorithms for the sensors equipped on the NWMR are introduced.
Section 5 demonstrates the simulations and experimental results of the developed NWMR. Finally,
conclusions and future works are given in Section 6.

2. The Proposed Architecture

In this section, the proposed NWMR is described in Section 2.1. Section 2.2 illustrates the system
flow chart of the NWMR.

2.1. The Block Diagram

The block diagram of the proposed NWMR system is shown in Figure 1. In the NWMR, a 9-axis
sensor is utilized to acquire the current posture of the robot. Two GPS modules are used to obtain the
current positions of the NWMR and the target hand-held device, respectively. RF transmitter in the
hand-held device transmits the position information of the tracking object to the NWMR. The tracking
controller and sensor fusion algorithms are implemented in the STM32F429 microprocessor [25].

2.2. The Flow Charts of Trajectory Tracking

Figure 2 shows the system flow chart of the NWNR. The current position data of NWNR is
obtained by GPS and is processed by the Kalman filter. The current posture data of NWNR is acquired
by the 9-axis IMU sensor and then is processed by the Madgwick’s data fusion algorithm [26,27].
RF module receive the current position data from target hand-held device. Using these three data as
input parameters of the tracking controller, the tracking controller calculates the shortest distance from
NWNR to the hand-held device. While the distance between the NWNR and the hand-held device is
smaller than 1.5 m, the tracking controller will stop the tracking task, and the mission of trajectory
tracking is finished.
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Figure 3 shows the system flow chart of the hand-held device which is considered as the tracking
object. The position data of hand-held device is obtained by GPS and is refined by the the Kalman
filter. After processing, the data is sent out by the RF module.

Figure 1. The block diagram of the proposed NWMR system.

Figure 2. The flow chart of the trajectory tracking for the NWMR.
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Figure 3. The flow chart of the trajectory tracking for the hand-held device.

3. Kinematic Model and Tracking Controller Design

As depicted in Figure 4, the NWMR considered in this paper is a kind of four-wheeled robot.
This robot body has symmetric shape and the center of mass is at the geometric center C of the body.
Two rear wheels are driven differentially by motors, two front wheels prevent the NWMR from tipping
over while the robot moves on a plane. In this paper, it is assumed that the motion of two front wheels
can be ignored in dynamics of the NWMR.

Figure 4. The posture of the NWMR.

3.1. Kinematic Model of the NWMR and Tracking Problem Representation

Figure 4 shows the posture of the NWMR in the global X-Y coordinate. The local coordinate
system is fixed to the NWMR with point C as the origin. (xc, yc) is the current position of the geometric
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center C in the global X-Y coordinate, θc is the angle between the X-axis and Xr -axis, it is represented
as the heading direction of the NWMR, vc denotes the linear velocity of the NWMR in the direction of
Xr -axis and ωc is the angular velocity of the robot.

Consider the kinematic model of the NWMR, the posture variable of NWMR, rc , is defined as

rc = [xc yc θc]
T (1)

The moving of the robot is controlled by vc and ωc, the input state variable of the robot, uc ,
is therefore defined as

uc = [vc ωc]
T (2)

Under the nonholonomic constraint,

ẋc sin θc − ẏc cos θc = 0 (3)

The kinematic model of the NWMR can be expressed by [28]

ṙc =

 ẋc

ẏc

θ̇c

 =

 cos θc 0
sin θc 0

0 1

 uc =

 vc cos θc

vc sin θc

ωc

 (4)

The position information of the tracking object is obtained by the hand-held device via GPS
module. As shown in Figure 5, it is assumed that the hand-held device is circular shape and the center
of mass is located at the geometric center D of the device.

Figure 5. The posture of the hand-held device.

(xd , yd) is the current position of the geometric center D in the X-Y coordinate. θd is the angle
between the X-axis and the straight line that pass through point C and point D, which is defined as

θd =
180
π

tan−1(
|yd − yc|
|xd − xc|

) (5)

The posture of the hand-held device, rd , is defined as

rd = [xd yd θd]
T (6)

For simplicity, it is assumed that the nonholonomic constraint of the hand-held device can be
written as

ẋd sin θd − ẏd cos θd = 0 (7)
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Two postures are used in this tracking control system; One is current posture, Pc , and the other is
reference posture, Pd . Current posture is the real posture of the NWMR, reference posture is the target
posture, i.e., the real posture of the hand-held device, hence

Pc = rc ; Pd = rd (8)

As illustrated in Figure 6, the posture error, Pe , between the reference posture and the current
posture in the local Xr −Yr coordinate is expressed as

Pe =

 xe

ye

θe

 =

 cos θc sin θc 0
− sin θc cos θc 0

0 0 1

 (Pd − Pc) = R(θ)(Pd − Pc) (9)

where xe is the error in the Xr direction of the robot, ye is the error in the Yr direction of the robot, θe is
the orientation error, i.e., θe = θd − θc, R(θ) is rotation matrix and it is expressed as the orientation of
the current posture, Pc , with respect to the reference posture, Pd.

