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Abstract: In the gait recognition problem, most studies are devoted to developing gait descriptors
rather than introducing new classification methods. This paper proposes hybrid methods that
combine regularized discriminant analysis (RDA) and swarm intelligence techniques for gait
recognition. The purpose of this study is to develop strategies that will achieve better gait recognition
results than those achieved by classical classification methods. In our approach, particle swarm
optimization (PSO), grey wolf optimization (GWO), and whale optimization algorithm (WOA) are
used. These techniques tune the observation weights and hyperparameters of the RDA method to
minimize the objective function. The experiments conducted on the GPJATK dataset proved the
validity of the proposed concept.

Keywords: gait recognition; biometrics; regularized discriminant analysis; particle swarm
optimization; grey wolf optimization; whale optimization algorithm

1. Introduction

Biometric authentication (also known as biometrics) refers to identifying or verifying individuals
based on their biological or behavioral traits [1]. There are many different biometric traits among which
can be distinguished the face, iris, fingerprint, palm print, voice, signature, or gait. Typically, gait is a
manifestation of an individual’s walking style; hence, its recognition means identifying a person by
his/her way of walking. The major advantages of gait are: noninvasive, can be captured at a distance,
hard to conceal, and non-cooperative. These advantages make it an ideal trait for visual surveillance
systems [2]. However, the recognition performance of existing methods is limited by the influence of a
large number of covariate factors affecting both appearance and dynamics of the gait, e.g., variations
in footwear and clothing, viewpoint variations, changes in the characteristics of the surface on which
movement occurs, various carrying conditions, injuries affecting movement, and so on. These are the
reasons why gait recognition has been extensively studied in recent years.

Gait recognition methods [3] can be categorized as model-free (appearance-based) [2,4–12]
and model-based [13–22]. Most gait recognition studies are based on model-free approaches that
employ the whole motion pattern of the human body. Several techniques were proposed to characterize
this motion pattern, such as the gait energy image (GEI) [2,5,7,10], which is a spatio-temporal gait
representation, GEI region bounded by legs (RBL) [8], human body contours [9], and dense optical
flow field [4]. These methods are strongly based on silhouette extraction and therefore are not resistant
to changing clothes or carrying luggage. It is also worth noting that most of them can only achieve
correct results from a specific point of view, usually side view [4,5,7–9,16]. The recent research on
model-free methods has focused on eliminating these drawbacks [6,10–12]. Model-based methods
infer gait signature directly by modeling the underlying kinematics of human motion. The methods
of this approach initially focused on using only static body parameters for recognition, such as
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stride length, which were updated over time [13,14]. Yam et al. [14] have extended this concept by
analyzing the movement of the legs and the angles between them. In Ref. [15], the authors proposed a
method that uses a motion-based model and elliptic Fourier descriptors to extract the key features of
gait. Deng et al. [18] proposed a method that combines spatio-temporal and kinematic gait features.
The fusion of two different features gives a comprehensive characterization of gait dynamics, which is
less sensitive to walking conditions. In [21], the authors presented a gait recognition method that uses
a 3D model of the human body and particle swarm optimization to obtain gait features. The number
of obtained features was reduced using the multilinear principal component analysis (MPCA).

In the recognition process, various classification techniques are used; most often, they are classical
methods such as k-nearest neighbors (kNN) [2,4,10,14–17,19,23], multilayer perceptron (MLP) [21],
support vector machine [9,16,24] linear discriminant analysis (LDA) [16], and radial basis function
neural networks [18]. The main focus in these papers is on developing descriptors that better describe
gait features, rather than introducing new classification methods with better recognition ability. This is
a traditional approach that is based on a clear separation between the descriptors and classifier model.
On the other hand, in the papers of recent years, the introduction of new classification methods such
as deep learning [11,20,22] or hybrid methods [12], in which the description and classification steps
cannot be easily distinguished, is increasingly visible. In [20], the authors utilized a 3D convolutional
neural network (CNN) and long short-term memory neural networks for training the classification
models. They then used a grey wolf optimizer to tune the fusion parameters of each modality to
boost the recognition performance of the system. Chao et al. [11] proposed a deep learning model
called GaitSet. In this method, the CNN is used to extract frame-level features from each silhouette
independently. Next, an operation called set pooling is used to aggregate frame-level features into
a single set-level feature. In the end, a structure called horizontal pyramid mapping is used to map
the set-level feature into a more discriminative space to obtain the final representation. The proposed
method can extract spatial and temporal information more effectively than other methods regarding
gait as a template or sequence. In turn, in the paper [12], the authors used a hybrid approach and
combine the improved local coupled extreme learning machine and PSO for the classification process.
A Gabor filter was used to extract gait features from the GEI and linear discriminant analysis was used
to dimensionality reduction.

