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Abstract: Rigid registration of 3D point clouds is the key technology in robotics and computer
vision. Most commonly, the iterative closest point (ICP) and its variants are employed for this task.
These methods assume that the closest point is the corresponding point and lead to sensitivity to
the outlier and initial pose, while they have poor computational efficiency due to the closest point
computation. Most implementations of the ICP algorithm attempt to deal with this issue by modifying
correspondence or adding coarse registration. However, this leads to sacrificing the accuracy rate
or adding the algorithm complexity. This paper proposes a hierarchical optimization approach
that includes improved voxel filter and Multi-Scale Voxelized Generalized-ICP (MVGICP) for 3D
point cloud registration. By combining traditional voxel sampling with point density, the outlier
filtering and downsample are successfully realized. Through multi-scale iteration and avoiding
closest point computation, MVGICP solves the local minimum problem and optimizes the operation
efficiency. The experimental results demonstrate that the proposed algorithm is superior to the
current algorithms in terms of outlier filtering and registration performance.

Keywords: 3D point cloud registration; improved voxel filter; multi-scale voxelized GICP

1. Introduction

Three-dimensional point cloud registration is a fundamental task for many 3D computer vision
applications, such as 3D reconstruction [1], 3D recognition [2], and simultaneous localization and
mapping (SLAM) [3]. The purpose of registration is to transform a set of point clouds in various views
into the same coordinate system, which is optimal for model recovery or pose estimation.

ICP [4] and its variants are the most widely used 3D point cloud registration methods due to
their simplicity and good performance. However, considering the closest point as the corresponding
point may put the ICP method at risk of the local optimum issue, especially when the point cloud has
outliers or does not have good initialization. In addition, ICP cannot process a large scale of input
clouds because of its high computational complexity.

With the advancement of sensor technology, it has become easier and cheaper to obtain 3D point
clouds, making point clouds more widespread. However, the scanned point clouds often have a huge
scale and outliers, so they need to be processed before registration. The voxel filtering [5] can quickly
and uniformly reduce the scale of the point cloud, while it is not good at removing outliers. Methods
based on statistics [6,7], radius [8] and point density [9] remove random outliers by calculating the
distribution of neighboring points and setting appropriate thresholds. However, they cannot work well
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when many outliers are evenly distributed. In addition, they spend more time due to the neighborhood
point calculation.

To solve the local minimum problem of ICP, some algorithms have been proposed. Go-ICP is the
first global registration algorithm based on the ICP framework; it uses a branch and bound method
to find the global optimal. Although it solves the local minimum problem, it is still sensitive to the
initialization. A coarse-to-fine strategy [10,11] is presented, where the coarse registration provides an
initial estimation for the fine registration to obtain a precise alignment. This strategy can accurately
register point clouds without initialization. However, it consumes more time for two parts of the
calculation, especially for the point cloud feature extraction in coarse registration.

In this paper, a hierarchical optimized 3D point cloud registration algorithm includes improved
voxel filter and Multi-Scale Voxelized GICP (MVGICP) is proposed. We introduce an improved
voxel outlier filter, which combines voxel downsampling and point density information, delete grids
of which the number of points is less than the threshold, and replace other points with centroids.
Compared with the traditional voxel filter and the statistical outlier removal method, the improved
voxel filter has the best filtering performance and takes less time than the statistical algorithm. Then we
propose Multi-Scale Voxelized GICP (MVGICP) to register the 3D point clouds, which is based on the
distribution-to-distribution strategy. MVGICP firstly voxelizes the target point cloud with a certain
voxel size and calculates the point cloud distribution in the grid. The point cloud distribution is
then brought into the GICP framework to get the transformation, followed by repeating this process
with a smaller voxel size until the size is small enough. Thus, MVGICP does not require any coarse
registration. Larger voxel size can initially transform the point cloud and the small size can further
refine the registration result. MVGICP does not need the closest neighbor search either, so it can
significantly improve the computing efficiency. The experimental results show that the proposed
algorithm can effectively filter out the outliers and obtain better registration accuracy as well as
computation efficiency in several datasets. In general, the contribution of this paper can be summarized
as follows:

(1) An improved voxel outlier filtering method is proposed. This method combines traditional
voxel filters and point density to achieve accurate filtering of outliers while efficiently downsampling.

(2) A novel 3D point cloud registration algorithm MVGICP is presented. It uses multi-scale
iteration to avoid the complex closest points computation, and significantly improves the situation
that GICP is prone to fall into local minimums and low calculation efficiency. At the same time, it has
higher registration accuracy than VGICP.

