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Abstract: A key access point to the functioning of the autonomic nervous system is the investigation
of peripheral signals. Wearable devices (WDs) enable the acquisition and quantification of peripheral
signals in a wide range of contexts, from personal uses to scientific research. WDs have lower
costs and higher portability than medical-grade devices. However, the achievable data quality can
be lower, and data are subject to artifacts due to body movements and data losses. It is therefore
crucial to evaluate the reliability and validity of WDs before their use in research. In this study,
we introduce a data analysis procedure for the assessment of WDs for multivariate physiological
signals. The quality of cardiac and electrodermal activity signals is validated with a standard set
of signal quality indicators. The pipeline is available as a collection of open source Python scripts
based on the pyphysio package. We apply the indicators for the analysis of signal quality on data
simultaneously recorded from a clinical-grade device and two WDs. The dataset provides signals
of six different physiological measures collected from 18 subjects with WDs. This study indicates
the need to validate the use of WDs in experimental settings for research and the importance of both
technological and signal processing aspects to obtain reliable signals and reproducible results.

Keywords: wearable devices; physiological data analysis; signal processing; multivariate analysis

1. Introduction

The quantification of peripheral physiological nervous signals is a core step in measuring the
functioning of the autonomic nervous system [1]. Being able to observe these phenomena in real-life
and without constraints imposed by laboratory settings is a key reason for adopting WDs in scientific
research [2]. Wearable technologies enable the acquisition and quantification of physiological signals
in a wide range of contexts, from personal uses to industrial and scientific research [3–5]. In a
general sense, wearable devices (WDs) are portable, non-invasive devices that allow the acquisition of
physiological signals during daily life, without the need for external equipment [6]. The application of
WDs is boosted by their improved portability (e.g., increasing miniaturization and battery life) [7,8],
as well as by new materials [9,10] and layouts with reduced invasiveness; e.g., epidermal tattoos [11],
wireless ring pulse oximeter [12], garments [13] and masks [14].

Besides their higher portability, WDs may have an apparent lower cost than clinical-grade devices,
enabling their diffusion in commercial applications [15]. In contrast to their growing market availability,
the adoption of WDs in research is still limited. Wearable technologies could represent novel tools
in the study of human physiology and autonomic responses to the scientific community [1,16],
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paving the way for a new generation of experiments in which long-term monitoring and real-life
ecological acquisitions are key aspects. In particular, a decrease in obtrusiveness while monitoring
a subject’s behavior and daily activities is expected by adopting WDs instead of clinical devices [2].
Many scientific fields would benefit from the adoption of WDs for the long-term, unobtrusive
recording of physiological signals. In particular, scientific use of WDs has been explored in affective
computing [17,18], research on autism [3,19], interpersonal coupling [20,21] and psychology in general.

However, due to the technical constraints imposed by improvements in the miniaturization and
autonomy of WDs, the data quality that can be achieved is typically lower and more subject to noise
due to body movements [22–24]. Further, we need to consider the hurdles in extracting, preprocessing
and analyzing the data from non-standard data interfaces: the high scientific “total cost of ownership”,
as well as the possible requirement of manual preprocessing, which is also associated to a limited
reproducibility of research.

It is therefore necessary to create a working protocol and resources to validate WDs as a reliable
scientific tool before their use in research [25]. In particular, the validation should be based on
open-access scientific software and include a comparison with a baseline of results from signals
collected by medical-grade devices, within the same or very similar experimental settings. In practice,
a battery of signal processing algorithms or their combination in a pipeline should be applied to signals
collected by clinical-grade and wearable devices, with a lower level of precision accepted considering
the type and purpose of application.

Similar works in the literature mainly target particular settings; for instance, the usage of WDs in
schools [26] with a particular type of users [27]. Studies focusing on the comparison between clinical
and WDs are usually application-specific; for instance, the study of physiological synchrony [28],
sleep [29,30], vital signs monitoring [31] or usage in clinical settings [32,33].

However, despite its importance, the validation of a WD is often omitted or left to manufacturers,
who rarely provide the dataset used and the details about the validation procedure. Although
several datasets with physiological signals are available, such as DEAP [34], MANHOB-HCI [35],
SEMAINE [36] and the PhysioBank archive [37], none of the existing resources provides signals
collected from both wearable and clinical-grade devices to allow comparison.