From the literature review, it is seen that most studies considering the traditional approach are
devoted to developing gait descriptors, rather than introducing new classification methods. In this
paper, we propose hybrid methods that combine the RDA and swarm intelligence techniques for gait
recognition. In our approach, the PSO, GWO, and WOA are used to tune the observation weights and
hyperparameters of the RDA model. To the best of our knowledge, the GWO and WOA algorithms
have not been used before for this purpose. In the learning process, the confusion value is used as
an objective function. The proposed methods are tested on a database of 414 gait cycles belonging to
32 different persons [21]. Summarizing, the main contributions of this paper can be stated as:

• proposing a combination of regularized discriminant analysis and particle swarm optimization
for gait recognition,

• proposing a combination of regularized discriminant analysis and grey wolf optimization,
• proposing a combination of regularized discriminant analysis and whale optimization algorithm,
• comparing and improving the results obtained in the paper [21].

The structure of this article is as follows: Section 2 contains the description of the dataset and
methods used in the recognition process. In particular, the structure of the gait recognition system,
building classification models, and swarm intelligence methods are described. The experimental
results are presented in Section 3. The results obtained by eight methods are presented, of which
three were proposed by the authors. Section 4 contains the discussion of the achieved results.
Finally, the conclusions are given in Section 5.
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2. Material and Methods

2.1. Gait Dataset

The publicly available gait dataset (GPJATK) was used in the experiments [21]. The dataset
consists of 166 data sequences (414 gait cycles) representing 32 people (10 women and 22 men).
The sequences are divided into three subsets: 128 sequences (325 gait cycles) in which each
of 32 individuals was dressed in his/her clothes; 24 sequences (58 gait cycles) in which 6 of
32 individuals (person #26–#31) changed clothes; and 14 sequences (31 gait cycles) in which 7 of
the individuals (person #26–#32) had a backpack on his/her back. Each sequence contains video data
(960x540@25fps) recorded using four calibrated and synchronized cameras and data from a markerless
and marker-based motion capture systems. The synchronization between videos and motion capture
data has been realized using Vicon MX Giganet. Our research is based on data obtained by a markerless
motion capture system [25], which uses the annealed PSO algorithm in the motion capture process
and data from four synchronized and calibrated cameras.

2.2. Gait Recognition System

A typical model-based system for gait recognition is presented in Figure 1. Such a system
consists of gait capture, a feature extraction module, and a classifier. The objective of the system is to
determine the identity of a gait sample using a database consisting of gait patterns from a set of known
subjects. In the first step, one or more video-cameras are used to register the user’s image in a scene.
In a preprocessing phase, image processing, i.e., background subtraction, body silhouette extraction,
and edges extraction, is performed. The kinematic model of human motion is used in the next step to
extract gait features that will define a gait signature. In the used gait dataset [21], each gait cycle is
treated as a data sample represented by a third-order tensor with the dimension 32 × 11 × 3. The first
dimension, equal to 32, is the average time of the gait cycle. The motion data was filtered using a
moving average of length nine samples to the original data. The second dimension of the tensor is
equal to the number of bones (excluding pelvis), i.e., 10 plus one element for storing a person height
and distance between ankles. The third dimension relates to three angles, except the 11th vector that
contains a person’s height, distance between ankles, and value of zero to maintain alignment with
the rest of the vectors. Such a gait signature is then reduced using the MPCA algorithm [26]. The last
element of the system is the classifier block that we focus in this article.

Classifier

Gait
database

Feature
extraction

 

 

Identity

Preprocessing

Figure 1. Structure of a gait recognition system.
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2.3. Building Classification Model for Gait Recognition

Building a gait classification model involves two main stages, which include training the model
and testing it. For this purpose, the gait sequence database is divided into three sets: the training
set, validation set, and test set (Figure 2). These three datasets are commonly used in different stages
of the model building. Separating the dataset into these three subsets is used to avoid overfitting of
the model. Initially, the model is fit on the training set, which is a set of observations used to fit the
parameters of the RDA model. It should be noted that, in [21], only two sets were defined: training
and testing. However, in the proposed approach, due to the optimization of the classifier parameters,
an additional validation set is separated from the training data. The validation dataset is used for an
evaluation of the fitted model while training the model’s hyperparameters. After building the model,
the test set is used for testing, that is, for predicting the classifier’s output for data that has never been
used in the training phase. Model training is carried out using one of the hybrid methods, in which
swarm intelligence techniques optimize the observation weights and hyperparameters of the RDA.
This problem is well suited for swarm optimization techniques because it creates a large search space
to be explored. This search space is determined by the number of observation weights, the number
of hyperparameters, and by the fact that all these variables are real values in the specified intervals.
During the optimization, the following objective function, expressed as the confusion value, is used:

objective function (confusion) =
number of samples misclassified

number of all samples
(1)

where the samples are taken from the validation set. This objective function is minimized using one of
the swarm intelligence methods, i.e., particle swarm optimization, grey wolf optimization, or whale
optimization algorithm.