(3) A thorough evaluation of the proposed algorithm is presented, including comparisons with
the current algorithms in terms of outlier filtering and registration performance. The experimental
results show that the proposed method performs better than other algorithms.

The remainder of this paper is organized as follows. Section 2 reviews the related work of other
researchers. Section 3 demonstrates the details of our proposed method. Section 4 provides the
experiment results and analyses. Section 5 concludes with the summary and the perspectives.

2. Related Work

2.1. Point Cloud Filtering

Point cloud filtering is a process that takes place before point cloud registration. Since the dense 3D
point cloud acquired by terrestrial laser scanners or RGB-D instruments is enormous and contains many
outliers, it is necessary to remove outliers and downsample the raw data. Voxel downsampling [5] is
the most common method. By dividing the point cloud by grid and replacing other points with the
centroid, the voxel method achieves the best efficiency. However, it is not good at removing outliers.
Statistical outlier removal [6] in the Point Cloud Library calculates the mean and standard deviation of
the distance from each point to its neighborhood and then removes the points for which the distance is
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outside the set range. Yang et al. [7] added dynamic standard deviation thresholds to the statistical
algorithm to solve the irregular density distribution. Pirotti et al. [9] proposed an improved statistical
algorithm and local outlier factor algorithm based on K-nearest neighbors (KNN). The local outlier
factor relies on the local density with respect to its neighbors.

2.2. Coarse Registration

When the point cloud sets start in an arbitrary initial pose, the local registration algorithms
easily fall into a local minimum. Then, registration returns to solving a global problem. The coarse
alignment can compute an initial estimate of the rigid motion between two surfaces. The manual
method is firstly applied; Zhang et al. [12] proposed manually adding labels on the model before
registration and then aligning them through the label feature information. However, this is not suitable
for the complex point cloud. Principle component analysis (PCA) [13] is more reliable when the
shape of the target point cloud and the source point cloud is the same. Huang et al. [14] integrated
the projection strategy with the Fourier signal matching and promoted the performance of noisy
and low overlap point clouds. Some studies introduced methods based on the RANSAC iteration.
Aiger et al. [15] exploited the invariant property of a four-point congruent set. Theiler et al. [16]
addressed a keypoint-based four-point congruent set (K-4PCS) to overcome the low efficiency of
4PCS. In addition, Mellado N et al. [17] greatly enhanced the 4PCS algorithm by smart indexing.
Voxel-based 4PCS [18] voxelizes the point cloud and generates plane patches before extracting
four-plane congruent sets. V4PCS improves the robustness to unequal point density or point clouds
from different sources. Other studies based on the local geometric features of the point cloud are more
extensive. Frome et al. [19] proposed 3D shape context (3DSC), which is an extension of 2D shape
context. It adopts a feature description method based on shape contour, which uses histograms to
describe shape features in a log-polar coordinate system that can reflect the distribution of sampling
points on the contour well. Stein et al. [20] introduced a 3D splash descriptor by a local reference frame
(LRF) to achieve posing stability. Tombari et al. [21] proposed a spherical coordinate system to divide
the neighboring points around the query point and obtain the signature of histograms of orientations
shot (SHOT) by counting the number in each subspace. This method balances descriptiveness and time
efficiency. Rusu et al. [22] proposed a fast point feature histogram (FPFH) of two-point descriptors
for all neighboring points of the reference point. It simplifies the point feature histogram (PFH)
descriptor and decreases its computational complexity from O(n2) to O(n). Flint et al. [23] presented
3D-SIFT descriptor by extending the 2D scale-invariant feature transform (SIFT) descriptor to 3D space.
Guo et al. [24] proposed a local feature descriptor of rotation projection statistics (RoPS) by performing
a series of operations such as rotation, projection, distribution matrix calculation, statistics analysis,
and merging on the neighbor points. Yang J et al. [25] presented a local feature statistic histogram
(LFSH) which formed a comprehensive description of the local geometry by statistically encoding the
local depth, point density, and angles between normals. Chen et al. [26] introduced a descriptor based
on plane/line structural features and achieved good performance of artificial point clouds with regular
planes. However, it is not good at handling irregular features such as plants. Based on voxelization,
Wang et al. [27] proposed a 3D SigVox descriptor, which is the first shape descriptor of complete
objects to match repetitive objects in large point clouds. For more details about 3D point cloud coarse
registration, readers are referred to the survey in [24].

