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Abstract: Accurate and quantitative assessment of the impact of natural environmental changes and
human activities on total suspended solids (T'SS) concentration is one of the important components of water
environment protection. Due to the limits of traditional cross-sectional point monitoring, a novel water
quality evaluation method based on the Markov model and remote sensing retrieval is proposed to realize
the innovation of large-scale spatial monitoring across administrative boundaries. Additionally, to explore
the spatiotemporal characteristics and driving factors of TSS, a new three-band remote sensing model of
TSS was built by regression analysis for the inland reservoir using the synchronous field spectral data,
water quality samples and remote sensing data in the trans-provincial Hedi Reservoir in the Guangdong
and Guangxi Provinces of South China. The results show that: (1) The three-band model based on the
OLI sensor explained about 82% of the TSS concentration variation (R> = 0.81, N = 34, p value < 0.01)
with an acceptable validation accuracy (RMSE = 6.24 mg/L, MRE = 18.02%, N = 15), which is
basically the first model of its kind available in South China. (2) The TSS concentration has spatial
distribution characteristics of high upstream and low downstream, where the average TSS at 31.54 mg/L
in the upstream are 2.5 times those of the downstream (12.55 mg/L). (3) Different seasons and rainfall
are important factors affecting the TSS in the upstream cross-border area, the TSS in the dry season are
higher with average TSS of 33.66 mg/L and TSS are negatively correlated with rainfall from upstream
mankind activity. Generally, TSS are higher in rainy seasons than those in dry seasons. However, the
result shows that TSS are negatively correlated with rainfall, which means human activities have higher
impacts on water quality than climate change. (4) The Markov dynamic evaluation results show that the
water quality improvement in the upstream Shijiao Town is the most obvious, especially in 2018, the
improvement in the water quality level crossed three levels and the TSS were the lowest. This study
provided a technical method for remote sensing dynamic monitoring of water quality in a large reservoir,
which is of great significance for remediation of the water environment and the effective evaluation of
the river and lake chief system in China.
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1. Introduction

Total suspended solids (TSS) are essential carriers of organic matter such as nitrogen and
phosphorus and their movement and migration play a significant role in the process of global material
cycling and change [1]. By influencing the distribution of scattered light in the water body, TSS directly
control the primary productivity of the water body [2], which in turn affects the transparency and
oxygen content of the water body, and exert a decisive part in the aquatic ecological environment.
Reservoirs are one of the most important sources of drinking water for human beings. They are
rich in biodiversity and play a decisive role in improving and regulating the surrounding ecological
environment. At the same time, the spatial and temporal heterogeneity of TSS and the process of
resuspension and flocculation also directly affect the morphological dynamics of the reservoir [3,4].
As a result, TSS are essential for understanding the progress of river sediment transport and water
quality variation. The reservoir gradually accumulates suspended matter at different water levels,
which reduces the water storage capacity of the reservoir and ultimately reduces the effective storage
capacity [5]. Therefore, it is particularly important for real-time monitoring and management of the
aquatic environment in the reservoir area to reveal the dynamic of TSS. Since the release of the guidance
for the river chief system by the General Office of the State Council of China in 2016, the research of TSS
in inland water including lakes and reservoirs has been paid more lasting attention, and the associated
research has been conducted by a variety of scholars, governments and social communities [6-8],
such as the Rio Tercero reservoir (Cérdoba, Argentina) [6], the Mekong and Bassac Rivers [9,10],
the Amazon River [11], Taihu Lake [8,12], the Yangtze River [13-15] and the Pearl River [16-19].

There are many methods used for monitoring the TSS concentration and the spatial and temporal
variation assessment, such as hydrological fixed-site monitoring, in situ cruising investigation,
physical models, numerical simulation, remote sensing and so on. Fortunately, as a scientific and
rapid investigation tool, remote sensing breaks through the time-consuming, tedious and expensive
limitations of traditional monitoring technologies, and it has been considered as a superior method
with the advantages of wide coverage, periodic revisits and long series of data collection. With the
continuous improvement in remote sensing data in spectral, spatial and temporal resolution, the use of
different types of remote sensing data for TSS monitoring and evaluation is increasingly accepted and
recognized. There are numerous remote sensing data for assessment of TSS including the series of
Land Observation Satellite (Landsat) [18,20-22], the Moderate Resolution Imaging Spectroradiometer
(MODIS) [11,12,23-25], the Geostationary Ocean Color Imager (GOCI) [8,26,27], Environment and
Disaster Monitoring and Forecasting Small Satellite Constellation (HJ) [28], Medium Resolution
Imaging Spectrometer (MERIS) [9] and so on. Among them, due to the high quality, high spatial
resolution and inheritance, Landsat has become the most widely used remote sensing sensor in
spatiotemporal dynamic analysis.

The commonly used TSS retrieval models are divided into empirical models and analytical models.
As far as the empirical model is concerned, it does not need to undergo complicated derivation and
parameter initialization, and its form is simple with sufficient accuracy, which is highly efficient to
use and will continue to be used for a long time in the future. Although many studies use empirical
models for TSS estimation from different sensors, there are significant differences in the band selection
of single- or multiple-band models [12,18,24,29,30]. First, the sensitivity of satellite sensors to different
concentrations of TSS is different. The study by [13] showed that the red band reflectance is positively
correlated with TSS, but when TSS reach a certain level, the reflectance will tend to converge or
remain unchanged. Besides, the difference in optical characteristics of different component water
bodies makes the TSS-sensitive bands different among open ocean, coastal and inland water bodies.
Compared to open ocean and estuary coastal waters, inland waters are optically more heterogeneous
and complex [31]. The reason is probably because the different phytoplankton types in estuaries and
coasts are different from those in Hedi Reservoir, such as diatoms or cyanobacteria. The different
types of phytoplankton produce different spectral properties in the water. Therefore, it is necessary to
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develop a reliable model based on the specific spectral properties of water constituents for retrieving
the temporal and spatial distribution of TSS by remote sensing.

No doubt analyzing the spatial-temporal trends of TSS is important for studying the evolution
process and effect of lake and reservoir water environment systems. Some related research works have
made important achievements in their respective fields, such as Taihu Lake [8,12], Dongting Lake [32,33],
reservoirs [5,22] and so on. Zheng et al. [32] conducted remote sensing assessments of environmental
changes and human economic activities on the variation patterns of the concentration of TSS, revealing their
significant inter-annual and spatial variations. Unfortunately, although studies have been able to use large
amounts of data to analyze the changes in TSS [15,19,31], few studies can be combined with local policy
strategies to comprehensively analyze TSS changes [7,34]. Moreover, fewer studies focus on cross-border
areas where the water quality change is more complicated from upstream runoff. To achieve the goal of
the development of Green Water and Green Hills that China’s government put forward, it has become
key to systematically study the long time series dynamic changes in the water quality of reservoirs and
understand the impact mechanism for water environment management and pollution prevention by
different river chiefs.

A new method of combining the Markov process and remote sensing technology is used to reveal
the spatiotemporal heterogeneity of TSS, which is based on the advantage of a Markov model that
reflects the stochastic dynamic trends of events during a certain period. Large-scale and long-term
monitoring has replaced the traditional cross-section in situ sampling [35], which makes the monitoring
process faster and more concise and can more intuitively reflect the dynamic and continuous change
process of the TSS concentrations. In the study, based on the field spectra and remote sensing
experiments carried out in the cross-border watershed Hedi Reservoir of western Guangdong in South
China, we built the TSS three-band retrieval model, analyzed the spatial and temporal distribution
characteristics of TSS concentration and then explored the driving factors. The dynamic changes in TSS
in the Hedi Reservoir were analyzed from 2014 to 2018 based on the Markov model. The quantitative
assessments of TSS variations and their driving force factors were produced for the effect analysis of
the river and lake chief system in China.