Finally, the set of algorithms applied in the validation should be also available to allow
reproducibility and for further reference.

In this study, we introduce scientific software and data aimed at validating the use of WD
for research within different real-life contexts (resting and movement), focusing on cardiac and
electrodermal activity signals. Our contributions are as follows: (a) the creation of the Wearable
and Clinical Signals (WCS) dataset, which allows a representative set of WDs to be compared
with clinical-grade devices; (b) a procedure to assess the validity of signals collected from WD;
and (c) quantitative results on physiological signals of interest for the affective-computing field.

Physiological signals were collected from a clinical-grade device and from two WDs to allow
both the direct comparison of the signals’ data quality and the investigation of the reproducibility.
The adopted protocol comprises two different activities to evaluate the performance in different
real-life contexts.

2. Methods

2.1. Participants

A total of 18 participants (with six males) were recruited for the experiment through
announcements to university students (age: average = 27.6, SD = 7.04). The participation in the
experiment was voluntary, and credits were granted for the fulfillment of an academic course.
Before starting the experiment, each participant was briefed about the purpose and procedure of
the experiment and gave informed consent. The experiment was approved by the Independent Review
Board of the University of Trento (2017–2019) and was conducted according to the principles of the
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Declaration of Helsinki. All the data have been de-identified by the assignment of randomized numeric
identifiers to each subject, and we removed any reference to the absolute timestamps.

2.2. Devices and Architecture

The physiological signals were simultaneously collected by three devices (see Figure 1):
the FlexComp unit, which provided the reference signals, and two WDs—the Empatica E4 and the
ComfTech HeartBand.

Figure 1. Illustration showing the devices used for the acquisition of physiological signals.
A: Thought Technology FlexComp (picture from www.thoughttechnology.com) with four wired
sensors: (a) electrodermal activity, (b) blood volume pulse, (c) electrocardiogram, (d) respiration;
B: Empatica E4 (picture from www.empatica.com); C: ComfTech HeartBand.

The FlexComp acquisition unit was connected through an optical fiber to a signal converter, which
in turn was connected to a Windows 10 workstation where the proprietary BioGraph Infinity Software
Platform managed the acquisition and collection of the signals from the unit.

The two WDs sent the data through a Bluetooth connection to an Android (5.1) tablet (Samsung
Tab A) where a specifically developed application gathered the signals and sent them to a database
through a secure connection. The application interface also enabled the annotation of manual markers
to allow the synchronization of the signals collected with the FlexComp and WDs.

Before starting the experiment, the signals acquired through the two WDs were visually inspected
by activating the real-time plotting function.

The WDs used in the experiment were selected according to four requirements enable defined to
their usage in everyday life:

1. Wearability: the device should be easily worn by the subject with no need to apply conductive
gels, wired electrodes or similar preparations;

2. Streaming: the device should stream the data in real-time to an external collector through a
Bluetooth connection;

3. Availability: the device should be commercially available at the moment of testing (prototypes,
proof-of-concepts or custom devices were not considered);

4. Performance: the final choice should favor the device with a higher sampling rate and higher
number of sensors to select the most advanced technological solution.

Wearability is the main characteristics of WDs: it facilitates the acquisition of signals, reducing the
discomfort of users and the time required to set the experiment, and it allows the investigation to be
expanded to everyday applications. In some experimental settings, WDs are expected to be set directly
by the user, with no aids or supervision from an experimenter. For this reason, the WDs to be selected
needed to be easily worn by the user, without requiring any special preparation of the device. Streaming
capability is also a key feature of WDs: it allows synchronization and communication with other
devices and allows real-time applications, which are fundamental in remote health monitoring. In the
experimental settings of this study, a streaming cabability was also imposed by the specific sensing
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architecture, with one hub collecting the data from all wearable devices and synchronizing them with
the data from the FlexComp unit. There are several types of WDs currently available, from prototypes
to medical-grade devices. Prototypes devices can demonstrate a novel technological solution or are
developed for a specific application. While some of these prototypes are made commercially available
from start-ups or small companies, their usage requires some technological skills and, for this reason,
they fail to comply with the “wearability” requirement. On the opposite side, medical-grade WDs
are the most advanced solution, but were not considered in this study as these types of devices
already undergo a set of validation studies to be certified as “medical-grade”. We focused instead on
intermediate solutions that were commercially available and could be accessed even by researchers
with limited technical skills. Finally, we selected those devices that, compared to similar solutions,
offered the best performances in terms of signal acquisition. We considered the maximum sampling
frequency and the number of different signals that could be collected by the same device.