2.3. Fine Registration

In contrast with the coarse registration, the fine registration method primarily refers to directly
obtaining the correspondence between two original points rather than feature descriptors. It produces
a more precise result from the initial transformation. The most well-known fine point cloud registration
approach is the iterative closest point (ICP) method from Besl and McKay [4]. This method starts
from initial alignment and then alternates between establishing correspondences through the closest
point and recalculating the alignment according to the current correspondences. The ICP algorithm
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achieves positive performance in point cloud registration. However, it takes too much time due to
the closest point search, and it easily falls into a local minimum, especially when there are noises.
Some studies have focused on solving the local minimum problem. For instance, Chetverikov et al. [28]
introduced trimmed-ICP, which is based on the consistent use of the least trimmed squares (LTS) in
all phases of the operation to improve the robustness to noise. Yang et al. [29] proposed GO-ICP,
which is the first variant of ICP to solve the local minimum. However, GO-ICP is still sensitive
to occlusion and partial overlap. In addition, Biber et al. [30] proposed the normal distribution
transform (NDT), which is applied to the statistical model of three-dimension points rather than a
local feature or closest points. Therefore it does not need to include feature calculation and matching
of corresponding points in the ICP process, and NDT runs faster. The contributions of some other
studies are improving computational efficiency. Chen et al. [31] took advantage of the tendency of
most range data to be locally planar and introduced the point-to-plane variant of ICP. Compared with
the ICP algorithm, point-to-plane ICP greatly advances operational efficiency. Khoshelham et al. [32]
used closed-form point–to–plane correspondence and improved the computing speed. Segal [33]
combined the ICP and “point-to-plane ICP” algorithms into a single probabilistic framework called
GICP. The factors that affect the computation efficiency are closest point search and the solution of
nonlinear problems. Bouaziz et al. [34] used sparsity inducing norms to make the algorithm efficient.
Yang J et al. and Koide [35] extended the GICP with voxelization to avoid the costly nearest neighbor
search. Due to the popularity of low-cost point cloud acquisition devices such as Kinect and Realsense,
RGB-D point cloud processing has become more crucial. Korn M et al. [36] integrated L*a*b color
space information into GICP and presented a method to support point cloud registration with color
information. The convolutional neural network (CNN) has a strong ability to learn feature descriptors.
Aoki et al. [37] expanded the PointNet and LucasKanade (LK) algorithms into a single trainable
recurrent deep neural network and achieved outstanding registration performance. However, it is
not good at handling partial-to-partial registration. The deep closest point (DCP) proposed by [38]
performs well in solving the local minimum problem of ICP, but it can only handle a single object point
cloud with less than five thousand points.

3. Methodology

An accurate spatial registration method was designed to align the 3D point clouds of different
perspectives and partial overlap into the same coordinate system and make the registration error small
enough. Figure 1 shows the flowchart of this proposed method. Firstly, the improved voxel filter
was used to remove outliers of the original point cloud. Then, the MVGICP was designed to achieve
multi-scale iteration for coarse-fine registration end-to-end. Multiple threads accelerated the entire
calculation process.

Figure 1. Flowchart of the proposed registration algorithm for a 3D point cloud.
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3.1. Problem Formulation

Point cloud registration can be described as finding the best affine transformation between two
point cloud sets. Given a pair of data P and Q, for any point pi ∈ P and qi ∈ Q, the problem can be
addressed like this:

qi = Rpi + T + ε (1)

where R and T are the rotation matrix and transformation vector, respectively. ε represents outliers
and noises of the raw data. The 3D point cloud registration algorithm should be accurate and fast.
It should also be robust to noises, arbitrary poses, and other perturbations. In this section, a registration
algorithm that satisfies these qualifications is introduced. It consists of two main parts: point cloud
filtering and multi-scale registration.

3.2. Pointcloud Filtering

As a benefit from the terrestrial laser scanners (TLS) and low-cost 3D instruments such as Kinect,
point clouds can be obtained easily. However, the raw data contain a huge amount of redundant
points and noises because of the external interference as well as measurement errors of the collection
equipment. Therefore, the original point cloud data need to be effectively filtered and denoised,
enhancing the algorithm’s stability to noise and reducing point cloud data. More precisely, this can
enhance the accuracy and speed of subsequent point cloud processing. Researchers have proposed
a variety of methods to downsample and eliminate outliers in the point cloud. The voxel filter has
the highest computational efficiency, but it is weak at filtering outliers. The statistical outlier removal
method based on point distribution can achieve good filtering results, but the calculation time is
longer. To overcome these shortcomings, this paper proposes an improved voxel filtering method,
which strikes a balance between the computational efficiency and the outlier filtering.