2. Materials and Methods

2.1. Study Area

Crossing the borders of Guangdong and Guangxi Provinces, Hedi Reservoir is located in
Hechun Town, Lianjiang City (county level), Zhanjiang City, in Guangdong Province at latitudes of
21°22/-22°22" N and longitudes of 109°54’-110°26" E (Figure 1). As a typical trans-provincial basin
(Guangdong—Guangxi), the Hedi Reservoir Basin in western Guangdong of China is an important
source of drinking water for the two provinces. It undertakes the mission of supporting the sustainable
development of the regional economy and maintaining the stability of the regional society. It is
a veritable “life water” and “economic water” which has important strategic significance for the
ecological protection of the basin. The islands in the reservoir are dotted, and the shoreline twists
and turns, forming a large number of backwaters and forks. Its shape is like an olive nucleus. With a
total storage capacity of 1.151 billion m3 and a catchment area of 1440 km?, Hedi Reservoir is a key
source of water supply security in western Guangdong and one of the five major drinking water
sources in Guangdong Province [36]. The spatial and temporal distribution of TSS in the reservoir is
not only closely related to local human activities such as navigational transportation, aquiculture and
even illegal-profit business processes [32,37], but also becomes the focus of attention for sustainable
development in human society especially in the planning of ecological preservation areas and urban
construction [17]. In recent years, the rapid economic development and the increasing human activities
have caused some river sections to be polluted to varying degrees, and the water use in the basin
has become increasingly tense. The water pollution problem engendered needs to be solved urgently.
Correspondingly, China has also adopted relevant measures to solve the problems of rivers and lakes
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water quality management and protection. That is, the main leaders of the government at all levels in
China as the “river chief” (the first person responsible) are responsible for organizing and leading the
management and protection of rivers and lakes in the corresponding regions.
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Figure 1. (a) Location of the study area (Hedi Reservoir) and the location of the Hedi Reservoir Basin
across Zhanjiang, Guangdong Province, and Yulin, Guangxi Province, in China, and (b) location of in
situ data labeled by black stars and the distribution of sampling stations where different color lines
represent different boundaries of towns.

2.2. Experimental Data and Remote Sensing Imagery

Several satellite-synchronous remote sensing experiments in Hedi Reservoir were conducted
between August and October 2015, and water surface spectra and water samples were collected. A total
of 35 water samples were collected in this reservoir in August (N = 12) and October ((N = 23), 2015,
including 29 valid samples (Figure 1b). Further, we referred to the measured TSS data from Poyang
Lake, China’s largest freshwater lake, to increase the applicability of the model. Poyang Lake’s TSS
data used in this paper were obtained by Liu et al. [38] and Huang [39] in June 2017. The data include
a total of 36 samples and 19 among them with valid spectral data. Table 1 summarizes the variability
of all the collected TSS concentrations from different locations. In total, there are 49 measured TSS
data that range from 4 to 66 mg/L. All the data are divided into two parts, which are used for model
calibration (34 sites) and validation (15 sites).

Table 1. Summary of total suspended solids (TSS) concentration (N = 49) from the synchronous in situ
spectra collected at different sites during several in situ campaigns.

Samples TSS Concentration (mg/L)
Location Date
Total Calibration Validation Max Min Mean Standard Deviation

August 10
Hedi 2015 21 8 50 5 11.65 1.52
Reservoir ~ October 19

2015
Poyang 1 he2017 20 13 7 66 4 2848 3.64
Lake

All - 49 34 15 66 4 18.52 2.09
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2.2.1. Synchronous Field Spectral Data

Based on the above-surface spectra measurement method [40], the ASD Field Spec Pro portable
spectrometer was used to collect the water surface spectral information, mainly including the water
surface radiance and the total irradiance of the water surface incident. The water surface remote
sensing reflectance is calculated as Equation (1):

Rys = Ed<0+) (1)

where R represents the remote sensing reflectance calculated by Equation (1) (units: sr1), Ly, is the
water surface radiance (units: w - m=2 - sr™') and E;(0") is the total irradiance of the water surface
incident (units: w - m~2); both Ly, and E;(0") are measured by ASD spectrometer equipment.

2.2.2. Water Quality Data

Water quality was represented by the TSS concentration that was measured by the weighing
method according to the Chinese national standard of GB11901-89. The TSS concentrations were
produced by dividing the mass of the TSS by the volume of the filtered water sample, among which
the quality of suspended matter was obtained by placing the filtered sample in an oven at 40-80 °C for
8 h. It is worth noting that when we calculated the volume of the water sample, the water sample
filtered by a GF/F filter with a pore size of 0.47 pym was used.

Following the characteristics of the TSS in the reservoir area and actual needs, and referring
to the Chinese Standards for Pollutants in Municipal Wastewater Treatment Plants (GB18918-2002),
the concentration of TSS is divided into four levels for analysis as follows (Equation (2)).

I 0<TSS <20
II 20 < TSS < 30
I 30 < TSS < 50
v TSS > 50

TSS(mg/L) 2)

2.2.3. Remote Sensing Data

Due to the cloudy and rainy weather in the study area, it is easy to result in a long-term sequence
of single optical remote sensing data being missing. Therefore, this experiment uses data from
multi-source satellites for analysis. Multi-source satellite images include Landsat8 OLI and Sentinel-2
data. The Landsat 8 satellite is the latest generation of terrestrial remote sensing satellites. Its sensors
have been significantly improved in terms of imaging mode, the band setting, signal-to-noise ratio,
etc. In contrast, Sentinel-2 has a higher spatial resolution (10 m) and shorter revisit period (5 days),
which can supplement missing data in time. Collected satellite data from 2014 to 2018 (29 scenes)
consider the different seasons, including 11 scenes during the dry season (November to April of next
year), and 18 scenes during the flood period (May to October of each year) (Table 2).

Table 2. Summary of the satellite remote sensing data used in this study, which includes a
ground-synchronized remote sensing image on 16 October 2015.

Season Type of Data Image Date Track Number
14 Novmeber 2014 21 December 2016
1 January 2015 8 December 2017 Path: 124

Landsat8 OLI 17 January 2015 24 December 2017
3 November 2016 6 January 2017
5 December 2016 22 January 2017

Sentinel-2 19 December 2018 49QDE

Dry season Row: 45
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Table 2. Cont.

Season Type of Data Image Date Track Number
9 July 2014 30 July 2016
11 September 2014 16 September 2016
27 September 2014 14 May 2017
13 October 2014 30 May 2017
Flo.o‘ji Landsat8 OLI 12 July 2015 18 Augt}llst 2017 Path: 124
perio Row: 45
14 September 2015 3 September 2017
30 September 2015 18 June 2018
16 October 2015 6 September 2018
11 May 2016 8 October 2018

The processing of remote sensing data is mainly based on ENVI and ArcGIS platforms, including
radiation correction, FLAASH atmospheric correction, band fusion and other operations. Its purpose
is to eliminate errors caused by atmospheric scattering, absorption and reflection.

2.3. Methodology

Combined with the spectral characteristics of the water body in the study area, this study builds
and optimizes the TSS retrieval model based on field data and quasi-synchronous satellite imageries.
By comparing and verifying different TSS retrieval models, comprehensively considering the accuracy
errors and applicability of various models, the optimal TSS retrieval model is obtained. Finally, on the
basis of the optimal TSS model, we analyzed the spatial and temporal changes in the TSS concentration
using the remote sensing data and evaluated the dynamic trends of multi-time series TSS concentration
with the help of the Markov model.