Figure 2. The idea of building the RDA classification model.

After building the RDA classifier, it is used to determine the correct classified ratio (CCR). The CCR
is a ratio of correctly classified samples to the total number of samples in the test subset.
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2.4. Regularized Discriminant Analysis

Linear discriminant analysis was developed by Sir Ronald Fisher in 1936 [27]. The original method
proposed by Fisher was described for a 2-class problem, and it was in 1948 generalized as multi-class
problems by Rao [28]. The LDA is a transformation technique used in statistics and machine learning
to find linear combinations of features that separate classes of objects. The combinations obtained by
this method may be used as:

• dimensionality reduction and feature extraction before classification,
• a linear classifier (considered in this paper).

The LDA consists of statistical properties of data calculated for each class. For a single variable,
these are the mean and the variance of the variable. For multiple variables, these are the means and
the covariance matrix. These statistical properties are estimated from the data and used to formulate
an equation for making predictions. It should be emphasized that the use of the LDA is not associated
with problems when the number of observations is greater than the dimension of each observation.
Problems arise when the opposite is true, which makes the covariance matrix singular and cannot be
inverted. To resolve this problem, instead of using the covariance matrix directly, a regularization of
this matrix is used. This approach is applied to the regularized discriminant analysis method, in which
the regularized covariance matrix Σ̂γ is given by [29]:

Σ̂γ = (1− γ)Σ̂ + γI (2)

where Σ̂ is the covariance matrix, I is the identity matrix, and γ ∈ [0, 1] is the amount of regularization.
The RDA introduces regularization into the covariance matrix estimate, enabling a solution to be
obtained and allowing different influences of variables on the classification model. In addition to the
parameter γ, the RDA model uses the parameter δ that acts as a threshold: if a model coefficient has
the magnitude smaller than δ, the RDA sets this coefficient to zero, and the corresponding predictor
can be eliminated from the model.

The output of the RDA classifier ŷ is calculated so as to minimize the classification cost [30]:

ŷ = arg min
y=1,...,K

K

∑
k=1

P̂(x|k)C(y|k) (3)

where K is the number of classes, P̂(x|k) is the posterior probability of class k for observation x, C(y|k)
is the cost of classifying an observation as y when its true class is k. The RDA used in this paper
constructs weighted classifiers using the following scheme. Suppose M is an N-by-K class membership
matrix such that Mnk = 1 if observation n is from class k, Mnk = 0, otherwise. The estimate of the class
mean for weighted data with positive weights wn is [30]

µ̂k =
∑N

n=1 Mnkwnxn

∑N
n=1 Mnkwn

(4)

The estimate of the covariance matrix is

Σ̂ =
∑N

n=1 ∑K
k=1 Mnkwn(xn − µ̂k)(xn − µ̂k)

T

1−∑K
k=1

W(2)
k

Wk

(5)

where Wk = ∑N
n=1 Mnkwn is the sum of the weights for class k, and W(2)

k = ∑N
n=1 Mnkw2

n is the sum of
squared weights per class.
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2.5. Particle Swarm Optimization

A particle swarm optimization algorithm was developed by Kennedy and Eberhart [31].
This algorithm is based on the social behavior of organisms living in large groups. In the PSO, a group
of agents called particles forms a swarm, where each particle represents a point in a multidimensional
space. The particles explore this space in order to find the optimal solution. Each particle in the swarm
is attracted both to its best position and the best position found by other particles. The best solution is
obtained by minimizing the objective function.

Each particle has its position (x) and velocity (v). The velocity vk of the kth particle is determined
using the following equation [31]:

vk(t + 1) = ωvk(t) + c1r1(pbestk(t)− xk(t)) + c2r2(gbest(t)− xk(t)) (6)

where t is the current iteration number, ω is the inertia weight, r1, r2 are vectors of random numbers in
the range [0,1], c1 is the cognitive coefficient, and c2 is the social coefficient. It is seen that the update
of the velocity is a weighted sum of the previous velocity vk(t), the difference between the current
position and the personal best position (pbest), and the difference between the current position and
the global best position (gbest). The position xk of the kth particle is updated according to the equation

xk(t + 1) = xk(t) + vk(t) (7)

After updating the velocity and the position, the objective function is calculated to determine the
personal and global positions.