As shown in Figure 2, the input point cloud data are divided by a three-dimensional voxel
grid. In detail, the distribution range [(xmin, xmax), (ymin, ymax), (zmin, zmax)] of the point cloud in three
dimensions is obtained first of all. Then, an appropriate cell size c (Bunny: 0.006; Hippo: 0.02; Chef: 6.) to
rasterize the point cloud is selected. The number of grids obtained in X dimension can be described as:

Nx = (xmax − xmin)/c + 1 (2)

Likewise, the number of grids in Ny and Nz can be obtained respectively and (Nx × Ny × Nz)

cubes can be calculated. If a point cloud P containing N uniformly distributed points, the number of
points per cube is:

n = N/(Nx × Ny × Nz) (3)

In fact, the density of points in the point cloud is not uniform. As shown in Figure 2, the model
has a high point density, and the noise points are low. The model’s cube contains a large number of
points, while the noise point cube contains fewer points. In addition, dividing on the three coordinate
axes will produce a lot of repeated grids, meaning that the real number of grids will be less than
(Nx × Ny × Nz). According to these factors, outliers can be filtered out by setting an appropriate
threshold to eliminate cubes with fewer points than the threshold. Moreover, the improved voxel
filter is fast and efficient, which greatly improves outlier removal performance only by adding a point
density calculation in the traditional voxel filter. The selection of the threshold is the most important
step. A too-low threshold will result in incomplete removal of outliers, while a too-high threshold will
cause holes in the point cloud. In this paper, the threshold was set as t = 2n.
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Figure 2. Illustration of the improved voxel filter. The density of points in different voxel grids is not
equal, so the threshold can be set to eliminate outliers.

After removing the outliers, P is converted to P
′

which contains N
′

points. Then, the centroid of
all points in each voxel grid can be calculated:

ci =
1
a

a

∑
j=1

pj(i = 1, 2, ...b) (4)

where b represents the number of remaining grids, and a is the number of points in each grid. Finally,
all the points in each grid are replaced by the obtained centroid point, which can reduce the point
cloud scale.

3.3. Mvgicp: Point Cloud Registration

In this section, we propose a Multi-Scale Voxelized GICP (MVGICP) method to register point
clouds, which is an improved version of GICP and VGICP. Compared with the GICP and VGICP,
MVGICP achieves smaller registration errors and faster speeds. The pseudo code for the MVGIGP is
given in Algorithm 1, which firstly uses a bigger voxel size (one hundred times the average density
of point cloud) to segment the target point cloud and obtain the mean and covariance under the
assumption that points within the voxel grid satisfy Gaussian distribution. Then, MVGICP brings
the obtained value into the GICP framework to calculate the initial transformation T. Afterward,
a step-down voxel grid size (the minimum is six times the average density of the point cloud) is adopted
to optimize the final result until the threshold or the maximum number of iterations is reached.
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Algorithm 1: MVGICP
Input: Source point cloud P and target point cloud Q
Output: Transformation T that aligns P and Q

1 Initial pose T1;
2 c: Voxel size; m: Number of voxel grids;
3 T←T1;
4 while T is not converged do
5 for c = cmax : cmin do
6 Compute VQ through process voxelization;
7 Solve Equation (7) and update T;
8 end
9 return T

10 P←P*T;
11 Vertify whether T aligns P and Q;
12 end
13 Voxelization:
14 for i=1:m do
15 Compute the mean value µ of points in each voxel grid;
16 Compute the mean covariance C of points in each voxel grid;
17 end
18 return V;

3.3.1. Basic Concept of Gicp

Generalized-ICP (GICP) is a variant of the iterative closest point (ICP) algorithm. It combines the
traditional ICP and point-to-plane variant in a probabilistic framework and forms a plane-to-plane
matching strategy. As shown in Figure 3, the point-to-point matching of traditional ICP is easily falls
into a local minimum. GICP is a distribution-to-distribution strategy. It chooses the covariance matrix
of neighboring points instead of each point to calculate the best transformation T, which overcomes
the point-to-point method’s shortcomings.

(a) (b) (c)

Figure 3. Illustration of point-to-point and plane-to-plane strategies. (a) Point-to-point strategy;
(b) point-to-point is easily trapped into local optima; (c) plane-to-plane strategy.

On the surface from P and Q, a point is sampled as a Gaussian distribution: pi ∼ N ( p̂i, CP
i ),

qi ∼ N (q̂i, CQ
i ). Due to the similar framework to ICP, the tranformation of GICP can be expressed as:

T = arg max
T

∑
i

log(p(di)) = arg min
T

∑
i

dT
i (C

Q
i + TCP

i TT)−1di (5)

where di = qi − Tpi is the error of alignment point clouds and approaches zero. CP
i and CQ

i are the
covariances of point clouds P and Q

′
, respectively, which are estimated from their adjacent points.
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GICP increases calculation speed. However, similar to ICP, it requires a good initial pose and closest
point searching, which results in a local minimum and huge calculation costs.