2.3.1. TSS Retrieval Model

Based on different remote sensing data, combined with analysis, semi-analysis/semi-experienced
and empirical methods, many experts and scholars [10,14,18,22,41-43] have calibrated a large number
of remote sensing retrieval models for TSS in water bodies, and have obtained good retrieval accuracy
with wide applications. In addition, there are many forms of TSS models, mainly including the
single-band model, the band ratio model and the multi-band combination model. The band ratio
model can effectively reduce the effect of particle size distribution and the bidirectional reflectance
change of variable sediment [23]. The three-band model considers the interference of chlorophyll on
the remote sensing reversion of the concentration of TSS [44]. Fully considering the optical complexity
of the turbid case II waters and the interaction between the spectral characteristics of different water
components (chlorophyll, suspended matter and colored dissolved organic matter) and minimizing
the TSS concentration error in the remote sensing estimation, this paper mainly uses the band ratio and
three-band TSS models in the forms

Rrs (b2)
155 Rys (b1> (3)
TSS o [Rys(b1) ™" = Rys(b2) ' X Rrs(b3) 4)

where Ry;(b;) is the reflectance in spectral band b;.

To find the best combination of band reflectances, a Pearson correlation analysis was used to
investigate the strength of the association between the two variables (TSS concentration and spectral
reflectance of the bands).

2.3.2. Markov Dynamic Evaluation

As an important method to study the state of an event and the law of transition between states,
the Markov process can analyze the changing trend of the state at the time of fy + At by the initial
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probability of the different states of the event at the time of ¢ty and the probability transfer relationship
between states, and can intuitively reflect the dynamic process of an event during this period [45].
It has no after-effects, that is, the state transition probability is only related to the transition start state,
the number of transfer steps and the post-transition state. It is independent of the initial moment of the
transition [46]. Therefore, the combination of large-scale remote sensing evaluation at a single time and
the Markov process method with multi-period stochastic dynamic analysis not only breaks through
the limitations of static analysis of traditional remote sensing evaluation but also reflects the trend of
dynamic changes in multiple periods. The new research method was provided for the change trend
evaluation of TSS concentrations in the Hedi Reservoir area.

To reflect the trend of dynamic changes in the concentration of TSS in the reservoir area in
2014-2018, grids (k) of 30 x 30 m size (equal to the pixel size of Landsat OLI images) are distributed in
the reservoir area. Each grid represents a site where every site has a value about the TSS concentration,
and each site has a total monitoring of n times in a year. Each site performs multiple monitorings
per year based on clear satellite data for the last 5 years. According to Formula (2) in Section 2.2.2,
the water quality of the reservoir was classified into 4 levels: levels I, II, IIl and IV. We set E as the above
4 levels, and the corresponding state space can be expressed as E = {1, 2,3,4} in turn. The Markov
process is a time series model, and the construction process is described below [23,35,47]:

Step 1: Establishing the probability transition matrix P

The possibility transition in which the water quality changed from i level to j level can be simulated
using an equation as follows:

Py =t 0<p <Y py =1 (5)
1 Ml _ ml ’ = ry] = - : 1

where p;; is the transition probability of level i transferred from level j, 1;; is the number of original
data of level i transferred from level j for n times in the same site of the reservoir, M; is the number of
original data sites at level i during the y,th monitoring and m; is the number of original data sites at
level 7 in the monitoring of n times.

Then, the matrix P = (pz- j)nxn can be found, and this is the possible transition matrix of the reservoir.

Step 2: Build the progress matrix S

The progress matrix is used to show how to distinguish the water quality deteriorated or improved

from i level to j level in the time of monitoring and it can be calculated using an equation as follows:
sij = (i= )i = flpij, (i,j € E) (6)

where s;; is the weight which can figure out the extent the water quality deteriorated or improved,
and 7 and j are the levels of water quality that follows as E = {1,2, 3, 4}.

The matrix S = (s;j),. . is defined as the progress matrix of the probability transition matrix
b= (P ij )nxn'

Step 3: Simulate the progress degree pd(s)

The progress degree is used to show how much the water quality changed from i level to j level in
the time of monitoring and it can be simulated using an equation as follows:

pd(s) = Y sij =Y (i= i jlpij, (i,j € E) @
i,] i,j

where pd(s) is the value which shows how much the water quality changed from i level to j level, s;; is
the weight which can figure out the extent the water quality deteriorated or improved and p;; is the
transition probability of level i transferred from level j.

The dynamic evaluation of TSS concentration in the reservoir area is based on pd(s). The pd(s)
can enable reflecting on the water quality by AL which is the number of levels changed by TSS.
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At the same time, AL is related to TSS, which can intuitively reflect the transfer process of TSS
levels. The corresponding relationship among pd(s), AL and the transfer process is shown in Table 3.
When pd(s) is less than zero, it indicates that the concentration of TSS is increased and water quality is
deteriorated; when pd(s) is greater than zero, it indicates that the concentration of TSS in the reservoir
area is reduced and the water quality is improved. Besides, different degrees of progress correspond to
different concentrations of TSS. If —1 < pd(s) < 1, the level of TSS has not changed; if 1 < pd(s) < 4,
the level of TSS is increased by one level; if 4 < pd(s) <9, the level of TSS is increased by two levels;
and if 9 < pd(s) < 16, the level of TSS is increased by three levels. At the same time, the greater the
absolute value of pd(s), the more obvious the difference in TSS concentration, and the greater the
degree of improvement or deterioration of the water quality.

Although the progress degree pd(S) depicts the pattern and trend of TSS dynamic changes within
one time period, there is no direct relationship to tie the average TSS concentration to the progress
degree. For this reason and the convenient comparison of the results, two kinds of TSS concentrations
were input to a Markov model to evaluate the dynamic changes in water quality. Among the two kinds
of TSS concentrations, one is collected from every pixel in the study area and called pixel-based TSS,
and the other is the annual averaged TSS by corresponding to all pixels in this region and called the
region-averaged TSS. The evaluation results are composed of the series of TSS grids, meaning that
every grid mainly considers the differences in the spatial distribution of the TSS concentration, so that
the results of this evaluation are representative throughout the research area.

2.3.3. Accuracy Assessment of TSS Retrieval Model

To further analyze the performances of two kinds of inversion models (band ratio and three-band
models) and validate the inversion accuracy, 34 samples were randomly selected from the dataset
of 49 samples for the calibration and the remaining 15 samples were used for the validation.
Three indicators are used to comprehensively evaluate the pros and cons of the model, including the
determination coefficient (R2), the root mean square error (RMSE) and the mean relative error (MRE),

as in Equations (8) and (9):
1y ,
RMSE = | =3 (vi~¥;)* ®)
i=1

n - '
MRE = lz —yl yl
il Y

where n represents the number of samples, and y; and y’; are the measured values and the model
estimates of the TSS concentration, respectively.

x 100% )




Sensors 2020, 20, 6911

9 0f 29

Table 3. The relationship between the progress degree (pd(S)) and the TSS level transfer progress is expressed by using the variation in the TSS level (AL). Among

them, pd(S) is the degree of progress calculated by the Markov model, which quantitatively describes the degree of change in the conversion between any two TSS

concentration levels to indirectly reflect the water quality status of the water body; AL is the difference in the number of changes in the two TSS levels during the
change in the TSS level status. Additionally, the division between TSS concentration levels is based on Chinese standards, mainly including 4 TSS levels, followed by I:

0 < TSS < 20 (mg/L), II: 20 < TSS < 30 (mg/L), II: 30 < TSS < 50 (mg/L) and IV: TSS > 50 (mg/L).

Progress Degree pd(S) A Variation in TSS Level AL TSS Level Transfer Process Annotation
e _ TSS level has been reduced by 3 levels (from I to IV),
pd(s) € (-16,-9] 3 =V water quality has deteriorated
TSS level has been reduced by 2 levels (from II to IV or I
pd(s) € (=9, ~4] 2 =1V, -1 to III), water quality has deteriorated
4 B TSS level has been reduced by 1 level (from I to I or II to
pd(s) € (=4,-1] 1 1L =1L =1V I or III to IV), water quality has deteriorated
pd(s) € (-1,1) 0 No change TSS level has not changed, water quality remains stable
TSS level has been increased by 1 level (from IV to III or
pd(s) € [1,4) 1 V=L T -1 I to IT or II to I), water quality has improved
TSS level has been increased by 2 levels (from IV to II or
pd(s) € [4,9) 2 V-1 -1 III to I), water quality has improved
pd(s) € [9,16) 3 VoI TSS level has been increased by 3 levels (from IV to I),

water quality has improved
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3. Results
3.1. TSS Model

3.1.1. TSS Model Calibration and Validation

As shown in Table 1, the ranges of the TSS data in the Poyang Lake and Hedi Reservoir datasets
were similar, whereas TSS and their mean value in Poyang Lake datasets displayed a higher mean value.
Therefore, considering the statistical characteristics of the TSS datasets and the wide applicability of
the TSS model, this study used all the datasets from different regions to calibrate and validate the TSS
remote sensing estimation model. The aggregated data (a total of 49 pairs of valid data) were divided
into two datasets, among which 34 pairs (approximately 70% of the total number of samples) were
used to calibrate the TSS retrieval model and the rest of the dataset (15 samples, approximately 30% of
the total number of samples) contained the validation data.