Figure 6. The posture error of the NWMR and the hand-held device.

By differentiating (9), we have

ẋe = (ẋd − ẋc) cos θc + (ẏd − ẏc) sin θc − (xd − xc)θ̇c sin θc + (yd − yc)θ̇c cos θc

= ẋd cos θc + ẏd sin θc − (vc cos2 θc + vc sin2 θc) + yeωc

= ẋd cos θc + ẏd sin θc − vc + yeωc

= ẋd cos (θd − θe) + ẏd sin (θd − θe)− vc + yeωc

(10)

Substituting (7) and the kinematic model of the NWMR at point D into (10), we obtain

ẋe = vd cos θe − vc + yeωc (11)

Similarly,

ẏe = −(ẋd − ẋc) sin θc + (ẏd − ẏc) cos θc − (xd − xc)θ̇c cos θc − (yd − yc)θ̇c sin θc

= −ẋd sin θc + ẏd cos θc − xeωc

= vd sin θe − xeωc

(12)

θ̇e = θ̇d − θ̇c = ωd −ωc (13)
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Combining (11) to (13), the differential equation of the posture error of NWMR with respect to
the hand-held device is obtained

Ṗe =

 ẋe

ẏe

θ̇e

 =

 vd cos θe − vc + yeωc

vd sin θe − xeωc

ωd −ωc

 (14)

3.2. The Tracking Controller Design

The function block of the tracking controller of the NWMR is demonstrated in Figure 7. Firstly,
the posture error Pe(t) between Pd(t) and Pc(t) at time t is obtained by rotation matrix from (9).
Based on the variable Pe(t) , the tracking controller is designed to stabilize the kinematic model of
NWMR in concurrent with unknown error or disturbances Nnoise. The variable ud(t) = [vd(t) ωd(t)]T

are the linear velocity and the angular velocity of the reference posture and is acted as the input of the
tracking controller. Finally, the updated posture Pc(t) of the NWMR generated by an integrator is used
for next posture error correction.

Figure 7. The function block of the tracking controller design.

The tracking controller proposed by [23] is used for the developed NWMR, we have

uc =

[
vc

ωc

]
=

[
vd cos θe + k1xe + k4sign(xe)y2

e
ωd + vd(k2ye + k3 sin θe)

]
(15)

where k1, k2, k3 and k4 are adjustable gain coefficients, sign(xe) is described as:

sign(xe) =

{
−1, xe < 0

1, xe ≥ 0
(16)

By using Lyapunov function and Routh-Hurwitz Criterion to examine the stability of the tracking
controller, the posture error Pe = 0 is uniformly asymptotical stable over interval [0, ∞) under the
conditions: (a) vd and ωd are continuous, (b) vd, ωd, k1, k2, k3 and k4 are all bounded and (c) v̇d and ω̇d
are sufficiently small [22] .

4. Signal Processing Algorithms

In this section, the sensor fusion algorithms for the NWMR and hand-held device are introduced.

4.1. Madgwick’s Data Fusion Algorithm for the 9-Axis IMU Sensor

The accurate measurement of orientation plays a key factor in the design of the tracking control
of the NWMR. A MEMS gyroscope outputs angular velocity and the data is used to compute the
orientation of the robot. However, this sensor suffers from an accumulated error. An accelerometer
and magnetometer measure the earth’s gravity and magnetic field, respectively. These two sensors
provide an absolute reference of orientation. Nevertheless, these sensors subject to high levels of noise.
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The goal of the data fusion algorithm is to estimate a single orientation through the optimal data fusion
of gyroscope, accelerometer and magnetometer measurements.