2.6. Grey Wolf Optimization

A grey wolf optimizer is another swarm intelligence technique used to solve optimization
problems [32]. The GWO algorithm is inspired by the behavior and hierarchy of grey wolves in
nature, searching for the optimal way to attack their prey. In the hierarchy of grey wolves, the most
dominating is alpha (α), which leads the entire group. The other wolves are beta (β) and delta (δ),
which help to control the rest of the wolves considered as omega (ω). The omega wolves have the
lowest ranking in the hierarchy. The main phases of grey wolf hunting are: (a) tracking, chasing, and
approaching; (b) chasing, encircling, and harassing; (c) attacking.

2.6.1. Encircling Prey

Grey wolves encircle the prey during the hunt, which can be mathematically modeled by the
following equation [32]:

X(t + 1) = Xp(t)−A ·D (8)

where
D = |C · Xp(t)− X(t)| (9)

and X(t) is the current position of a grey wolf at iteration t, Xp(t) is the position of the prey, and “·” is
an element-by-element multiplication. The coefficient vectors A, C are determined as follows:

A = 2a · r1 − a (10)

C = 2r2 (11)

where components of a are linearly decreased from 2 to 0 through iterations and r1, r2 are random
vectors in [0, 1].
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2.6.2. Hunting

In the GWO, we assume that the α, β, and δ are the best solutions for the entire population.
Therefore, the other wolves should update their position according to the positions of the three agents.
The following formula is used to calculate the positions of search agents [32]:

X(t + 1) =
1
3
(X1(t) + X2(t) + X3(t)) (12)

where

X1 = Xα(t)−A1 ·Dα (13)

X2 = Xβ(t)−A2 ·Dβ (14)

X3 = Xδ(t)−A3 ·Dδ (15)

and

Dα = |C1 · Xα − X| (16)

Dβ = |C2 · Xβ − X| (17)

Dδ = |C3 · Xδ − X| (18)

The vectors A1, A2, A3 are obtained using Equation (10), while C1, C2, C3 are obtained using
Equation (11).

2.6.3. Attacking Prey (Exploitation) and Search for Prey (Exploration)

The grey wolves start the attack, once the prey stops moving. To model the process of approaching
the prey, the GWO linearly decrease all the values of a from 2 to 0 according to the equation [32]

a = 2− 2t
Tmax

(19)

where Tmax is the total number of iterations of the algorithm. The change of a affects the coefficient
vector A, which controls the behavior of search agents. If |A| < 1, the wolf will move towards the
prey; on the other hand, if |A| > 1, the wolf will diverge from the prey in order to find new better prey.
In addition, the vector C which contains a random value in the range [0,2] is employed to help the
algorithm to avoid being trapped in the local optima.

2.7. Whale Optimization Algorithm

The whale optimization algorithm is a nature-inspired metaheuristic technique for solving
optimization problems [33]. This algorithm mimics the social behavior of humpback whales realized
in the bubble-net hunting strategy. The WOA is based on three operators to simulate the search for
prey, encircling prey, and bubble-net foraging.

2.7.1. Encircling Prey

Humpback whales encircle pray after recognizing its position. In this phase, the search agents
attempt to change their locations towards the best search agents. This behavior is expressed by the
following formula [33]:

X(t + 1) = X∗(t)−A ·D (20)

where
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D = |C · X∗(t)− X(t)| (21)

and X(t) is the current position vector at iteration t, X∗(t) is the best position obtained so far, “·” is an
element-by-element multiplication. The coefficient A, C are determined from the formulas:

A = 2a · r1 − a (22)

C = 2r2 (23)

where components of a are linearly decreased from 2 to 0 through iterations and r1, r2 are random
vectors in [0, 1].

2.7.2. Bubble-Net Attacking (Exploitation Phase)

In this phase, humpback whales swim around the prey within a helix-shaped path. To model
this behavior, it is assumed that there is a 50% chance to choose between the shrinking encircling or
spiral movements [33]:

X(t + 1) =

{
X∗(t)−A ·D if p < 0.5

D∗ · exp(bk) · cos(2πk) + X∗(t) if p ≥ 0.5
(24)

where D∗ = |X∗(t)− X(t)| is the distance of the ith whale to the prey, b defines the shape of the spiral,
k is a random number in [−1, 1], and p is a random number in [0, 1].

2.7.3. Search for Prey (Exploration Phase)

In this phase, humpback whales search the pray according to the position of each other.
The location of a search agent is calculated according to randomly selected search agent rather than the
best search agent as in the exploitation phase. The mathematical model is determined as follows [33]:

X(t + 1) = Xrand(t)−A ·D (25)

where
D = |C · Xrand(t)− X(t)| (26)

and Xrand is the random position vector chosen from the current population.