According to the method in Section 2.3.1, the empirical band ratio and three-band retrieval models
with the highest coefficient of determination were obtained through regression analysis among different
band combination forms that estimate the TSS concentration. The band ratio and three-band retrieval
models are as follows:

TSS = 172.191 X In?[Rys(b3) / Rys (b4)] — 190.809 In[Ry (b3) / Rys (b4)] + 61.6 (10)

TSS = —16.517 X In[[Rys ' (b4) — Rrs 1 (b3)]Rys (b2)] - 8.363 (11

where Rys(b2), Rys(b3) and Rys(bs) represent the reflectance of OLI data in the blue band, green band
and red band, respectively. The unit of TSS concentration is in mg/L.

Figure 2 shows the different TSS retrieval models based on the best combination of band reflectance,
where (a) is the band ratio model and (b) is the three-band model. At the same time, this study also
compares the measured TSS values with the predicted values by different models and draws a scatter
plot (as shown in Figure 2¢,d).

60 = 60 \.
y=172.191x% — 190.809x ke Y=L D17X=8:303
0 +61.600 : \ R?=0.816
R?=0.849 N
=40 40 JN=34
3 5 e 3
£y L -
20 . 20t . .
L] o
® e by’ ° s® ©
10 o .o\:'_g._, 10} °e »
LR o
0.0 01 02 03 04 05 06 40 35 30 25 20 5 -0
Ln(Rs(b3)/Rrs(ba)) Ln((R5}(ba) = R (b3))Rs(b2))
(a) “ (b)
& 1:1line, -~ v 1:1 line-~"
3000 RMSE=6.391mg/L F 5.0 RMSE =6.243mg/L g
i v v
S50 MRE=19.626% o W §Sﬂ MRE =18.027% #
w - N
7] o~ w
=400 N=15 > ';4n. N=15
E v v S .
S 30l y
E 30 < Y E 30 v v
§ 20 N 220 AN
S100 v = 10 /,,w",
030 30 40 50 6 7 0 i 20 30 40 s 6 70

Measured TSS (mg/L) Measured TSS (mg/L)

(c) (d)

Figure 2. The calibration and validation of the TSS remote sensing estimation model between simulated
OLI-based R;s and in situ measurement data are shown in the figure, where (a) shows the model
calibrated by the band ratio algorithm, and (b) shows the model of the three-band algorithm. Plots of
measured vs. model-estimated TSS in Hedi Reservoir with a 1:1 fit line (red dotted line), where (c) is
the result of validating the band ratio model, and (d) is the validation result of the three-band model.
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For the term of the two retrieval models, we find the best regression relationship between simulated
OLI-derived Ln(Rys(b3)/Rys(bs)) or Ln((Rys~ (bg) — Rys™ (b3))Rys(b2)) and measured TSS data with
a higher coefficient of determination (0.849 in the band ratio model and 0.816 in the three-band
model). The results show that the two models have a better performance, where R? is 0.849 and 0.816,
respectively, indicating that both models can be used to estimate the TSS concentration in this study area.
The RMSE of the three-band model is 6.243 mg/L, which is 2.31% lower than the 6.391 mg/L of the band
ratio model. The MRE of the three-band model (19.626%) is smaller than the band ratio model (18.027%),
and both are less than 20%. Although the determination coefficient of the band ratio model is 4% higher
than that of the three-band model, the validation of the band ratio model is higher than that of the
three-band model. The RMSE of the band ratio model is 0.148 mg/L higher than that of the three-band
model, and the MRE has increased by 8.87%. At the same time, the scatter plots of the TSS estimated
and the actual values of TSS are well distributed around the 1:1 line. Generally speaking, using the
first-order three-band model (as in Equation (11)) for Hedi Reservoir simplified the simulation of the
model calibration and validation (R?> = 0.816, RMSE = 6.243mg /L, MRE = 18.027%) compared to the
second-order band ratio model (as in Equation (10), R? = 0.849, RMSE = 6.291mg/L, MRE = 19.626%)
with similar performance.

3.1.2. Comparison and Verification of TSS Models

Several empirical and semi-analytical algorithms have been proposed to estimate TSS concentration,
from clear open sea waters and slightly turbid coastal waters to highly turbid inland waters. However,
the performance of different models cannot be directly compared because of the differences in band
positions and bandwidth designs between Landsat and other sensors, such as MODIS and MERIS.
Taking these factors into account, Table 4 lists representative TSS retrieval algorithms of the same type
of sensor to facilitate the comparison and verification of the performance and accuracy of the model.
Here, we were able to use the simulated R,s and field measurement data from the aggregated data in
Table 1 to validate these models, in which the calibration dataset and the verification dataset were
used to recalibrate the model parameters and validate the accuracy of all chosen models, respectively.
The model algorithm and verification results are shown in Table 4.

The validation results shown in Table 4 indicate that the average relative errors between the
estimated and measured values of these models were 47.28%, 31.28%, 27.36%, 63.54%, and 34.16%.
The accuracies of those models were low and could not meet the requirement of accuracy for TSS
estimation. Contrarily, the proposed model calibrated in this study (whether it is a band ratio
model or a three-band model) has the highest accuracy. The RMSEs and MREs of all validation data
for the band ratio model are 6.39 mg/L and 19.62%, and 6.24 mg/L and 18.02% for the three-band
model. The two models calibrated in this paper have the best validation accuracy among all models.
Besides, the determination coefficients in the band ratio model and three-band model are 0.84 and
0.81, respectively, thus these models can still explain the TSS concentration variation more than 80%.
In summary, compared to the second-order band ratio model, the first-order three-band model may
better suit estimating the TSS concentration in Hedi Reservoir.
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Table 4. Review of previous TSS retrieval models and the comparison of the validation accuracy of several TSS retrieval models.

Validation
From Study Area Data Model
N RMSE (mg/IMRE (%)

Santiago Yepez et al. (2018) Orinoco River OLI Bands 5 TSS = 1.35512b5 — 2.9385 15 10.79 47.28

Wang et al. (2009) Yangtze River ETM Bands 4 TSS = 3.18236In(by) — 1.4006 —

Christopher Wackerman _2'903017,2_1'52
etal. (2017) Mekong Delta OLI Bands 2,4 TSS = e by 15 15.94 31.28
Muhammad Fauzi Wadaslintang oy 1 5,1453.4 TSS = 255.78% —166.89 15 8.78 27.36
et al. (2016) Reservoir bs
Wang et al. (2017) Pearl River OLIBands45  %0s) — 035751082 (TSS) + 1113510g(TSS) + 07162 13 20.57 63.54
estuary log(b )
_ 1_1y2
Hou et al. (2018) JiaozhouBay ~ © 1M Bands TSS = 9866.2(b4 (3, 3, )] —
234 3878.6 X by( 1 — &) +407.94
s 2 3
Zhang et al. (2015) Xin"anjiang OLI Bands TSS = —191.02b5 + 36.863b5 + 172.66bg + 457 15 12.85 3416
Reservoir 2,3,8
This Band ratio model OLI Bands 34 TSS = 172.191In? (b3 /by) — 190.809 In(b3 /by) + 61.6 15 6.39 19.62
Hedi Reservoir OLI Bands 1 1

study  Three-band model TSS = —-16.517 x In[[(bs) ™! = (b3)"!]by] — 8.363 15 6.24 18.02

2,34
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3.1.3. Accuracy Assessment Based on Synchronous Remote Sensing Images

Besides, we also used 19 in situ data to validate the three-band model on the synchronized Landsat
OLIimagery. The validation result shows that the RMSE and MRE between 19 field TSS concentrations
are 3.55 mg/L and 27.55%, respectively. Besides, all the sample points can be evenly distributed around
the 1:1 line and the error is within 30%. Figure 3 shows the retrieval and validation results of the TSS
concentration in Hedi Reservoir on 16 October 2015, where (a) depicts the spatiotemporal distribution
pattern of the TSS concentration in Hedi Reservoir with a large variation ranging from 0.67 to 94.98
mg/L and (b) shows the validation results between in situ measured TSS and OLI-retrieved TSS.