After a preliminary phase in which a list of WDs was tested, we selected two devices that
fulfilled all the requirements: the Empatica E4 and the Comftech HeartBand. The Empatica E4 was
chosen as a representative of wristband devices, while the Comftech HeartBand represented the
smart-garments category.

2.2.1. Reference: Thought Technology FlexComp

The clinical device we used as a reference was the Thought Technology FlexComp unit
(commercial code: T7555M). It is a customizable acquisition unit which provides up to 10 input slots
that can be used to connect diverse physiological sensors. The maximal sampling frequency is 2048 Hz,
which was adopted for the experiment, with 14 bits of resolution for each input. The physiological
signals acquired with the FlexComp unit were as follows:

1. Electrocardiogram (ECG): using three electrodes placed over the left and right coracoid processes
and below the ribs on the left, the signal is pre-amplified and filtered by the EKG sensor (T9306M)
which returns a single channel read in millivolts. UniGel electrodes (T3425) are used as conductive
means between the sensor and the skin;

2. Electrodermal activity (EDA): two finger bands with Ag–AgCl electrodes (SA2659) are placed on
the second and fourth finger of the left hand and connected to the sensor (SA9309M). The skin
conductance is measured in microSiemens (µS);

3. Blood volume pulse (BVP): the sensor (SA9308M) is placed on the third finger of the left hand.
The relative amount of reflected infrared light is measured;

4. Respiration (RESP): a band is worn on the chest to measure the relative volumetric expansion by
the elongation of an elastic patch (SA9311M);

5. Trigger (TRG): a handle with a button to generate electrical impulses used to manually mark the
experimental events.

The signals collected from the FlexComp unit were the raw signals provided by the device, and no
signal pre-processing was applied, except for the conversion to the signal units.

2.2.2. Empatica E4

The Empatica E4 [38] is a multi-sensor wristband designed for real-life acquisitions of
physiological signals. It has streaming (through Bluetooth Low Energy) and storage (internal flash
memory) capability; communication with an Android smartphone is provided by the EmpaLink
Software Development Kit, which is used by a customized application for signal acquisition.
The collected signals are as follows:

1. BVP: four light-emitting diodes (LEDs) are used to generate light at two different wavelengths
(green and red) and two photodiodes are used to measure reflected light. Using two wavelengths
and an appropriate proprietary algorithm to preprocess the signals, the E4 aims at reducing
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motion effects and sensitivity to external sources of light. Sensors are placed on the bottom of the
wristband case in firm contact to the skin, and the signal is sampled at 64 Hz;

2. EDA: two stainless steel electrodes are placed on the band to allow positioning on the inner side
of the wrist. Skin conductance is measured in microSiemens at a 4 Hz sampling rate;

3. Acceleration (ACC): three axes of acceleration (range ±2 g) are measured at a 32 Hz sampling
frequency;

4. Skin Temperature (ST): measured by an infrared thermopile placed on the back of the case,
at a 4 Hz sampling frequency.

The collected signals were the raw signals provided by the device and no signal pre-processing
was applied, except for the conversion to the signal units.

2.2.3. ComfTech HeartBand

The Comftech HeartBand is an elastic band with embedded tissue electrodes and an acquisition
unit that is connected to the band with two snaps. Streaming is based on Bluetooth 2.0, and
the documentation to decode the hexadecimal messages from the device was provided by
the manufacturer.

The collected signals are as follows:

1. ECG: using two tissue electrodes placed over the chest and connected to the acquisition unit, the
signal is sampled (128 Hz), pre-amplified and filtered to return a single channel read;

2. ACC: three axes of acceleration are measured by a sensor embedded on the acquisition unit and
sampled at 200 Hz.

The collected signals were the raw signals provided by the device and no signal pre-processing
was applied, except for the conversion to the signal units.