2.8. Integration of Swarm Intelligence Techniques with Regularized Discriminant Analysis

The idea of integrating swarm intelligence methods with the RDA classifier is shown in Figure 3.
This figure presents in the form of a block diagram main stages of optimization of the RDA model
using swarm algorithms and the method of determining the objective function. The task of particle
swarm optimization, grey wolf optimization, or whale optimization algorithm is to select the RDA
parameters, which are [30]:

• w1, w2, . . . , wn — the observation weights,
• δ — the linear coefficient threshold,
• γ — the parameter for regularizing the covariance matrix of the predictors,

where n is the number of observations in the training set. For this purpose, the observation weights and
two hyperparameters δ, γ are placed as elements of the agent (candidate) vector, which has the form
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| w1 | w2 | . . . | wn | δ | γ | (27)

At the beginning of the algorithm, the agents are initialized. In the next step, the value of
the objective function for all agents is calculated. Then, the stop condition is checked, if it is not
reached, the agents are updated and the value of the objective function is recalculated. The swarm
optimization algorithm generates many hypothetical solutions (which are represented by agents) and
the best solution is selected in the optimization process. These operations are repeated until the stop
condition is reached. In the objective function block, the RDA model is determined for the parameters
proposed by the agent and for the training data. The output of this model is then calculated on the
validation data and the value of the objective function is determined based on formula (1). The weights
w1, w2, . . . , wn, hyperparameters δ and γ of the RDA classifier are limited during optimization in given
ranges (see Section 3). The algorithm returns the optimal parameters of the RDA classifier in the best
agent vector. This result is included in the block ’Return the global best solution’ in Figure 3. On this
basis, the objective function value for the test data are calculated.

Figure 3. The idea of integration of swarm intelligence techniques with the RDA.

All the proposed hybrid methods have been implemented in Matlab equipped with additional
toolboxes. Using the function fitcdiscr from the Statistics and Machine Learning Toolbox [30],
the RDA classifier model is created, while the function predict from the same package is used to
determine class predictions (Figure 3). The PSO method has been implemented using the function
particleswarm from the Global Optimization Toolbox [34] and the GWO and WOA methods using
software developed by Mirjalili [32,33].

3. Results

The division of the gait dataset into training, validation, and test sets in four experiments is
presented in Table 1. In the first experiment (Set #1) and the fourth experiment (Set #4), all persons
in the collection were wearing clothes number 1. In the second experiment (Set #2), persons in the
training and validation sets were in clothing number 1, while in the test set in clothing number 2.
In the third experiment (Set #3), persons in the training and validation sets were in clothing number 1,
while in the test set they wore a backpack. The number of identities in training/validation/test subsets
was: in Set #1—32/32/32, Set #2—32/32/6, Set #3—32/32/7, and Set #4—32/32/32. The samples
were not repeated in the subsets. The procedure of separating the samples from the training set to the
validation set was as follows: for Sets #1 and #4, one sample was taken for each class (the last sample
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was always taken), for Sets #2 and #3, two samples were taken for each class because there were more
training data (the last two samples for each class were taken). Experiments 1–3 were performed in
such a way that the classification model and its testing error were determined 10 times, and then the
average of the results was calculated. In the fourth experiment (Set #4), the 10-fold cross-validation
was performed to obtain an average score. In this method, the original dataset is partitioned into 10
equal size subsets. A single subset is retained as the test data, and the remaining nine subsets are used
as training data. The cross-validation process is repeated 10 times (the folds) for the test data, and the
10 results are averaged. In the RDA-PSO, RDA-GWO, and RDA-WOA methods, the number of agents
was equal to 30, and the number of iterations was equal to 25. These parameters of optimization
techniques were selected experimentally. The weights of the observations were limited to the range
[10−8, 1], while the hyperparameters δ and γ were limited to the range [0, 1].

Table 1. Division of the gait dataset into training, validation, and test sets.

Experiment Subset Classical Methods Hybrid Methods

1: Set #1 train 169 137
validation – 32
test 156 156

2: Set #2 train 325 261
validation – 64
test 58 58

3: Set #3 train 325 261
validation – 64
test 31 31

4: Set #4 train 90% (≈293) 80% (≈261)
validation – 10% (≈32)
test 10% (≈32) 10% (≈32)

Table 2 contains the correct classified ratio of the gait recognition for the considered methods.
These are four classical methods (kNN [35], NB [35], support vector machines with sequential
minimal optimization (SMO) [36], and MLP [35]) taken from [21], linear discriminant analysis
(non-regularized) [27], and three proposed hybrid methods. Figure 4 presents the confusion matrices
for the best models in the considered experiments. These matrices show the percentage of correct class
recognition by the arrangement of the colored elements. The closer the color is to dark red on the
diagonal, the more accurate the class recognition. The colors changing from dark red to white mean
worse and worse recognition.