110°12'0"E  110°15'0"E  110°18'0"E  110°21I'0"E  110°24'0"E

N

22°0'0"N
22°0'0°

(b) 1:1 line -~
z 50 .
e £ - RMSE = 3.558mg/L Y
o “ = /,’
5 5 240 MRE=27.550%
z z 3 N=19 v .~
; S =30 e
o b4 -] e
a a 4 #?

)

Z £ % v ",{’/
g 2 = vy
e Z 310 wew
Z Z r//
2 2 ( 10 20 30 40 50
b = Measured TSS (mg/L)

21°42'0"N
21°42'0"N

110°12'0"E  110°15'0"E  110°18'0"E  110°21'0"E  110°24'0"E
0.673 [JESs@me)] 94.98

Figure 3. Estimated TSS concentrations based on the three-band model from Landsat OLI imagery in

Hedi Reservoir on 16 October 2015, where the different color lines stand for towns over the reservoir
basin (a), and comparison between the in situ measured and OLI imagery-retrieved TSS concentrations
(b). The color scale is the legend of the TSS concentrations, in mg/L.

3.2. Spatiotemporal Characteristics of TSS Concentration

3.2.1. Analysis of Optical Characteristics of the Water Body in Hedi Reservoir

The maximum spectral reflectances measured in the field are all less than 0.1 (Figure 4). The spectral
curve of the water body of Hedi Reservoir shows a significant four-peak trend different from coastal
and estuarine waters [18]. The spectral curve corresponding to the change in the concentration of TSS
and other watercolor components also shows different changes at each peak. In the range of 560-590
nm, the first strong reflection peak appeared due to the weak light absorption and cell scattering of
chlorophyll in phytoplankton [48]. The reflectance corresponding to the peak area gradually increases
as the concentration of TSS increases. At the same time, since cyanobacteria are the absolute dominant
species in the water body of Hedi Reservoir [30,49,50], the cyanobacteria have an absorption peak near
620 nm, therefore reflectance appears as an absorption valley or shoulder-shaped near 630 nm [48,51,52].
Similarly, a reflection valley appears near 675 nm due to the strong absorption of algae chlorophyll
in the red light band [51]. At the same time, a clear reflection peak was generated between the two
reflection valleys (near 620 and 675 nm), and the peak was located near 650 nm, which is one of
the important optical signals to characterize whether the water body contains phycocyanin [26,53].
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Besides, the reflectance of the water body corresponding to this peak will increase with the increase in
the TSS concentration, and its position will also move along the direction of the longwave, which will
appear as a “red shift” phenomenon [48,54], which will result in a wide range of the peak wavelength
coverage. The third reflection peak caused by the Raman effect appears around 700 nm [55], which is
the most prominent spectral feature of algae-containing water and is considered to be an important
basis for determining whether the water contains algae chlorophyll. Finally, the reflection peak around
810 nm is an important spectral feature of the presence of suspended inorganic matter in water, and it
can be used to distinguish lower and higher TSS concentrations. The water body of Hedi Reservoir has
mainly suspended particles, showing strong backscattering. With the increase in the concentration
of TSS, the characteristic of the above four bands are more prominent, resulting in higher reflectance
of reservoir water. However, in the near-infrared region, the backscattering coefficient of pure water
gradually decreases with the increasing wavelength [56,57]. On the other hand, the strong absorption
of water in the near-infrared region [56] leads to a generally low reflectance of water.
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Figure 4. A number of 35 measured spectra of typical water collected by ASD in the 2015 cruise over

Hedi Reservoir, where the different color lines represent the different spectra of 35 water samples.

3.2.2. The Temporal and Spatial Patterns of TSS Distribution in Hedi Reservoir

The spatial and temporal distribution of the concentration of TSS in the reservoir area was studied
by applying the three-band model to satellite imagery and plotting the temporal and spatial distribution
of TSS in Hedi Reservoir. Based on the results of TSS inversion in the long-term sequence of the
reservoir area (2014-2018), the average concentration of TSS and spatial pattern distribution in the
reservoir area were analyzed and compared (Figure 5).

Figure 5a reflects the distribution of the average concentration of TSS in the reservoir area during
the five years, which is “High in the upper reaches of the Hedi Reservoir and low in the downstream”,
and the upstream concentration of TSS reaches 2.5 times in the downstream. From 2014 to 2018,
the concentration of TSS in the reservoir area was between 7.92 and 60.67 mg/L, with an average of
16.06 mg/L. The average concentration of TSS in the reservoir area of Shijiao Town was 31.54 mg/L,
and the concentration above 40 mg/L was farthest away at 2.1 km toward the south of Shijiao Town.
As shown in Figure 5b, the quality of water in the reservoir area was stable in 2018, and its average
concentration of TSS has remained at 14-20 mg/L. The concentration of TSS in the Hechun Town area
is consistent with the changing trend of the whole reservoir area. On the contrary, the concentration of
TSS in Shijiao Town changed significantly from 2014 to 2018 and reached a maximum of 40.46 mg/L in
2015. Until 2018, the concentrations returned to the normal level of the reservoir area (13.84 mg/L).
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The water quality in the study area was mainly influenced by the water in the Shijiao area where the
TSS were the highest.

110°12'0"E  110°15'0"E  110°18'0"E  110°21'0"E  110°24'0"E

z z
S s
P i
a a
. ) (b)
1= > =
< IS — 4
& P & 3 —e— Shijiao
s b~ E 40 —— Hechun
] —a— Xin'an
z z £ 35t -
s = % —o— Reservoir|
£ g g3y
(o} .—
“ £ 25t
Z Z E 20 +
s s 3
? g £
3 b 8 15t
-— —_— o
I N ﬂo.)o
20t
g
z S

21°45'0"N
21°45'0"N

2014 2015 2016 2017 2018
Years

21°42'0"N
21°42'0"N

110°12'0"E  110°15'0"E 110°18'0"E  110°21'0"E  110°24'0"E

(mg/L)

20 30 40 50

Figure 5. The spatial distribution of TSS concentration based on OLI imagery in Hedi Reservoir,
where different colored lines represent different boundaries of towns: (a) mapping of the averaged TSS
concentration in Hedi Reservoir from 2014 to 2018, and (b) the comparison of the annual average TSS
concentration in different areas within the reservoir. The color scale is the legend of the average TSS
concentrations, in mg/L. The location of the red star in the picture is the government of Shijiao Town.