Euler angles are three angles and can be used to describe the orientation of a mobile frame of
reference. However, in some motion case, Euler angles suffer from gimbal lock mechanism [29].
Quaternions developed by Hamilton is a mathematical number system that can be treated as the other
representation of the three-dimensional space [30]. Quaternion method is well used in mechanics,
computer graphics, crystallographic texture analysis in three-dimensional space for preventing from
the gimbal lock mechanism of the Euler angles. In inertial navigation system (IMS), it uses quaternion
methods to derive the orientation and the velocity of vehicle. In this paper, we also use quaternion
method to calculate three-dimensional motion of the NWMR.

The data fusion algorithm proposed by Madgwick is applied for the 9-axis [26,27]. Figure 8 shows
the block diagram of the Madgwick’s fusion algorithm. The measured output data of the 3-axis sensor
Sd̂ in the sensor frame can be transfer to the earth frame Ed̂ by using a quaternion S

E q̂, yields

Ed̂ = S
E q̂⊗ Sd̂⊗ S

E q̂∗

Ed̂ = [0 dx dy dz]
S
E q̂ = [q1 q2 q3 q4]
E
S q̂∗ = S

E q̂ = [q1 (−q2) (−q3) (−q4)]

(17)

where dx , dy and dz are the three dimensional vector components of Ed̂ , which aligns a predefined
reference direction in the earth frame, ⊗ is quaternion product, q1 q2 q3 and q4 are the components of
S
E q̂ , and S

E q̂∗ is conjugate of S
E q̂. A 3-axis gyroscope measures the angular velocity of robot, the angular

rate Sω is define as
Sω = [0 Sωx

Sωy
Sωz] (18)

where Sωx , Sωy and Sωz is the angular velocity of the X, Y, Z axes in the sensor frame, respectively.
Derivative of the quaternion at time t describes the rate of the change of orientation, S

E
˙̂qω_est(t), and can

be calculated as
S
E

˙̂qω_est(t) =
1
2

S
E q̂est(t− 1)⊗ Sω(t) (19)

where S
E q̂est(t− 1) is prior estimate of orientation, the sub-script ω indicates that the quaternion is

calculated from gyroscope and Sω(t) is angular velocity measured at time t. If the angular velocity
of the sensor is not constant, the derivative of quaternion in (19) can be used to estimate the current
orientation of the robot, which is shown as

S
E q̂ω_est(t) = S

E q̂est(t− 1) + S
E

˙̂qω_est(t)∆t (20)

where ∆t is sampling period. Substituting (19) into (20), yields

S
E q̂ω_est(t) = S

E q̂est(t− 1) +
1
2

S
E q̂est(t− 1)⊗ Sω(t)∆t (21)

Contrary to the orientation calculated from the angular velocity, gravity and magnetic field can
also be applied to estimate orientation. Using (17) and quaternion operations, the measured direction
vector in the earth frame can also be rotated to the sensor frame, therefore

Sd̂ = S
E q̂∗ ⊗ Ed̂⊗ S

E q̂ (22)

In order to estimate the quaternion, the difference between a known vector in the sensor frame
and a measured vector in sensor frame is minimized. In other words,

min f (Sd̂est, SŜ) = min f (S
E q̂∗est ⊗ Ed̂⊗ S

E q̂est − SŜ) = min f (S
E q̂est, Ed̂, SŜ) (23)
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where Sd̂est is a sensor frame’s estimated vector, S
E q̂est is the estimated quaternion and SŜ is measured

vector in sensor frame. Madgwick uses the gradient descent algorithm to iterate the estimated
quaternion S

E q̂est(t) based on an initial guess quaternion S
E q̂est(0) and a step-size µ [26,27], the S

E q̂est(t)
can be expressed as

S
E q̂est(t) = S

E q̂est(t− 1)− µ
∇ f (Sd̂est(t), SŜ(t))
‖∇ f (Sd̂est(t), SŜ(t))‖

(24)

∇ f (Sd̂est(t), SŜ(t)) = JT(S
E q̂est(t− 1), Ed̂(t)) f (S

E q̂est(t− 1)Ed̂(t), SŜ(t)) (25)

where (25) computes the gradient of the solution surface defined by objective function f (·) and its
Jacobian J(·).

Figure 8. The block diagram of Madgwick’s data fusion algorithm for the 9-axis IMU Sensor.