Table 2. Correct classified ratio [%].

Experiment kNN [21] NB [21] SMO [21] MLP [21] LDA RDA-PSO RDA-GWO RDA-WOA

1: Set #1 47.44 55.77 67.95 80.13 45.51 87.05 86.28 86.92
2: Set #2 37.93 56.90 63.79 75.86 79.31 85.34 84.48 84.48
3: Set #3 38.71 70.97 67.74 77.42 93.55 88.39 93.55 93.55
4: Set #4 56.92 79.69 84.31 89.85 91.99 95.07 95.39 95.09

The best result is marked in bold font.
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Figure 4. Confusion matrices for best models in each experiment.

4. Discussion

To compare the results, the classical methods taken from the paper [21] and the LDA were
considered. This comparison with the methods proposed by the authors (RDA-PSO, RDA-GWO,
RDA-WOA) is provided in Table 2. It can be seen that, in Experiment 1 and Experiment 2, the RDA-PSO
method proposed by the authors has the highest CCR index. In Experiment 3, which considered
clothing with a backpack, three of the analyzed methods (LDA, RDA-GWO, RDA-WOA) achieved the
same CCR at the level of 94%. In the final fourth experiment, the method proposed by the authors was
again the best, in this case combining RDA with GWO. It should also be noted that the LDA obtained
the worst result of all methods for Experiment 1; this is most likely due to insufficient training data.
However, the proposed methods obtained very good results for this experiment, at the level of about
86–87%. The use of the regularized discriminant analysis combined with swarm intelligence techniques
improved the quality of gait recognition. The developed methods outperformed the classical methods
and improved the recognition results achieved by the best of them (MLP) by 6 to 16%, depending on
the experiment. When comparing the proposed hybrid methods between each other, it should be noted
that the results are inconclusive and it seems that these methods are equivalent in this application.

When analyzing the confusion matrix shown in Figure 4, it can be seen that most people
are recognized with high accuracy, but there are classes with which the methods have difficulties.
For example, in Experiment 1 (RDA-PSO method) for classes 6, 15, 20, 21, and 25, the recognition
efficiency drops to 40–60%. It is most likely caused by too little training data (about five gait cycles for
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each class). When 10-fold cross-validation is used (about nine gait cycles for each class), the recognition
efficiency increases significantly. It should also be noted that the data used in experiments were
recorded with a markerless motion capture system, which is not perfect and generates noise [21].
It certainly has an impact on the achieved results. For Experiment 2, for which learning and testing
were performed on the sequences for which the clothes were changed, a significant deterioration in
the results for persons #30 and #31 can be observed. When analyzing these video sequences, it can be
noticed that the heavy shoes changed to sandals. This could be the cause of the deterioration in the
results in this experiment. On the other hand, for person #29, there was a change of footwear from
sports shoes to shoes with a heel, and still 100% detection rate was achieved.

5. Conclusions

The hybrid methods that combine regularized discriminant analysis and swarm intelligence
techniques for gait recognition have been proposed. In the presented approach, particle swarm
optimization, grey wolf optimization, and whale optimization algorithm are used. These techniques
optimize the observation weights and hyperparameters of the regularized discriminant analysis.
The proposed methods were compared with five methods found in the literature. In the learning
process, the confusion value was used as an objective function. The conducted experiments on the
GPJATK dataset proved the validity of the proposed concept. Future work will focus on improving the
proposed concept by replacing the MPCA method with another method of dimensionality reduction.
Moreover, some work will be carried out to add new features to gait signatures.

Author Contributions: Conceptualization, T.K. and K.W.; methodology, T.K. and K.W.; software, T.K. and K.W.;
validation, K.W.; formal analysis, T.K. and K.W.; investigation, T.K. and K.W.; resources, T.K.; writing—original
draft preparation, T.K. and K.W.; writing—review and editing, T.K. and K.W.; visualization, T.K. and K.W.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jain, A.K.; Flynn, P.; Ross, A.A. Handbook of Biometrics; Springer US: Boston, MA, USA, 2008; [CrossRef]
2. Matovski, D.S.; Nixon, M.S.; Mahmoodi, S.; Carter, J.N. The Effect of Time on Gait Recognition Performance.

IEEE Trans. Inf. Forensics Secur. 2012, 7, 543–552, [CrossRef]
3. Wan, C.; Wang, L.; Phoha, V.V. A survey on gait recognition. ACM Comput. Surv. 2018, 51, [CrossRef]
4. Little, J.J.; Boyd, J.E. Recognizing People by Their Gait : The Shape of Motion. J. Comput. Vis. Res. 1998,

1, 1–33.
5. Han, J.; Bhanu, B. Individual recognition using gait energy image. IEEE Trans. Pattern Anal. Mach. Intell.