To further reveal the temporal and spatial variation in the water quality in Shijiao Town, the average
TSS gradient map in the region was analyzed at intervals of 20, 30, 50 and 80 mg/L (Figure 6). Overall,
the average concentration of TSS in Shijiao Town was 31.54 mg/L between 2014 and 2018. In the
first two years, the concentration of TSS increased and gradually spread downstream. The area of
concentrations ranging from 50 to 80 mg/L was increased by 66.42%, accounting for 31.84% of the
reservoir area of the region. On the contrary, in the last two years, the average concentration of TSS in
Shijiao Town decreased to 22.41 mg/L, and the areas of 30-50 and 50-80 mg/L decreased by 84.48%
and 96.88%, respectively. Besides, the area of the 0-20 mg/L range increased from 26.56% to 79.32%,
and each gradient concentration distribution changed significantly. In the five years, the annual
average concentration of TSS in the water body of Shijiao Town reached a maximum of 40.46 mg/L in
2015, and it reached the lowest value in 2018 and fell to 13.84 mg/L, which decreased by 65.79% and
reached the first-level water quality standard. In fact, since September 2017, the local government has
fully implemented a strong work plan for the river chief system, reflecting the good effectiveness of
national policy implementation.
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Figure 6. Percent distribution of annual average concentrations of TSS in Shijiao Town from 2014 to
2018, including levels with thresholds of 20, 30, 50 and 80 mg/L.

3.3. Analysis on Driving Factors of TSS Change

3.3.1. Changes Characteristic of the Concentration of TSS in Flood Season and Dry Season

In addition to the overall analysis of the concentration of TSS in the reservoir area for the five years,
the temporal and spatial variation characteristics of TSS in the reservoir area were analyzed by the dry
season and flood period, and we produced spatial distribution maps in different seasons (Figure 7).
It can also be observed from Figure 5b that water quality in the Hechun Town area is good during the
five years, and the averaged concentration of TSS is stable at about 13.16 mg/L. Therefore, the Shijiao
Town area was taken as the key research object and analyzed in depth. Comparing the changes in the
concentration of TSS in Shijiao Town in different seasons (Figure 8), in general, the concentration of TSS
in the dry season with an average of 32.86 mg/L was higher than that in the flood period (23.45 mg/L).
Especially in 2015, there was the largest difference of 17.8 mg/L in the average TSS concentration for
dry and flood seasons. Within the five years, the differences in averaged TSS between dry and flood
seasons were 9.52 mg/L. Despite some increase in the dry season before 2015, the TSS concentration
decreased by 24.58 m/L, from 42.86 in 2015 to 18.28 mg/L in 2018. On the contrary, during the flood
period, the TSS concentration maintains about 25 mg/L in the three former years and then decreases to
16.45 mg/L in 2018.
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Figure 7. The spatial distribution map for the estimated concentration of TSS on an annual average in
dry and flood seasons of Hedi Reservoir from 2014 to 2018 is mapped as shown in the figure, among
which (a,c,e,g,i) are in the dry season within 5 years, and the rest (b,d,f,h,j) fall into the flood season.
The color scale is the legend of the average TSS concentrations, in mg/L.
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Figure 8. Comparison of annual average TSS concentrations in the reservoir area of Shijiao Township
from 2014 to 2018 in different seasons.

3.3.2. Effect of Precipitation on the Concentration of TSS

Normally, precipitation may generate some effects on water quality, where especially heavy rain
and the surface runoff can flow into the lake or reservoir and produce a turbid phenomenon in the
water body, even posing a threat to the local water environment.

In the five years, the TSS concentration changes are smaller in the whole reservoir area. As we can
see from the results shown in Figure 5b, the concentrations of TSS in Hechun Town and Xin’an Town
near the dam were below 20 mg/L (13.16 and 17.64 mg/L, respectively). However, the temporal and
spatial distribution of upstream Shijiao Town changed significantly and the average concentration of
TSS was as high as 47.67 mg/L. Besides, because Shijiao Town is located at the junction of Guangdong
and Guangxi Provinces, it has accepted the pollution from upstream mining and frequent human
economic activities, which seriously impacts the water quality of the area. Therefore, taking this
typical area as an example, combined with precipitation and referring to the level of precipitation
(GB/T 28592-2012, published by Standardization Administration of China), we analyzed the feature
of TSS change. In practice, we obtained the accumulated rainfall data of two weeks before the
date of satellite imaging and used the average value as the daily precipitation. Taking the acquired
multi-source satellite imagery of the five years as a time series, the daily precipitation and the trend
of the corresponding concentration of averaged TSS in the region are plotted (Figure 9). Obviously,
during the dry season, the daily precipitation is negatively correlated with the change in the TSS
concentration within the reservoir area of Shijiao Town. The concentration of TSS in this area decreases
with the increase in daily precipitation. It is not difficult to find that, in Figure 9, the rainfall decreased
from 17.90 on 27 September 2014 to 3.87 mm 13 October 2014, but the TSS concentration increased
from 27.98 to 36.97 mg/L from strong mankind activity for same period. However, in the flood period,
the daily precipitation change is consistent with the trend of the TSS concentration, which is positively
correlated. From Figure 9, the rainfall increased from 7.17 on 12 July 2015 to 28.31 mm on 14 September
2015, while the TSS concentration increased from 17.17 to 33.25 mg/L. In fact, suspended matter in
water shows a slow settling process [58]. Due to the influence of different rainfall intensity, the settling
process of TSS will change, and the TSS concentration will produce different variations. When the
rainfall intensity is small, especially in the dry season, the concentration of TSS in water from mankind
activity of upstream is greater than the resuspension rate caused by rainfall, so the TSS concentration is
negatively correlated with rainfall during the dry season. On the contrary, the rainfall intensity in the
flood season is greater, and the settling rate of TSS in water is less than the resuspension rate caused by
rainfall, so the TSS concentration increases with the rainfall intensity.



Sensors 2020, 20, 6911 20 of 29

60 40
— Average concentration of TSS in Shijiao Town —0—Daily precipitation

50

B
(=}

[553
(=]

Average concentration of TSS
in Shijiao Town(mg/L)
g
Daily precipitation (mm)

Figure 9. Comparison of time series variation of TSS concentration and daily precipitation in Shijiao
Town, where the average TSS concentration is signed by orange triangles and the daily precipitation is
signed by blue dots.

3.3.3. The Influence of Human Activities on TSS Concentration

On the whole, due to the Shijiao Town being located in the middle reaches of the Jiuzhoujiang
River and upstream of Hedi Reservoir, it is an important import source of water pollution in Hedi
Reservoir from the upstream of the watershed. The water the Shijiao area generates has severe
impacts on the water quality of the whole reservoir and the concentration of TSS there is the highest
compared with other areas in Hedi Reservoir. According to the consequences of this study, there are
two reasons to exemplify this phenomenon. On the one hand, Shijiao Town is located across the
boundary of Guangdong and Guangxi Provinces and is affected by the water quality of the upstream
Jiuzhoujiang River. On the other hand, field investigations and related research have shown that
illegal sand mining activities in the region are frequent and the concentration of TSS is subject to the
effect of large suspension. In 2016, the concentration of TSS in Xin’an Town began to increase, and
the concentration of TSS reached 31.84 mg/L and then decreased to a normal level in 2018. After a
historical view of the Google Earth image and field investigation (shown in Figure 10), it was found that
there were large areas of eucalyptus planting and large-scale illegal sand mining activities in the area.
Besides, eucalyptus has great economic benefits, and people are also exerting a subtle influence on
the surrounding water environment while pursuing the economic benefits of eucalyptus. Particularly,
eucalyptus deforestation and fertilization periodically have a serious impact on water quality [59],
which is also an important reason for the sudden increase in the TSS concentration in Xin’an Town
in 2016.

Consequently, to further reveal how anthropogenic activities, especially the illegal sand mining
activities, affect the concentration of TSS, this research also compared the differences in TSS in different
seasons under such human interruption. The frequent sand mining activities in Shijiao Town make
the concentration of TSS distinctly higher than that during the flood season. The reason is that the
water level in the dry season is lower and affected by the large need for sand in the market, which is
more conducive to the collection of sand for the period. The sand mining activity causes the TSS
of the water in the reservoir area to resuspend, which promotes the increase in the concentration of
TSS, accompanied by the decrease in water transparency. Just as the research in China’s four largest
freshwater lakes also draws similar conclusions, the concentration of TSS becomes high in the dry
season and low in the flood period after sand dredging activities begin [7,37].
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(@)

Figure 10. Historical view of the Google Earth image showing the polluted water environment in Hedi
Reservior caused by different anthropogenic activities: (a) shows the status of large-scale illegal sand
mining activities before the river chief system was implemented, (b) indicates that sand mining activities
are effectively restricted after the execution of the river chief system policy and (c,d) depict the extensive
area of eucalyptus planting with frequent cutting. All the red circled areas in Figures (a,b) indicate
changes in sand mining vessels in the same area of the reservoir before and after implementation of the
river chief system policy; (c,d) reflect the changed progress in eucalyptus planting and cutting.