A 3-axis accelerometer measures not only the magnitude and direction of the gravity in the sensor
frame but also linear velocity due to motion of the sensor. A 3-axis magnetometer measures the
magnitude and direction of the earth’s magnetic field in the sensor frame compounded with distortion.
Following the derivation from (22) to (25), the estimated quaternion S

E q̂acc,mag_est(t) at time t can be
calculate by combining the output data of accelerometer and the magnetometer, we have

S
E q̂acc,mag_est(t) = S

E q̂est(t− 1)− κ
∇ facc,mag

‖∇ facc,mag‖
(26)

∇ facc,mag = JT
acc,mag(

S
E q̂est(t− 1), Ed̂acc,mag(t)) f (Sd̂acc,mag_est(t), SŜacc,mag(t)) (27)

JT
acc,mag(

S
E q̂est(t− 1), Ed̂acc,mag(t)) =

[
JT
acc(

S
E q̂est(t− 1), Ed̂acc(t))

JT
mag(

S
E q̂est(t− 1), Ed̂mag(t))

]
(28)

f (Sd̂acc,mag_est(t), SŜacc,mag(t)) =

[
f (Sd̂acc_est(t), SŜacc(t))

f (Sd̂mag_est(t), SŜmag(t))

]

=

[
f (S

E q̂est(t− 1), Ed̂acc(t), SŜacc(t))
f (S

E q̂est(t− 1), Ed̂mag(t), SŜmag(t))

] (29)

The estimated quaternion S
E q̂acc,mag_est(t) is achieved based on a previous estimate of quaternion

S
E q̂est(t− 1) and the objective function ∇ facc,mag. This objective function is defined by measured data
of accelerometer SŜacc(t) and magnetometer SŜmag(t) in sensor frame.
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Using the concept of the complementary filter presented in [31], the final estimated quaternion
S
E q̂est(t) is obtained through the fusion of the two estimated quaternions S

E q̂ω_est(t) and S
E q̂acc,mag_est(t),

S
E q̂est(t) = (1− γ)S

E q̂ω_est(t) + (γ)S
E q̂acc,mag_est(t) (30)

where (1− γ) and γ are weights of S
E q̂ω_est(t) and S

E q̂acc,mag_est(t), respectively. The convergence rate
of S

E q̂acc,mag_est(t) is defined as κ
∆t and the divergence rate of S

E q̂ω_est(t) is defined as β . Following the
derivation in [26], the optimal value of γ is defined as

γ =
β

κ
∆t + β

(31)

It is assumed that κ is large, (26) and (31) can be rewritten

S
E q̂acc,mag_est(t) ≈ −κ

∇ facc,mag

‖∇ facc,mag‖
(32)

γ =
β∆t

κ
≈ 0 (33)

Substituting (20), (21), (32) and (33) into (30), we have

S
E q̂est(t) = (1− γ)S

E q̂ω_est(t) + (γ)S
E q̂acc,mag_est(t)

= (1− 0)S
E q̂ω_est(t) +

β∆t
κ

(−κ
∇ facc,mag

‖∇ facc,mag‖
)

= S
E q̂est(t− 1) + S

E
˙̂qω_est(t)∆t− β

∇ facc,mag

‖∇ facc,mag‖
∆t

= S
E q̂est(t− 1) +

1
2

S
E q̂est(t− 1)⊗ Sω(t)∆t− β

∇ facc,mag

‖∇ facc,mag‖
∆t

(34)

From (34), it can be seen the fusion algorithm minimizes β for the measured magnetic field will
be distorted by the presence of ferromagnetic elements in the vicinity of the magnetometer. Due to
the error, the estimated direction vector of the earth’s magnetic field Ed̂mag_est(t) has nonzero Y-axis
component, the Ed̂mag_est(t) is calculated as

Ed̂mag_est(t) = [0 Edmag_x_est(t) Edmag_y_est(t) Edmag_z_est(t)]

= S
E q̂est(t− 1)⊗ Sd̂mag(t)⊗ S

E q̂∗est(t− 1)
(35)

where Edmag_y_est is nonzero Y-axis component in the earth frame. These nonzero Y-axis component
can be corrected by normalizing to have only X and Z-axes components of the earth frame [26]. Hence

Ed̂mag_comp_est(t) = [0
√

Ed2
mag_x_est(t) + Ed2

mag_y_est(t) 0 Edmag_z_est(t)] (36)

where Ed̂mag_comp_est(t) is the compensated magnetic vector in the earth frame. Using this compensated
magnetic vector, the gyroscope error can be corrected further.