To further optimize GICP, many improvements have been proposed. Three-Dimensional Normal
Distribution Transform (3D-NDT) transforms a discrete 3D point set into a piecewise continuous
probability density represented by a normal distribution set and maximizes the probability that one
distribution falls into another. The use of the probabilistic-based method avoids the closest point
searching and improves calculation efficiency. Nevertheless, the accuracy of NDT is relatively low.
VGICP adopts the 3D-NDT strategy and extends GICP with voxelization. However, both VGICP and
NDT are sensitive to the voxel size. MVGICP overcomes its shortcomings. It can be initially registered
at a large voxel scale, and the small size can refine the registration result.

3.3.2. Mvgicp’S Optimization of Local Minimum

Figure 4 shows the concept of MVGICP; its main idea is to voxelize the point cloud with different
voxel sizes. In detail, MVGICP firstly subdivides the space occupied by the point cloud model into
small cubes of regular size, and then calculates the mean u and covariance CQ

i of the cube containing
multiple points. So, the distance between pi to its adjacent points qi within radius r, which can be
written as this formula: d

′
i = ∑j q̂j − Tpi, and Formula (5) can be transferred to:

T = arg min
T

∑
i
(∑

j
q̂j − Tpi)

T(CQ
i + TCP

i TT)−1(∑
j

q̂j − Tpi) (6)

To improve the computing efficiency, the mean of all neighbor points in the voxel grid is used
instead of a single point, and the above objective function becomes:

T = arg min
T

∑
i

Ni(
∑ qi
Ni
− Tpi)

T(CQ
i + TCP

i TT)−1Ni(
∑ qi
Ni
− Tpi) (7)

where Ni is the number of neighbor points in the voxel grid, which is closely related to the
selected voxel size. According to the Gauss–Newton method, the objective function composed of
(T, pi, CP

i , v.u, v.C, v.N) can be iteratively updated to get the initial transformation. From Formula (7),
voxelization can smooth the target point cloud’s distribution. Hence, the voxel size is significant.
A large size can smooth a larger surface so that the point cloud with larger differences can be aligned.
Therefore, MVGICP solves the problem of GICP’s high initial position requirements issues.

(a) (b)

Figure 4. Illustration of MVGICP. (a,b) represent the corresponding models of large- and small-scale
MVGICP distance calculation, respectively. The red, green, and blue circles represent the source point
cloud distribution, target point cloud distribution, and voxel, respectively.

3.3.3. Mvgicp’S Fine Registration

For large voxel size, MVGICP can roughly align the point cloud, but its accuracy is low. After
obtaining the initial transformation, fine registration is required. As shown in Figure 4b, the number of
the points contained in the voxel decrease when reducing the voxel size. This will gradually weaken
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the target point cloud’s smoothing effect, and save more geometric feature information; thus, higher
registration accuracy can be obtained. Therefore, for the small voxel size, MVGICP can register the
point cloud more accurately.

In summary, MVGICP does not require a coarse-to-fine registration strategy. Large-scale MVGICP
plays the role of initial registration, and gradually reducing the voxel size will further improve the
results. Overall, MVGICP runs faster without the closest neighbor search process.

4. Experiment and Analysis

In order to verify the accuracy of geometric registration and computational efficiency of the
algorithm in this paper, we designed two sets of experiments. The first set of experiments compares
the improved voxel filter’s outlier filtering performance and computational efficiency with other
filtering algorithms. The second set of experiments compares MVGICP with other methods in terms
of the registration performance and time consumption based on different datasets. The registration
experiment is conducted based on the open-source PCL. The experiment computer is equipped with
Intel i7-6700hq, 2.6 GHz CPU, 16.00 GB of memory, and a 64-bit Ubuntu 18.04 operating system.

4.1. Outlier Filtering Result

To validate the filtering algorithm proposed in this paper, the different ratios of random noise are
added to the public Bunny, Chew, and Hippo point cloud models. Traditional voxel grid filter
(Voxel) [5], StatisticalOutlierRemoval filter (Sor) [6], KNN-based local outlier factor (KLof) and
statistical method (KSor) [9], dynamic standard deviation threshold (DSDT) [7] and our method
for removing outliers and downsampling are applied, respectively. The KSor and DSDT improve the
statistic methods by KNN and dynamic standard deviation threshold, respectively. KLof is mainly
based on the local density of the neighbors, while our approach concerns the points within the voxel.
The filtering results are shown in Figure 5.