2.3. Experimental Protocol and Procedure

After signed informed consent was given, the experimenter instructed the participant regarding
the placement of WDs and the experimental settings. The setup of the FlexComp unit, the acquisition
software and the positioning of the sensors was performed by the experimenter to ensure high-quality
signals. Regarding the WDs, the participant was asked to place the devices themselves after having
received detailed instructions from the experimenter. This procedure reflects the idea that WDs are
to be used in real-life contexts, where the presence of an experimenter is not expected. In particular,
the participant was allowed to adjust the positioning of both the Empatica E4 and of the ComfTech
HeartBand to favor comfort during the experiment. However, the placement of the E4 wristband
was inspected by the experimenter to ensure the device was not worn too tightly (which would have
prevented physiological blood flow) or too loosely (which would have prevented the smartwatch case
being in contact with the skin) to guarantee optimal conditions for correct BVP signal acquisition.

The experiment comprised two phases—baseline (300 s) and movement (300 s)—which were
administered in the same order for all participants.

During baseline, the participants were asked to remain sitting still. The signals collected during
this phase represented a reference for the maximal signal quality that could be achieved by WDs,
as all external sources of noise that could affect the signal quality (such as moving artifacts, sensor
displacement or detachment) were experimentally avoided. This condition is far from the real-life
context in which the WDs are expected to be used, but it is necessary to isolate the effects of technical
limitations and constraints from other causes of errors.

The effects of body movements could be better evaluated in the movement phase,
which concluded the experiment. During this phase, the subject was asked to stand and simulate
walking in place, as free movement was prevented by the wires connecting the medical-grade sensors
with the FlexComp unit. The experimenter suggested moving naturally to replicate the intensity of
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usual walking. In particular, special attention was paid to the movements of the left hand as, due to the
presence of sensors, participants tended to keep it still and near to the body. This experimental phase
was expected to be more similar to real-life contexts, and it can be used to evaluate performances of
algorithms for every-day applications, such as health monitoring, fitness and stress detection.

2.4. Preprocessing

The raw signals were preprocessed in order to appropriately format the data for the distribution
and signal analysis. The first step was the synchronization of the two signal flows, from the FlexComp
device and from the WDs. After the synchronization, the absolute timestamps of the samples were
converted into the elapsed time since the start of the experiment (start of the baseline). Based on the
TRG signal, the instants of the beginning and end of each experimental phase were extracted and used
to split the signals. Then, each portion of the signal was separately saved. The acceleration signals,
which were three-dimensional, were converted into uni-dimensional signals by the computation of the
acceleration module.

Due to the sensitive nature of the data, the dataset has not been made public, but the collected
signals are available to researchers that aim to create and test new algorithms for the automatic
identification of noise and artifacts: https://doi.org/10.21979/N9/42BBFA.

2.5. Signal Quality Analysis

Assessing the quality of the collected signals is crucial for reproducible research; this step is even
more important when working with WDs, as signals are more sensitive to artifacts and noise due to
body movements and technical constraints (see Figure 2).

In this study, we adopted a data analysis pipeline (Figure 3) to investigate the quality of
the acquired cardiac and EDA signals and of the derived signals and indicators. A set of signal
quality indicators (SQIs) was defined to compare the quality of signals from clinical-grade and
wearable devices.

Figure 2. Portions of signals from wearable devices (WDs) extracted from the Wearable and Clinical
Signals (WCS) dataset to show examples of high (left column) and low (right column) quality signals.
(A): electrocardiogram (ECG) signals collected by the HeartBand; (B) blood volume pulse (BVP) signals
collected by the E4; (C) electrodermal activity (EDA) signals collected by the E4.

https://doi.org/10.21979/N9/42BBFA
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Figure 3. Data analysis procedure adopted in this study. IBI: inter-beat intervals; RMSSD: root of the
mean of the squares of subsequent differences; HF: high frequency.