After estimating the S
E q̂est(t) , the Euler’s angle can be achieved by using the following equation,

S
E q̂est(t) = [q

′
1(t) q

′
2(t) q

′
3(t) q

′
4(t)] (37)

ψ(t) = tan−1 (
2(q

′
1(t)q

′
4(t) + q

′
2(t)q

′
3(t))

q′21 (t) + q′22 (t)− q′23 (t)− q′24 (t)
) (38)

δ(t) = sin−1 (2q
′
1(t)q

′
3(t)− 2q

′
2(t)q

′
4(t)) (39)
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φ(t) = tan−1 (
2(q

′
1(t)q

′
2(t) + q

′
3(t)q

′
4(t))

q′21 (t)− q′22 (t)− q′23 (t) + q′24 (t)
) (40)

where q
′
1(t), q

′
2(t), q

′
3(t) and q

′
4(t) are components of S

E q̂est(t), ψ(t), δ(t) and φ(t) are yaw angle,
pitch angle and roll angle of the NWMR, respectively. Because the NWMR moves on the topographic
plane, the yaw angle is acted as the direction angle of the robot, therefore the roll angle and pitch angle
are omitted.

4.2. Kalman Filter for the GPS Module

The Kalman filter is used to estimate the position of the NWMR and hand-held device from the
output data of GPS. This filter is an optimal recursive data processing algorithm to minimize the
mean squared error between the actual data and estimated data. The flow chart of Kalman filter is
shown in Figure 9, the algorithm works in a two-step process. In prediction step, it predicts the current
state variables. In update step, the difference between predicted value and measured value obtained
from the sensor readout is taken into consideration. Kalman gain is counted for estimating the new
predicted value and new uncertainty variance.

Figure 9. Kalman filter recursive algorithm.

Prediction Step:

Xp(t) = FXe(t− 1)

Cov
′
(t) = FCov(t− 1)FT + Qdistb

(41)

where the current state variables matrix Xp(t) is derived from its previous estimate value
Xe(t− 1) and F is state transient matrix. Cov

′
(t) is prior error covariance matrix and Qdistb is

the expect value of the system disturbance.

Kalman Gain:

Kg(t) =
Cov

′
(t)HT

HCov′(t)HT + Rerror
(42)

where Kg(t) is the Kalman gain, H is the noiseless transition matrix from the real state variables
and Rerror is the expect value of the error measurement.

Update Step:
Xe(t) = Xp(t) + Kg(t)(Zin(t)−HXp(t))

Cov(t) = (1−Kg(t)H)Cov
′
(t)

(43)

where the update estimate Xe(t) is derived from the measured data Zin. Cov(t) is the error
covariance of the estimate datas.
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The advantage of the Kalman filter is that the algorithm uses only the current measured data,
the previously calculated state and its error covariance matrix, the past information is not needed.
It prevents from the requirement of additional memory for storing the history data.

5. Simulations and Experimental Results

In this section, the simulations and the experiments are illustrated to demonstrate the merit and
the effectiveness of the developed NWMR. Section 5.1 describes the hardware of the implemented
NWMR and the hand-held device. In Section 5.2, the comparison results for the tracking performance
of the controllers proposed by [22,23] are shown via MATLAB software. The experiments of trajectory
tracking and dynamic real-time tracking of NWMR are demonstrated in Section 5.3.

5.1. Hardware Implementations

Figure 10a shows the physical control system of the NWMR. Frame marked with number 1 is the
core control board of the NWMR; Frame 2 is the power switching board which is used to activate the
NWMR and frame 3 is the relay board which is used as brakes to stop the NWMR. Frame 4 is motor
driver board and it is used to drive the two wheels of NWMR. Figure 10b shows the lateral view of the
core control board.

(a) (b)

Figure 10. The overall view of the control system of the NWMR: (a) The physical control system of the
NWMR; (b) The lateral view of the core control board of the NWMR.

In the proposed NWMR, the part number MPU-9250 is used for 9-axis IMU, NEO-6M V2 is for
GPS module and APC-220 is for RF transceiver. The STM32F429 embedded system is equipped under
the core control board. Figure 11a,b shows the mechanism of the NWMR. Frame 1 of Figure 11a is the
control system of the NWMR and frame 2 is the motors and battery modules. The hand-held device is
shown in Figure 12. The blue bottom is utilized to activate the hand-held device.