2006, 28, 316–322. [CrossRef]
6. Kusakunniran, W.; Wu, Q.; Zhang, J.; Li, H. Support vector regression for multi-view gait recognition based

on local motion feature selection. In Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 974–981, [CrossRef]

7. Li, X.; Chen, Y. Gait recognition based on structural Gait energy image. J. Comput. Inf. Syst. 2013, 9, 121–126.
8. Mohan Kumar, H.P.; Nagendraswamy, H.S. LBP for gait recognition: A symbolic approach based on GEI

plus RBL of GEI. In Proceedings of the 2014 International Conference on Electronics and Communication
Systems (ICECS), Prague, Czech Republic, 2–4 April 2014; pp. 1–5.

9. Wang, H.; Fan, Y.; Fang, B.; Dai, S. Generalized linear discriminant analysis based on euclidean norm for
gait recognition. Int. J. Mach. Learn. Cybern. 2018, [CrossRef]

10. Lishani, A.O.; Boubchir, L.; Khalifa, E.; Bouridane, A. Human gait recognition using GEI-based local
multi-scale feature descriptors. Multimed. Tools Appl. 2019, 78, 5715–5730, [CrossRef]

http://dx.doi.org/10.1007/978-0-387-71041-9
http://dx.doi.org/10.1109/TIFS.2011.2176118
http://dx.doi.org/10.1145/3230633
http://dx.doi.org/10.1109/TPAMI.2006.38
http://dx.doi.org/10.1109/CVPR.2010.5540113
http://dx.doi.org/10.1007/s13042-016-0540-0
http://dx.doi.org/10.1007/s11042-018-5752-8


Sensors 2020, 20, 6794 13 of 14

11. Chao, H.; He, Y.; Zhang, J.; Feng, J. GaitSet: Regarding gait as a set for cross-view gait recognition.
In Proceedings of the 33rd AAAI Conference on Artificial Intelligence, Hilton Hawaiian Village, Honolulu,
HI, USA, 27 January–1 February 2019; pp. 8126–8133, [CrossRef]

12. Guo, H.; Li, B.; Zhang, Y.; Zhang, Y.; Li, W.; Qiao, F.; Rong, X.; Zhou, S. Gait Recognition Based on the
Feature Extraction of Gabor Filter and Linear Discriminant Analysis and Improved Local Coupled Extreme
Learning Machine. Math. Probl. Eng. 2020, 2020, [CrossRef]

13. BenAbdelkader, C.; Cutler, R.; Davis, L. Stride and cadence as a biometric in automatic person identification
and verification. In Proceedings of the 5th IEEE International Conference on Automatic Face Gesture
Recognition, FGR 2002, Washington, DC, USA, 21–21 May 2002; pp. 372–377, [CrossRef]

14. Yam, C.Y.Y.; Nixon, M.S.; Carter, J.N. Automated person recognition by walking and running via
model-based approaches. Pattern Recognit. 2004, 37, 1057–1072, [CrossRef]

15. Bouchrika, I.; Nixon, M.S. Model-based feature extraction for gait analysis and recognition. Lect. Notes
Comput. Sci. 2007, 4418 LNCS, 150–160, [CrossRef]

16. Ng, H.; Ton, H.L.; Tan, W.H.; Yap, T.T.V.; Chong, P.F.; Abdullah, J. Human Identification Based on Extracted
Gait Features. Int. J. New Comput. Archit. Their Appl. 2011, 1, 358–370.

17. Ariyanto, G.; Nixon, M.S. Model-based 3D gait biometrics. In Proceedings of the International Joint
Conference on Biometrics (IJCB), Washington, DC, USA, 11–13 October 2011; pp. 1–7, [CrossRef]

18. Deng, M.; Wang, C.; Cheng, F.; Zeng, W. Fusion of spatial-temporal and kinematic features for gait
recognition with deterministic learning. Pattern Recognit. 2017, 67, 186–200, [CrossRef]

19. Switonski, A.; Krzeszowski, T.; Josinski, H.; Kwolek, B.; Wojciechowski, K. Gait recognition on the basis of
markerless motion tracking and DTW transform. IET Biom. 2018, 7, 415–422, [CrossRef]

20. Kumar, P.; Mukherjee, S.; Saini, R.; Kaushik, P.; Roy, P.P.; Dogra, D.P. Multimodal Gait Recognition with
Inertial Sensor Data and Video Using Evolutionary Algorithm. IEEE Trans. Fuzzy Syst. 2019, 27, 956–965,
[CrossRef]