We introduce two evaluation metrics for point cloud denoising. The ground-truth and predicted
point cloud are described as P = {pi}N1

i=1, Q = {qi}N2
i=1, where pi, qi ∈ R3. N1 and N2 indicates the

number of points and they may not be equal, respectively. The metrics are defined as follows:
(1) Root-mean-square-error (RMSE): RMSE is the square root of mean squared error (MSE).

Compared with mean squared error (MSE), RMSE can reduce the magnitude of error between different
algorithms and make it easier to characterize the comparison curve. It calculates the Euclidean distance
between the ground-truth and predicted point cloud.

MSE =
1

2N1
min

N1

∑
i=1

N2

∑
j=1

(pi − qj)
2 +

1
2N2

min
N2

∑
j=1

N1

∑
i=1

(qj − pj)
2

RMSE =
√

MSE

(8)

(2) Signal-to-noise ratio (SNR): SNR is a common indicator to measure the level of image quality.
Usually, a higher SNR means better graphics quality. SNR is measured in dB given as:

SNR = 10 log
1

N2
∑N2

j=1(qj)
2

MSE
(9)

Random points are generated and added to the original models to form point clouds with different
noise ratios. Figure 5 shows the outlier removal results of different algorithms. The Sor, KSor and
DSDT are unable to remove the outliers. That is because the statistical-based method relies on the
standard deviation, which is sensitive to the outliers of the boundary. KLof and our method have a
better performance due to the local density calculation. The results demonstrate that the improved
voxel filter can remove the different outlier ratios efficiently.
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(a) (b) (c)

(d) (e) (f)

Figure 5. The outlier removal results of different algorithms. (a) Chef with 0.5 ratio of random outliers;
(b) filtering result with Sor; (c) KSor; (d) KLof; (e) DSDT; (f) our method.

In order to quantitatively evaluate the outlier removal performance of the improved filter, the SNR
and the processing time are presented. According to Equation (9), the original point cloud after voxel
filtering is regarded as the ground truth, and SNR of the filtered point cloud is calculated. The compared
methods perform outlier removal firstly and then use the same voxel size for downsampling.

Figure 6 shows the SNR and processing time of different filtering methods. The traditional voxel
filter performs worst because it only has the ability of downsampling. The Sor, KSor and DSDT
are not good at filtering the point cloud with higher outlier ratios. KLof and our method perform
well in most cases; this indicates that the density-based method is more suitable in the uniform
distribution of outliers. In Figure 6b, due to the KNN process, the processing time of KSor and KLof
is significantly higher than that of other methods. Our algorithm achieves superior efficiency by
avoiding the closest point calculation. Figure 6 demonstrates that the improved voxel filter balances
computational efficiency and outlier filtering.
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(a) SNR (b) Processign time

Figure 6. Evaluation of signal-to-noise ratio (SNR) and processing time on several filtering algorithms.
Our approach obtains the highest SNR, and its computational efficiency is much higher than
other methods.

Another test is proposed to evaluate the effect of filtering on the registration performance
quantitatively. The evaluation metric is RMSE. After outlier removal, classical ICP and GICP algorithms
are selected to register the two point clouds. Due to the different denoising performance of the
algorithm, outliers cannot qualify RMSE to indicate the registration result’s quality. Therefore, in this
section, the transformation matrix obtained by denoising the point cloud is applied to act on the ground
truth, and then the RMSE is calculated. Tables 1 and 2 respectively show the RMSE of filtered point
cloud after ICP and GICP registration. Corresponding to the filtering results, our method achieves
the best performance among the six filtering algorithms. The experimental results show that outlier
removal significantly influences the performance of the point cloud registration.

Table 1. Root mean square error (RMSE) comparison of generalized iterative closest point (GICP).

Groundtruth Voxel Sor KSor KLof DSDT Ours

Bunny 3.97× 10−3 2.69× 10−2 8.43× 10−3 7.52× 10−3 5.53× 10−3 6.77× 10−3 3.56× 10−3

Chef 3.92× 10−1 4.41× 10−1 4.32× 10−1 4.23× 10−1 3.93× 10−1 4.33× 10−1 3.93× 10−1

Hippo 3.02× 10−2 6.03× 10−2 5.94× 10−2 6.54× 10−2 4.77× 10−2 6.18× 10−2 3.03× 10−2

Table 2. RMSE comparison of GICP.