(a) (b)

Figure 11. The overall view of the NWMR: (a) The lateral view; (b) The top view.
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Figure 12. The physical view of the hand-held device.

5.2. Simulation Results

This section describes the simulation results of the tracking controller. For simplicity, the physical
phenomenon presented in the real world, i.e., the friction of NWMR, the error range from the GPS
modules which are mounted on the hand-held device and the NWMR, respectively, are ignored,
therefore, the conceptual comparisons of the tracking capability for the tracking controllers in [22,23]
are conducted. Three tracking cases are illustrated to compare the tracking performance of the
controllers. First case is straight line tracking with linear velocity and second case is trajectory tracking
of the circle with linear velocity and linear angular velocity. Third case is the random dynamic tracking
example. As mentioned in Section 3.2, in order to achieve the controller to drive the trajectories
asymptotically stable, the parameters of the controller are set as k1 = 2, k2 = 4, k3 = 10 and k4 = 2.

Figure 13 shows the tracking trajectory of the two controllers. The Reference straight line can
be treated as the trajectory of the hand-held device. The initial posture of the hand-held device
Pd(0) = [xd, yd, θd] is set to [4, 0, π

4 ], the initial linear velocity vd(0) is 4 m/s and the angular velocity
ωd is 0 rad/s. The initial posture of the two tracking controllers Pc(0) is set to [−4, 8, −π

4 ].
Figure 14a shows the posture error xe in X-axis. We set the convergent point at 0.03275, the figure

shows that the convergence time of the controller proposed by [23] is 0.5293 sec, the convergence time
of the controller by [22] is 1.891 sec. Figure 14b shows the posture error ye in Y-axis. By setting the
convergent point as −0.00673, the convergence time of 3.177 sec and 3.595 sec can be obtained by
using [22,23], respectively.

Figure 14c illustrates the angular error θe. For the convergent point 0.004761, the figure shows
that the convergence time of the controller in [23] is 1.824 s, the convergence time of the controller
in [22] is 3.345 s.

-5 0 5 10 15 20 25 30 35 40

x-axis(m)

0

5

10

15

20

25

30

35

40

45

y
-a

x
is

(m
)

  P
d
(0)=[4, 0, /4]

  P
c
(0)=[-4, 8, - /4]

Trajectory of WMR proposed by [23]

Trajectory of WMR proposed by [22]

Reference straight line

Figure 13. The trajectory of the straight line tracking.
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Figure 14. The posture errors of straight line tracking.: (a) xe; (b) ye; (c) θe.
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Figure 15 shows the simulation result of the trajectory tracking of the circle. The initial posture
of hand-held device Pd(0) is set as [4, 0, π

5 ], the initial linear velocity vd(0) is 5 m/s and the angular
velocity ωd is 1 rad/s. The initial posture of two tracking controllers Pc(0) is set to [−4, −1, 0].
Figure 16a shows the posture error xe in X-axis. As seen in the figure, for the convergent point−0.01604,
the convergence time of the controller [23] is 2.692 s, the convergence time of the controller [22] is 3.01 s.
Figure 16b shows the posture error ye in Y-axis. We set the convergent point at 0.003297, the figure
shows that the convergence time of the controller proposed by [23] is 2.952 s, the convergence time of
the controller proposed by [22] is 3.811 s. Figure 16c illustrates the angular error θe. For the convergent
point of −0.0004928, the figure shows that the convergence time of the controller by [23] is 3.969 s,
the convergence time of the controller by [22] is 4.328 s.

From the simulation results of straight line tracking and trajectory tracking of the circle, it can
readily seen that the controller proposed by [23] can provide a better response than the controller
proposed by [22].
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Figure 15. The trajectory tracking of the circle.

In order to show the dynamic real-time tracking, the θd of the tracking object in (5) needs be
continuously updated. For the Consideration of the four-quadrant angle conversion, the actual angle
θd_update is recalculated by the following equation,

θd_update = 90◦ − θd i f 0◦ < θd < 90◦

θd_update = 90◦ + θd i f 90◦ < θd < 180◦

θd_update = 270◦ + θd i f 180◦ < θd < 270◦

θd_update = 270◦ − θd i f 270◦ < θd < 360◦

(44)

The linear velocity of the tracking object ud in (15) also needs be continuously updated and the
actual linear velocity vd_update is

vd_update =

√
(xd(t)− xd(t− 1))2 + (yd(t)− yd(t− 1))2

∆t
(45)

where xd(t) and xd(t− 1) are the positions toward X direction at time t and t− 1, respectively. yd(t)
and yd(t− 1) are the positions toward Y direction at time t and t− 1, respectively, ∆t is sampled time.
Because the tracking object is treated as a point in the world X-Y coordinate, the angular velocity of the
hand-held device ωd in (15) is set to zero for simplicity.