The SQIs were computed for all cardiac signals and EDA signals of the baseline and movement
sessions. A generalized linear model (GLM) was fit to investigate the contribution of the type of device
(clinical or wearable) and session (baseline or movement) and their interaction on each SQI.

The processing pipeline was developed in Python, based on pyphysio [39], and it is publicly
available at https://gitlab.com/abp-san-public/wearable-clinical-devices.

2.5.1. Cardiac Signals

Several signal quality indicators (SQIs) have been proposed in the literature to evaluate the quality
of cardiac signals. The SQIs can be grouped into two main categories: indicators that require a previous
detection of heartbeats and indicators that are computed directly on the signal. We first used two SQIs
from the second category to obtain an overall quantification of the signal quality and then adopted a
specialized beat detection algorithm to assess the possibility of effectively identifying the heartbeats.

We used the kurtosis (K) and the spectral power ratio (ψ ) which have been proposed for both the
ECG [40,41] and the BVP [42,43]. Following the thresholds proposed in the literature, good quality
signals are expected to have K > 5 in the case of ECG [40] and K < 3.5 in the case of BVP [44].

The spectral power ratio (SPR)ψ is defined asψ =
PSDF1
PSDF2

, where PSDF is the spectral power in the
frequency band F . F1 is associated with the components in the signals that convey the information
about the heart beats (the QRS complexes in the ECG and the pulses in the BVP); F2 is the band
which contains all the main frequency components of the signals. For ECG signals, F1 = [5, 14] Hz,
F2 = [5, 50] Hz, [40]; for BVP signals, (F1 = [1, 2.25] Hz, F2 = [0, 8] Hz [42]). ψ is expected to have values
0.5 ≤ ψ ≤ 0.8 [40].

To compute the signal quality indicators (SQIs), the signal was resampled (128 Hz) and filtered
(band pass filter: [0.5, 50] Hz). Then, the signal was standardized and segmented with non-overlapping
windows of 5 s in length. The reported K andψ represent the average value across all segments.

We then investigated the reliability of the acquired cardiac signals in terms of measuring
the cardiac activity. To this end, we applied a beat detection algorithm to identify the heartbeats

https://gitlab.com/abp-san-public/wearable-clinical-devices
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and derived the inter-beat interval (IBI) series—the series of distances between consecutive beats.
The validation metrics were then computed by comparing the IBI series with the reference IBI series
obtained from the ECG signal of the FlexComp, which were manually validated. These metrics
are different from the SQIs presented before, as they are computed on a derived signal and not
on the original cardiac signal, and thus the results depend also on the performance of the beat
detection algorithm.

The ECG signals from the FlexComp unit were used to obtain the reference IBI series used
for the validation: heartbeats were detected with the adaptive beat detection (ABD) algorithm
(see Section 2.5.2) and then visually inspected to manually correct false detections and misdetections.

The ABD algorithm was also applied to the ECG signals of the Heart Band, while the
derivative-based beat detection algorithm [45] was used to derive the IBI series from the BVP signals of
both the FlexComp and E4. All IBI series were then processed to find detection errors by the application
of the adaptive outlier detection (AOD) algorithm (see Section 2.5.3). In summary, for each subject,
we obtained the reference IBI series (IBIr ) and those derived from the ECG signal of the Heart Band
(IBIHB ), from the BVP signal of the FlexComp (IBIFC ) and from the BVP signal of the E4 (IBIE4).

The quantification of the reliability of the beat detection was assessed in terms of the precision
(P) and recall (R) of the detected beats and by the root mean square error (eRMSE ), by comparing each
derived IBI series (IBId ) with the IBIr . To compute these metrics, we paired each beat bd of the IBId to a
beat br of IBIr . The pairing was considered valid if |bd −br | < 0.5 s. The beats that were successfully
paired were considered true positives (TPs), the remaining unpaired beats in IBId were considered
false positives (FPs) and the remaining unpaired beats in IBIr were considered false negatives (FNs).
Then, we counted the number of TPs (nT P ), the number of FPs (nF P ) and the number of FNs ((nFN ))
to compute the overall precision P = nT P/(nT P +nF P ) and recall R = nT P/(nT P +nFN ). The RMSE was

computed on paired beats: eRMSE =

√∑
T Ps (I BIdi−I BIr i )2

nT P
.