Despite the fact that human-induced changes severely threaten the local water environment to
bring about the problem of soaring TSS, the natural conditions, especially precipitation and seasons,
also cause identical effects on TSS and they become the most significant factor to reveal the dynamic
changes in TSS. Regularly, there is a significant seasonal variation in the effect of precipitation on
the concentration of TSS. The TSS concentration in the upstream (Shijiao Town) is more affected by
rainfall in the dry season with an average TSS of 33.66 mg/L than in the flood period with an average
of 22.45 mg/L. The reason for this phenomenon can be attributed to the fact that the catchment in
Shijiao is the TSS deposition area produced by the upper river discharge and the surrounding load
runoff. This unavoidable phenomenon, where the TSS concentration before a strong rainstorm in the
dry season is lower than the one in the rainy season, was also found in the study by Chen et al [31].

The changing law of TSS depends on the two aspects of natural conditions and human activities.
There is no doubt that the great changes in water quality in the study are inseparable from the extensive
planting and frequent felling of eucalyptus trees, in addition to the cultivation of fruit trees, which are
very common in western Guangdong and Guangxi. Considering the specific influence factors on water
quality, the TSS in Hedi Reservoir shows obvious differences under different seasons and precipitations.
At the upstream reservoir area in Shijiao Town, the TSS is higher in the dry season from upstream
mankind activity, especially in 2015 with an average TSS of 42.85 mg/L, and presents a negative
correlation with rainfall intensity; on the contrary, the TSS is lower during the flood period, especially
in 2015 with an average of 25.06 mg/L, and the TSS trend is positively correlated with rainfall intensity.
As a typical trans-provincial area of Hedi Reservoir, there is the largest difference in the average TSS
concentration of 17.794 mg/L between the flood and dry seasons in 2015 in Shijiao Town, while the
smallest difference of TSS in 2018 was 1.831 mg/L (Figure 8). The concentration above 40 mg/L was
farthest away at 2.1 km toward the south of Shijiao Town.

At the same time, we also found that, in the dry seasons of 2016 and 2017, the downstream
reservoir area (southeast) near Xin’an Town also experienced deterioration in water quality with an
average TSS of 24.50 mg/L due to the cultivation of orchards. Besides, since the implementation of



Sensors 2020, 20, 6911 22 of 29

the river chief system from September 2017, the water quality has been significantly improved in the
upstream reservoir area (north) of Shijiao Town, where the average TSS concentration in Shijiao has
been reduced from 30.98 in 2017 to 13.84 mg/L in 2018 (Figure 5b). At the same time, the average TSS
concentrations in Hechun Town, Xin’an Town and the entire reservoir all decreased from 16.28, 31.84
and 19.47 in 2017 to 14.35, 13.29 and 14.01 mg/L in 2018, respectively, which indicates the regional
effectiveness of implementing the river chief system of China.

3.4. Markov Evaluation of TSS Dynamic

According to the results of the TSS concentration changes in Hedi Reservoir from 2014 to 2018,
except for the water body in Shijiao Town, the concentration of the TSS in other areas has been relatively
stable at the level of I. Therefore, this study focuses on the Shijiao Town waters in the high-risk area
of TSS as the key monitoring object and quantitatively evaluates and analyzes the dynamic change
process of the TSS in this area according to the method in Section 2.3.3. The results of the progress
degree pd(S) for two kinds of TSS in the reservoir area from 2014 to 2018 are as follows in Table 5.
The whole results that reflect the progress degree of TSS in Shijiao from 2014 to 2018 can be seen in
Figure 11.

Table 5. Taking Shijiao Town of Hedi Reservoir as the research area, Markov evaluation was performed
on the water quality using the pixel-based TSS and regional-averaged TSS data.

Progress Degree pd(S)
Years
Pixel-Based TSS Region-Averaged TSS

2014 pd (52014) =2.493 pd' (52014) =0
2015 pd (52015) =0.194 pd/ (52015) = -3.333
2016 pd (S2016) = 0.819 pd’ (Sa016) = —2.667
2017 pd (52017) = 2.042 pd' (32017) = 0.899
2018 pd (52018) = 10.232 pd’ (52018) = 0.667

Figure 11 illustrates changes in the TSS progress degree by using the Markov evaluation model and
applying two kinds of TSS for that period (from 2014 to 2018). Obviously, in 2018, the progress degree
of the pixel-based TSS recorded the highest value, at 10.232, followed by 2014, 2017, 2016 and 2015,
with 2.493, 2.042, 0.819 and 0.194, respectively. On the whole, from 2014 to 2018, the progress degree
produced by the pixel-based TSS is greater than 0, indicating that the water quality has been improved,
and it includes all possible states in the process of water quality improvement. This maximum progress
value is 10.23 calculated from the pixel-based TSS of each grid in Shijiao Town, which indicates that the
concentration level of TSS has spanned three levels. Similarly, the progress degree produced from
the region-averaged TSS in Shijiao Town showed a minimum value (-3.333) in 2015 and a maximum
value (0.899) in 2017, followed by 2016 (—2.667), 2014 (0) and 2018 (0.667). However, except for 2014
and 2018, most results of the average TSS are below 0, which represents the deterioration of the water
quality. The result of the regional average TSS progress degree recorded at —3.333 in 2015 stated that
the water quality had deteriorated and the TSS concentration level had dropped by one level.
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Figure 11. The evaluation results of the progress degree of TSS in the Shijiao Town area of Hedi
Reservoir from 2014 to 2018. The blue part is based on the region-averaged TSS concentration in the
Shijiao Town area, and the orange part is based on the pixel-based TSS concentration in the Shijiao
Town area.

According to the evaluation results shown in Figure 11, it can be seen that whether or not the
progress degree from the pixel-based TSS or the region-averaged TSS in Shijiao Town was simulated,
the above two types of data reach the lowest in 2015. At the same time, the results obtained from
the two different types of TSS data have roughly the same trend shown by the red and blue lines
in Figure 11, which confirms the validity of the Markov assessment method proposed in this study.
The progress degree of the pixel-based TSS in 2014 was higher than in 2017 (2.493 vs. 2.042). On the
contrary, different from the pixel-based TSS, the progress degree of region-averaged TSS in 2014 was
less than in 2017 (0 vs. 0.899). The difference in the progress degree of the pixel-based TSS (2.493
in 2014, 2.042 in 2017) and the regional average TSS (0 in 2014, 0.899 in 2017) is mainly due to the
spatial distribution variance. Whether the progress of the pixel-based TSS or the regional average TSS
between 2014 and 2017, the number of levels changed by TSS still stays the same which is 1 and 0,
respectively, according to Table 3.