Groundtruth Voxel Sor KSor KLof DSDT Ours

Bunny 6.50× 10−3 2.70× 10−2 2.21× 10−2 2.55× 10−2 8.75× 10−3 2.59× 10−2 6.24× 10−3

Chef 4.34× 10−1 4.41× 10−1 4.35× 10−1 4.53× 10−1 4.36× 10−1 4.38× 10−1 4.35× 10−1

Hippo 3.13× 10−2 6.04× 10−2 5.78× 10−2 5.84× 10−2 4.53× 10−2 5.97× 10−2 3.14× 10−2

4.2. Synthetic Data Registration

The MVGICP registration algorithm is tested on simulated data to prove its robustness to
perturbation. ICP [4], GICP [33], VGICP [35], and some other coarse-to-fine strategy methods like
Super4PCS-ICP (SICP) [17], Super4PCS-GICP (SGICP) [17,33] are tested as comparison methods.
ICP obtains the correspondence between two original points directly. GICP is the first ICP variant
algorithm that uses the distribution-to-distribution strategy. VGICP and our method extend GICP
with fixed-scale voxels and multi-scale voxels. Coarse-to-fine methods use four-congruent point sets
to roughly align the point clouds and further refine the result by ICP or GICP. Simulation data include
the Bunny and Dragon from the Stanford dataset and T-rex, Chef, Chicken, and parasaurolophus from
the UAW dataset [39].
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The stability of MVGICP on Gauss noise is tested first. The scanned point cloud may contain some
noise points and lead to multiple errors, such as noise, rotation and translation. The noise points are
attached to the point cloud rather than free, so it is not easy to filter them out and affect the registration
results. Therefore, the stability of the algorithm to noise perturbation has great significance. As shown
in Figure 7, Gauss noise is added to Chef, and the standard deviations are 0, 0.5, 1, and 2, respectively.
Since the Gaussian noise is related to the point cloud density, the UAW dataset with a relatively similar
point density is selected.

Figure 7. Different Gaussian noise levels are on Chef, the standard deviations from left to right are 0,
0.5, 1, 2, respectively.

Figure 8 shows the average RMSE (smaller is better) of each method at different noise levels on
the UAW dataset. As shown in Figure 8a, ICP and our method are more robust to noise disturbance.
SICP and SGICP also achieve good results in the case of low noise interference. Figure 8b–d display
similar RMSE trends; ICP, the coarse-to-fine strategy, and our method are relatively stable to noise.
Due to the fixed neighborhood points and voxel size, GICP and fixed-scale VGICP are less effective.
In summary, MVGICP achieves the best registration effect in all cases, demonstrating its good
robustness to the noise perturbation. ICP and the coarse-to-fine method obtain RMSE with similar
values. Moreover, by comparing Figure 8a and the other three figures, the registration results of these
algorithms on different models are not the same. Different model structures or surface features may
cause this, but our method achieves the best results in all structural models

(a) Chef (b) Chicken

Figure 8. Cont.
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(c) Parasaurolophus (d) T-rex

Figure 8. Average RMSE of several methods at different noise levels on the UAW dataset.

To further evaluate the algorithms, a comparison of the above algorithms’ processing time is
also performed. As shown in Table 3, due to the influence of the initial registration, the coarse-to-fine
method takes the most time. In addition, since voxelization can smooth the point cloud’s surface,
VGICP is more effective than ICP and GICP. With multi-scale voxel division and multi-level
iterations, our method can quickly obtain a good initial transformation through the large-sized voxel.
This appropriate initial transformation can save the convergence time for a small-sized voxel. Based
on this, our algorithm has the highest computational efficiency. It can be concluded that MVGICP
works well on the point clouds with different noise ratios.

Table 3. Average processing time (s) of several methods at different noise levels on UAW dataset.

ICP GICP VGICP SICP SGICP Ours

Chef 12.22 10.98 8.64 14.33 11.20 2.39
Chicken 15.74 10.95 10.27 14.66 15.69 2.77
Parasaurolophus 13.81 9.84 8.51 14.39 17.71 2.28
T-rex 10.53 10.88 7.61 11.74 17.54 2.00

The algorithms’ performance for registering varying degrees of rotations between a pair of point
clouds is also tested. To perform a controlled evaluation, the degree of rotation between any two
point clouds is given. The viewing angle differences of the input clouds are from 15◦ to 90◦, and its
step size is 15◦. Figure 9 shows the results of the RMSEs of several algorithms on different rotation
perturbations. The RMSE of GICP increases significantly as the pose difference becomes larger. ICP is
more stable than fixed-scale VGICP. That is because the VGICP relies on a certain voxel size, which
is susceptible to sub-voxel misalignment. Both our algorithm and the coarse-to-fine method are
relatively stable to rotation disturbances. Nevertheless, compared with the coarse-to-fine strategy,
our algorithm is more concise and effective because our algorithm does not require initial registration.
This confirms that MVGICP can register the point clouds with various rotations, which is important in
the 3D reconstruction.
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Figure 9. Controlled comparison between algorithms on rotation perturbation. ICP, Super4PCS-ICP
(SICP), Super4PCS-GICP (SGICP) and our method obtain almost the same RMSE.