Finally, we evaluated the impact of the different types of WDs and cardiac signals on the
main physiological indicators used to quantify the heart rate variability (HRV). For each IBI signal,
we computed (a) the average of the IBI, (b) the root of the mean of the squares of subsequent differences
(RMSSD) between the IBIs and (c) the relative power in the high-frequency (HF) band (between 0.15
and 0.4 Hz) [46]. The three HRV indicators were computed for each subject and session, on all cardiac
signals. The HRV indicators computed from the IBI extracted from the ECG signals collected with the
FlexComp unit were used as references. The HRV indicators computed from the IBI extracted from all
other cardiac signals were qualitatively compared to the reference HRV indicators using Bland–Altman
plots. Differences were reported in terms of percentages to allow the comparison of the performances
of the different HRV indicators.

2.5.2. Adaptive Beat Detection

The adaptive beat detection (ABD) algorithm applied to the ECG signal is composed of two steps:

i. Computation of the local range of the signal;
ii. Peak detection with threshold from the local range.

In the first step, the signal is segmented by windowing (window width: 1 s, overlap: 0.5 s) and
the range is computed for each segment. The result is the estimation of the local range of the signal.

In the second step, the signal is scanned to find local maxima; a local maximum is considered a
heart beat (i.e., R peak of the QRS complex) if it is followed by a local minimum and the difference is
greater than 0.7 times the local range of the signal.

2.5.3. Adaptive Outlier Detection

The AOD algorithm uses a fixed-size cache vector IBIc = (ibi1, ibi2, ..., ibik ) to store the last k valid
IBI values in order to adapt to the variability of the IBIs. The size k is empirically set to 5 and the
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cache is initialized with the median value of the IBI series. Outlier detection is also regulated by the
sensitivity parameter ϕ, which is empirically set to 0.25.

A detected beat is considered valid if its corresponding IBI value is within the interval
[(1 −ϕ)ibimedian , (1 + ϕ)ibimedian], where ibimedian is the median of the values in IBIc . When a new
valid beat is detected, its IBI value is used to update IBIc using the first-in–first-out rule. IBIc is
re-initialized when k consecutive non valid beats are detected.

2.5.4. Electrodermal Activity Signals

Only a few studies have addressed the problem of assessing the quality of EDA signals as
this is a quite recent issue associated with the emergence of wearable devices for EDA acquisition.
The main approaches are based on the use of machine learning to classify high and low-quality
portions of the EDA starting from a list of computed metrics [47,48], but without identifying the most
appropriate metric that, alone, could be used as a SQI. On the other hand, these models are not very
useful for signals from new devices as they need to be re-trained on new data that would require a
manual labeling process.

Quality metrics of EDA signals. In this study, we adopted two metrics proposed by Kleckner
and colleagues [25]: the ratio of out-of-range samples (roor ) and the number of jumps, or drops,
in the signal (nj ).

Following [25], we defined roor as the ratio between the number of samples with values exceeding
60 µS or below 0.05 µS and the total number of samples. We empirically defined the threshold roor = 0.05
to identify good (roor ≤ 0.05) and bad (roor > 0.05) signals; the selected threshold corresponded to a
percentage of 5% of acquired samples that exceeded the physiological range for EDA signals.

A jump is defined in [25] as a portion of the signal in which the absolute value of the derivative
of the signal is grater than 10 µS/s. This threshold was defined on signals sampled at 32 Hz, but the
EDA signal from the Empatica was acquired at 4 Hz, which means that the 10 µS/s threshold was too
high to allow the correct identification of the jumps. In addition, the amplitude of the EDA signal,
and thus its derivative, also depends on the characteristics of the device, such as the amplification,
type of electrodes and positioning. For these reasons, we derived a normalized version of the metric
proposed by Kleckner and colleagues.

We first applied a low-pass filter to the EDA signal (cutoff frequency: 0.05 Hz) to remove the trend
and the long-term components, obtaining the filtered signal (sf ), and then computed the normalized

derivative dn =
|sf ′ |
σs

, where s ′f is the derivative of the filtered signal and σs is the standard deviation.
Then, we considered the samples where dn is greater than 10 to be jumps. We considered a total number
of five jumps over the 5 min sessions of the baseline and movement to be acceptable: therefore, signals
with nj ≤ 5 (corresponding to maximum of one jump per minute of acquisition) were considered to be
of good quality.