To intuitively reflect the detailed change process of the large-scale dynamic in water quality,
this study combines the remote sensing method and Markov model into mapping the spatial-temporal
distribution of water quality changes in Hedi Reservoir from 2014 to 2018 (in Figure 11). Specifically,
the progress degree calculated by the method in Section 2.3.3 is used to represent the change in
water quality. It can be seen that the progress degree of water quality in the upstream reservoir is
relatively low, which was —8.236 in 2014, —7.851 in 2015 and —8.632 in 2016. However, since 2017,
lower progress degree levels of the downstream reservoir near the shore and in some bays have been
found, which were —10.346 in 2017 and —3.448 in 2018. According to the statistics of the progress of the
reservoir area from 2014 to 2018, it was found that the parts with the progress degree at more than
1 accounted for 46.2%, 22.17%, 22.33%, 59.28% and 49.45% and show an increasing trend. The part
where the progress degree is at more than 1 indicates that the TSS concentration has decreased and the
corresponding AL can be ensured according to the color scales in Figure 12. In contrast, the progress
degree which is less than —1 means that the TSS concentration has increased, and the corresponding
proportions account for 10.08%, 3.04%, 9.28%, 11.43% and 0.63%. In particular, the proportion of water
quality deterioration decreased by 94%, from 11.43% in 2017 to 0.63% in 2018. It can be seen from
Figure 12f that the progress within these five years (from 2014 to 2018) is between 1.219 and 10.771,
which means that the TSS concentration has not increased and the water quality has improved during
this period.
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Figure 12. The spatial distribution map of water quality variation calculated by the progress degree
combining the Markov model and the remote sensing method from 2014 to 2018 in Hedi Reservoir,
where (a—e) show the annual spatial variation distribution based on the progress degree and (f) presents
the spatial variation within the whole five years. The color scale marked as AL indicates the difference
in the number of changes in the two TSS levels during the change in the TSS level status. It means that
the TSS level has increased and the water quality has improved when AL is greater than 0, otherwise
the TSS level has decreased and the water quality has deteriorated. Especially, AL is 0, which means
that the TSS level has not changed and the water quality remains stable.
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4. Discussion

Traditional water quality cross-section monitoring is limited to detecting in small-scale with high
time consumption and high cost. Considering the advantage of Markov and remote sensing, a novel
water quality evaluation method is proposed, which breaks through the traditional water quality
cross-section point sampling and detecting. This Markov-based water quality remote sensing evaluation
method can directly associate the TSS concentration level with the degree of progress to quantify the
dynamic change process of the TSS in multiple time series, which has great advantages especially in
evaluating the implementation of the river chief system compared with the traditional water quality
evaluation method. It can potentially be implemented in other developing countries in the future.
The study reveals the dynamic continuous trend of TSS in the five years. Especially in 2018, the degree
of progress is 10.232 with the relatively largest improvement. Additionally, the progress degree
produced from the Markov model can be related directly to the change in TSS levels, which further
indicates the meanings or effects of water quality status or change for corresponding management
measures taken. At the same time, this method constructs a continuous, integrated and dynamic
spatial-temporal pattern in the analysis of TSS, and driving factors were studied to effectively find the
problems of point and non-point source pollution in the reservoir area. This is of great significance
for the real-time monitoring, future prediction and management of the aquatic environment in the
reservoir or other areas. The method presented will have great potential for dynamic analysis of TSS in
big data scenarios of remote sensing images.

The spectral curve of the water body of Hedi Reservoir shows a typical four-peak pattern
that probably results in the unsuitability of the previous band ratio model in coastal and inland
waters [10,18,24,29,43]. Part of the reason can be attributed to the abundant phytoplankton and the
majority of cyanobacteria in the water body of Hedi Reservoir [49,50]. A semi-empirical three-band
TSS retrieval model (Equation (11)) was developed under the consideration of the special four-peak
optical characteristics of water bodies (R* = 0.816, N = 34). The three-band model has better validation
accuracies (RMSE = 6.24mg/L, MRE = 18.02%, N = 15), which can be compared to the accuracies of
previous Landsat-based models in Table 4 (RMSE : 8.78-20.57mg/L, MRE : 27.36%—63.54%, [18,22]).
It has also obtained reasonable validation accuracy (RMSE = 3.55mg/L, MRE = 27.55%,N = 19)
through 19 in situ data and synchronized Landsat OLI images. Simultaneously, the TSS retrieval
models in nearby coastal waters in South China commonly studied by the previous researchers do not
apply to inland water bodies, as the phytoplankton types in estuaries and coasts are different from
reservoirs such as diatoms or cyanobacteria. Additionally, the TSS three-band model proposed in this
study also includes the 20 pairs of field data in Poyang Lake, which increases the applicability of the
model. To a large extent, the good performance of the three-band model developed here can provide a
scientific reference for water quality remote sensing in South China.

There are some uncertainties for this study in the inversion of water quality parameters, which are
mainly reflected in the following aspects. On the one hand, the accuracy of atmospheric correction
for remote sensing imageries plays a decisive role in the reliable retrieval of optical parameters of
inland waters. There are differences in the spectral reflectance resulting from the different parameter
settings in the same atmospheric correction model or from using different atmospheric correction
models, which may affect the accuracy of the retrieval optical parameters of inland water bodies.
On the other hand, the time difference in the in situ measurement data as another important factor
might introduce some uncertainty, which might interfere with the application and performance of the
retrieval model. Most importantly, there might be differences over the component of the water body
(including bio-properties) influenced by natural factors in different seasons. In summary, the above
uncertainties are worthy of continued attention in future research.

Since the implementation of the river and lake chief systems and other ecological civilization
policies by the local government from September 2017, the sand mining activities distributed in Shijiao
Town (bordering Guangxi) have been restricted and it is not difficult to find that the number of sand
mining vessels has been significantly reduced from Google images (Figure 10a,b). Most importantly,
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it revealed that the water quality of Hedi Reservoir has been significantly improved. The average
concentration of TSS was reduced from 32.65 in 2014 to 14.02 mg/L in 2018. The decrease in TSS reflects
the implementation effect of the river and lake chief system by the Chinese government. However,
the water environment of Hedi Reservoir is still subject to potentially serious threats from upstream
turbid runoff from Guangxi Province. In addition to TSS, we should continue to pay attention to
the high-frequency remote sensing analysis of more water environment parameters in the future
(such as total nitrogen, total phosphorus and ammonia nitrogen) in drinking water sources such as
Hedi Reservoir.

5. Conclusions

The water quality assessment method combining Markov and remote sensing realizes the
innovation of large-scale spatial monitoring across administrative boundaries instead of traditional
cross-sectional monitoring. The degree of water quality improvement simulated by the Markov model
can intuitively reflect how much water quality has improved or deteriorated, and can understand how
the TSS level has shifted spatially. It also reflects the changes in water quality by the trend analysis of
the Markov model since the local implementation of the river chief system of China in 2016.

Taking Hedi Reservoir in the trans-provincial basin of South China as an example, a specific
three-band TSS model for the inland reservoir in Guangdong Province of South China was developed
(R? = 0.81, N = 34,p value < 0.01) based on in situ spectra and Landsat OLI imagery, which is the
first such study of an inland reservoir available in Guangdong or South China, where there are as many
as 6562 reservoirs in Guangdong. The TSS retrieval results also show specific heterogeneity, that is,
the spatial distribution characteristics of high upstream and low downstream, where the average
concentration of TSS at 31.54 mg/L in the upstream is 2.5 times that of the downstream at 12.55 mg/L.

Generally, there were strong seasonal differences in the TSS concentration and TSS were susceptible
to rainfall. When the rainfall intensity is small during the dry season, the concentration of TSS in water
from upstream mankind activity is greater than the resuspension rate caused by rainfall, meaning that
the TSS concentration is negatively correlated with rainfall. Meanwhile, in the flood season, since the
rainfall intensity is greater, the settling rate of TSS in water is less than the resuspension rate caused by
rainfall, meaning that the TSS concentration increases with the rainfall intensity. Besides, man-made
interventions such as regular felling of eucalyptus and fruit tree planting also had a certain impact
on TSS.

As for the Markov dynamic evaluation of the TSS concentration, the water quality improvement
effect of the upstream Shijiao Town water area is the most obvious, especially in 2018, the improvement
in the water quality level crossed three levels and the TSS concentration was the lowest, which indicate
the effectiveness of implementing the river chief system of China starting in September of 2017.
The reasons for the TSS concentration decrease are due to the reduction in sediment mining activities
and the improvement in the surrounding ecological environment, which also show that the river chief
system has made great contributions to water quality monitoring and governance.
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