Sensors 2020, 20, 7055 16 of 21

0 1 2 3 4 5 6 7 8 9 10

Time (sec)

-1

0

1

2

3

4

5

6

7

8

9

x
e

x
e
 proposed by [23]

x
e
 proposed by [22]

X: 3.01

Y: -0.01604

X: 2.692

Y: -0.01604

(a)

0 1 2 3 4 5 6 7 8 9 10

Time (sec)

-5

-4

-3

-2

-1

0

1

2

y
e

y
e
 proposed by [23]

y
e
 proposed by [22]

X: 3.811

Y: 0.003297

X: 2.952

Y: 0.003297

(b)

0 1 2 3 4 5 6 7 8 9 10

Time (sec)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

e

e
 proposed by [23]

e
 proposed by [22]

X: 4.328

Y: -0.0004928

X: 3.969

Y: -0.0004928

(c)

Figure 16. The posture error of trajectory tracking of the circle: (a) xe; (b) ye; (c) θe.
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Figure 17a shows the simulation result of the dynamic real-time tracking of the tracking controller
proposed by [23]. The initial position of hand-held device [xd, yd] is [4, 1], the initial linear velocity
vd(0) is 3 m/s and the angular velocity ωd is 0 rad/s. The initial posture of NWMR Pc(0) is [2, 0, 0].
Figure 17b shows the posture error of the NWMR with respect to the hand-held device, the angular
error is converged to 0.003546 after 3.928 s.

In order to implement the NWMR, the tracking controller and algorithms mentioned above are
all implemented with C language in MDK-ARM integrated development environment.
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Figure 17. The dynamic real-time tracking: (a) Trajectory between NWMR and hand-held device;
(b) The posture error for the dynamic real-time tracking.
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5.3. Experiments

The processes of the trajectory tracking of the NWMR are shown in Figure 18a–i. The video is
attached in Supplementary Material 1. We first set the initial postures of NWMR and the hand-held
device, the user holds the hand-held device and is acted as tracking object. Figure 18a–i show the
trajectory tracking responses of the developed NWMR. The robot moves toward to the user and stop
while the distance between the NWMR and objective is smaller than 1.5 m.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 18. The processes of the trajectory tracking.

The dynamic real-time tracking of the NWMR are shown in Figure 19a–l. The video is attached in
Supplementary Material 2. These figures show the processes of real-time tracking. From Figure 19a–l,
it can be seen that the real-time tracking can be achieved by the developed NWMR. When the user
goes forward and go backward, the NWMR can track the hand-held device smoothly. Even if the user
turns right and turns left, the robot still can track accurately.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 19. The processes of dynamic real-time tracking.

6. Conclusions and Future Works

In this paper, the trajectory tracking for the NWMR is investigated. GPS and 9-axis IMU sensor are
utilized to measure the posture and position of the NWMR and target device. For the consideration of
the small posture error and fast convergence in the trajectory tracking, Kalman filter and Madgwick’s
fusion algorithm are used. The tracking controller with these algorithms are implemented by an
embedded system for fast prototype and cost efficiency. The simulations and the experiment results
show the feasibility and the effectiveness of the proposed NWMR.

For designing the next generation of the NWMR, obstacle avoidance, pattern recognition,
multi-sensor fusion algorithms and power management strategy are four main research topics. For the
outdoor application, a common GPS will be replaced by the RTK-GPS due to error range from
20 cm to 2 m. For the obstacle avoidance approach, millimeter-Wave (mmWave) radar sensor and
Light-detection and ranging (LIDAR) sensor will be used. The advantage of the mmWave radar sensor
is impervious to environmental conditions such as rain, fog and dust. The LIDAR sensor has the
advantage of high resolution for a short distance measurement. Pattern recognition module integrated
image sensor, optical lens and image processor is used to identify objects by utilizing the machine
learning algorithms. Moreover, in order to extend the operating time of NWMR, power management
strategy and will be studied further.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/24/7055/s1 .
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