In addition, we defined a new metric, called the signal activity metric (α ), to account for the cases
in which the amplitude of the peaks associated with the galvanic skin response was too low or the

peaks were not present (see Figure 2C). We defined α =
√∑

n sf n2

N , where sf is the filtered signal and N is
the number of samples. As a threshold value, we selected α = 0.05 µS, which is the minimal amplitude
for a peak in the EDA signal to be considered as part of the galvanic skin response, as proposed in [49].
EDA signals with α < 0.05 µS were considered to be of bad quality.

Before computing the SQIs, the EDA signals were filtered (low-pass filter, cutoff frequency
flp = 1.5 Hz). The EDA signals from the FlexComp device were first downsampled to 4 Hz to allow
the comparison with the signals from the Empatica E4. The SQIs were computed on segments of the
signals obtained from non-overlapping 20 s windows. The reported roor and α values are the average
of the values computed for each segment; nj is the sum of the jumps in each segment.
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3. Results

3.1. Cardiac Signals

In general, the ECG signals collected with both the FlexComp and the Heart Band (Figure 4A)
showed good quality in terms of kurtosis, although body movements caused a degradation; ECG
signals from the HeartBand seemed to contain spurious frequency components, as indicated by the
higher SPR.

Figure 4. Signal quality indicators (SQIs) of the cardiac signals: (A). Kurtosis and spectral power ratio
of the ECG collected from the FlexComp (gray) and Heart Band (white); (B). Kurtosis and spectral
power ratio of the BVP collected from the FlexComp (gray) and E4 (white). Striped areas indicate the
ranges of SQI values associated with low signal quality.

The BVP signals from both the FlexComp and the E4 (Figure 4B) showed very good kurtosis;
however, the low SPR for the movement session indicates that this signal is highly affected by body
movements, as already reported in the literature [24].

For the ECG signals, kurtosis was found to be significantly affected by the type of session
(p < 0.001) and type of the device (p = 0.035), but the latter result did not survive the Bonferroni
correction for multiple tests. A significant contribution from the type of device was found on the SPR
(p < 0.001). For the BVP signals, a significant contribution of the type of device (p = 0.038) and of
the interaction between the type of device and session (p = 0.020) was found on kurtosis; however,
both results did not survive Bonferroni correction. On the SPR, a significant contribution was found
for the type of device (p < 0.001), type of session (p = 0.001) and their interaction (p < 0.001).

During the baseline sessions, all devices showed good performances in terms of P and R,
although the recall of the IBIs series derived from the BVP signals was inferior (see Figure 5. The eRMSE

was also noticeably higher for the IBI series derived from the BVP signals. This result was expected,
as the beat detection in BVP signals is in general more difficult due to posture and individual
physiological characteristics [50]. As expected, all metrics worsened during the movement sessions;
in particular, the IBI series derived from BVP signals of the Empatica E4 showed very low recall
(below 0.4) and a high eRMSE .
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When considering the Bland–Altman plots of the physiological indicators extracted from the
cardiac signals (Figure 6), it emerges that BVP signals show the greatest differences, with the E4
performing worse than the clinical-level device.

Figure 5. Metrics of the quality of the inter-beat intervals extracted from the cardiac signals.

Figure 6. Bland–Altman plots to assess the reliability of the physiological indicators computed from
the IBI signals extracted from different signals and devices. All plots refer to the indicators computed
from the ECG signals collected by the FlexComp.
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3.2. Electrodermal Activity

When we consider the SQI of the EDA signals (Figure 7), we observe that none of the EDA
signals collected with the FlexComp presented out-of-range samples while few signals collected by
the Empatica E4 appeared corrupted, with a worsening effect due to the body movements. In terms
of the number of jumps, the FlexComp unit provided high-quality signals for both the baseline and
the movement sessions, with few exceptions. In contrast, the signals collected with the Empatica E4
presented a low quality, with an average nj = 31.6 for the baseline and nj = 36.7 for the movement
session: i.e., more than one jump every 10 s. The signal activity index of the signals collected with the
Empatica E4 was low, despite the high number of jumps; in particular, for the baseline session.