Figure 10 shows the visual registration results of the Bunny and the Dragon models with different
rotations. The Bunny and the Dragon rotates on the z-axis and x-axis, respectively, where the rotation
of Bunny is 30◦, and the rotation of Dragon is 15◦. It can be observed that MVGICP finely registers
point clouds with different rotations.

Figure 10. Visual registration results of the Bunny and Dragon models with different rotations.
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4.3. Multi-View Registration

In this section, the multi-view registration results of our algorithm on the synthetic data and real
data are presented.

4.3.1. Multi-View Synthetic Data Registration

(1) Multi-view registration without outliers: the incremental registration ability of our algorithm
on the dataset UAW is evaluated. Multiple scanned point clouds of the Chicken and T-rex without
outliers are used as input. Figure 11 shows the multi-view point clouds and the registration results.
As shown in Figure 11a,c, each model has 12 scans, and each scan in the point clouds to be registered
is remarked by a unique color. The benefits from multi-scale iteration, although these point clouds
have different rotations and overlap ratios, include that they are all well aligned.

(a) (b) (c) (d)

Figure 11. Multi-view registration through our approach on chicken and T-rex model of the UWA
dataset. (a,c) are input scans from different views and (b,d) are the registration results.

In order to quantitatively analyze the multi-view registration capability of our algorithm,
the average registration errors of each object are presented in the Table 4, and are defined as the
average difference from the ground truth. ICP is selected for comparison in this part. The table shows
that the rotation and translation errors of MVGICP are less than ICP. Since ICP relies on the location of
every point, it is easy to fall into local optima. Furthermore, the experimental results demonstrate that
MVGICP can accurately register point clouds from multiple views.

Table 4. Multi-view registration results on the Chicken and T-rex models of the UWA dataset.

Model Chicken T-Rex

Method MVGICP ICP MVGICP ICP
Error εr(◦) 0.1952 0.238 0.0563 0.0712

Error εt(dres) 0.1491 0.250312 0.0707 0.0871

(2) Multi-view registration with outliers: To verify the whole algorithm proposed in this article,
the Armadillo, with outliers, will be tested. Figure 12 shows the input outlier point clouds and their
registration results. As shown in Figure 12a, the scans of the Armadillo from different angles are
placed together with many outliers. Figure 12b–d shows the registration results in three different views
respectively. The registration results indicate that the proposed algorithm filters out the outliers with
high accuracy.
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(a) (b) (c) (d)

Figure 12. Multi-view registration through our approach to the outlier Armadillo model of Stanford
dataset. (a) Multi view Armadillo point clouds with outliers; (b–d) are the registration results in
three views.

To evaluate the influence of outlier filtering on the final result, we present the average registration
errors of Filtered-MVGICP and MVGICP in Table 5. The rotation and translation errors of MVGICP are
nearly 10 times higher than filtered MVGICP. This strongly supports the idea that the proposed method
greatly reduces the registration error and shows the stability for outlier 3D point cloud registration.

Table 5. Registration results of Filtered-MVGIP and MVGICP to the outlier Armadillo model.

Method Filtered-MVGICP MVGICP

Error εr(◦) 0.9267 9.278
Error εt(dres) 8.39× 10−4 0.0085

4.3.2. Multi-View Real Data Registration

Figure 13 shows the registration results of MVGICP on the real outdoor and indoor scenes.
Compared with the model data, the scene point cloud is larger and has more geometric features.
There are obvious pose differences between the point clouds to be registered. Furthermore, the results
indicate that accurate registration for real scene data is accomplished, and scans are well converged
by MVGICP.

(a) (b) (c)

Figure 13. Multi-view registration through our approach to scene data. (a) Input point clouds; (b) the
registration results; (c) RGB rendering results.
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5. Conclusions

This paper presents an efficient, stable, and accurate hierarchical optimization algorithm for
3D point cloud registration. Our improved voxel filter can remove outliers well but also has good
computational efficiency. In addition, MVGICP is effective at finding optimal transformation at a
different level of noise and rotation perturbation and effectively handling various types of point cloud,
such as model, scene scans, TLS, and RGB-D, etc. The implementation of a multi-threaded operation
can achieve accelerated calculation without affecting the quality of the final result. Our algorithm
solves the problems raised in the introduction extremely well. It may be broadly applicable in 3D
reconstruction, computer vision, and robotics.

The proposed method still has some limitations. The algorithm in this paper can be further
improved for registering large translation disturbances and low overlap scene data. We will
consider adding local features information into the framework to improve handling point clouds in
complex scenes.
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