21. Kwolek, B.; Michalczuk, A.; Krzeszowski, T.; Switonski, A.; Josinski, H.; Wojciechowski, K. Calibrated
and synchronized multi-view video and motion capture dataset for evaluation of gait recognition.
Multimed. Tools Appl. 2019, 78, 32437–32465, [CrossRef]

22. Liao, R.; Yu, S.; An, W.; Huang, Y. A model-based gait recognition method with body pose and human prior
knowledge. Pattern Recognit. 2020, 98, 107069, [CrossRef]

23. Balazia, M.; Sojka, P. Gait Recognition from Motion Capture Data. ACM Trans. Multimed. Comput.
Commun. Appl. 2018, 14, [CrossRef]

24. Castro, F.; Marín-Jiménez, M.; Mata, N.; Muñoz-Salinas, R. Fisher Motion Descriptor for Multiview Gait
Recognition. Int. J. Pattern Recognit. Artif. Intell. 2017, 31, 1756002, [CrossRef]

25. Kwolek, B.; Krzeszowski, T.; Gagalowicz, A.; Wojciechowski, K.; Josinski, H. Real-Time Multi-view
Human Motion Tracking Using Particle Swarm Optimization with Resampling. In Articulated Motion
and Deformable Objects; Perales, F.J., Fisher, R.B., Moeslund, T.B., Eds.; Springer: Berlin/Heidelberg, Germany,
2012; pp. 92–101.

26. Lu, H.; Plataniotis, K.N.; Venetsanopoulos, A.N. MPCA: Multilinear Principal Component Analysis of
Tensor Objects. IEEE Trans. Neural Netw. 2008, 19, 18–39.

27. Fisher, R.A. The use of multiple measurements in taxonomic problems. Ann. Eugen. 1936, 7, 179–188,
[CrossRef]

28. Rao, C.R. The Utilization of Multiple Measurements in Problems of Biological Classification. J. R. Stat.
Soc. Ser. 1948, 10, 159–203. [CrossRef]

29. Guo, Y.; Hastie, T.; Tibshirani, R. Regularized linear discriminant analysis and its application in microarrays.
Biostatistics 2006, 8, 86–100, [CrossRef] [PubMed]

30. MathWorks. Statistics and Machine Learning Toolbox: User’s Guide; The MathWorks, Inc.: Natick, MA,
USA, 2020.

31. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference
on Neural Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.

32. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61, [CrossRef]
33. Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67, [CrossRef]
34. MathWorks. Global Optimization Toolbox: User’s Guide; The MathWorks, Inc.: Natick, MA, USA, 2020.

http://dx.doi.org/10.1609/aaai.v33i01.33018126
http://dx.doi.org/10.1155/2020/5393058
http://dx.doi.org/10.1109/AFGR.2002.1004182
http://dx.doi.org/10.1016/j.patcog.2003.09.012
http://dx.doi.org/10.1007/978-3-540-71457-6_14
http://dx.doi.org/10.1109/IJCB.2011.6117582
http://dx.doi.org/10.1016/j.patcog.2017.02.014
http://dx.doi.org/10.1049/iet-bmt.2017.0134
http://dx.doi.org/10.1109/TFUZZ.2018.2870590
http://dx.doi.org/10.1007/s11042-019-07945-y
http://dx.doi.org/10.1016/j.patcog.2019.107069
http://dx.doi.org/10.1145/3152124
http://dx.doi.org/10.1142/S021800141756002X
http://dx.doi.org/10.1111/j.1469-1809.1936.tb02137.x
http://dx.doi.org/10.1111/j.2517-6161.1948.tb00008.x
http://dx.doi.org/10.1093/biostatistics/kxj035
http://www.ncbi.nlm.nih.gov/pubmed/16603682
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1016/j.advengsoft.2016.01.008


Sensors 2020, 20, 6794 14 of 14

35. Bishop, C.M. Pattern Recognition and Machine Learning; Information Science and Statistics; Springer: Secaucus,
NJ, USA, 2006.

36. Platt, J. Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines; Technical
Report MSR-TR-98-14; Microsoft: Albuquerque, NM, USA, 1998.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Material and Methods 
	Gait Dataset
	Gait Recognition System
	Building Classification Model for Gait Recognition
	Regularized Discriminant Analysis
	Particle Swarm Optimization
	Grey Wolf Optimization
	Encircling Prey
	Hunting
	Attacking Prey (Exploitation) and Search for Prey (Exploration)

	Whale Optimization Algorithm
	Encircling Prey
	Bubble-Net Attacking (Exploitation Phase)
	Search for Prey (Exploration Phase)

	Integration of Swarm Intelligence Techniques with Regularized Discriminant Analysis

	Results
	Discussion
	Conclusions
	References