The GLM revealed a significant contribution of the type of the device on the percentage of
out-of-range samples (p = 0.024, which did not survive Bonferroni correction), and on the number of
jumps (p < 0.001). Only the signal activity showed a main effect from the type of session (p < 0.001).

Figure 7. SQIs of the EDA signals collected from the FlexComp (gray) and E4 (white). Striped areas
indicate the ranges of SQI values associated with low signal quality.

4. Discussion

We adopted a set of SQIs derived from the literature to assess the overall quality of the cardiac
signals and EDA signals provided in the WCS dataset.

In general, the signals collected with the clinical device showed an optimal signal quality in
the baseline session, indicating that the experimental design and settings were appropriate for the
acquisition of scientific-level data. During the movement session, the induced artifacts slightly
worsened the signal quality, in particular for the BVP signal, which is known to be more sensitive to
body movements. During the baseline, the wearable devices collected cardiac signals with a quality
comparable to the signals from the FlexComp unit, but they were more affected by body movements,
as shown by the worse signal quality in the movement session. For ECG signals, the kurtosis was
more sensitive to a decrease in signal quality due to movements, while the SPR was capable of
sensing differences between clinical devices and WDs. The SPR of BVP signals was influenced by both
differences in the type of sessions (baseline and movement) and of devices (WDs and clinical); kurtosis
was found to be less effective for quantifying differences between devices and sessions.

These patterns were confirmed when analyzing the precision of physiological indicators through
Bland-Altman plots: the highest precision, during both baseline and movement precision, was achieved
with the ECG signal from the Heart Band, while for the indicators computed from BVP signals, the
precision was lower for both the FlexComp unit and E4. The signal quality of the EDA signals collected
by the E4 did not appear to be appropriate for scientific research on our data: all SQIs detected
significant differences between the quality of signals collected with the FlexComp unit and the E4,
while only the signal activity indicator was shown to be sensitive to differences between the baseline
and movement.

The lower quality of signals collected from WDs can be attributed to a number of technical
limitations. For instance, the performance of some sensor components are reduced to decrease
battery consumption and increase autonomy. In particular, the sampling frequency is kept lower
than medical-grade devices, usually below 256 Hz, with consequent issues in the accuracy of the
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physiological indicators computed. To favor wearability, no aids are used to fix the sensors to the
body (e.g., adhesive ECG electrodes). This allows for minimal shifts of the sensors that can introduce
noise on the acquired signal [22–24]. Finally, although some anatomical loci are more appropriate
than others for measuring a physiological signal, the need to embed the sensor in a wearable and
comfortable support might constrain the positioning of the sensor into a non-optimal locus where the
signal magnitude might be lower, such as the wrist instead of hand palm in the case of EDA [51].

This study evidenced the need to test and validate the use of WDs in experimental settings for
research and the importance of both technological and signal processing aspects to obtain reliable
signals. The validation should reflect the experimental context in which the data are collected;
in particular, since WDs are employed to favor the freedom of movement of the subject, the influence
of artifacts due to movements should be carefully considered.

The use of proper SQIs represents a quantifiable and reproducible method to identify signals with
good quality. However, the evaluation of applicability should be done for each use case to account
for the specific aim of the investigation and requirements in terms of the reliability of the computed
metrics. The analysis of the Bland–Altman plots shows that different signals and devices are capable of
different levels of precision of the computed physiological indicators. The scope of the analysis should
be considered when assessing whether the precision required is compatible with the confidence ranges.

The collected data and the code to reproduce the pipeline are offered to the scientific
community to encourage the development and validation of new SQIs and algorithms. The adoption
of standardized metrics and procedures should favor the implementation of experiments with
multivariate physiological signals, based on WDs.

As a final note, it is important to remark that the results of this study are not to be interpreted in
terms of a technological validation of the WDs used for the experiment. The technological development
is still in progress, and manufacturers of WDs are constantly improving sensing and acquisition
technologies. Therefore, our results reflect the state of the technology at the time of the experiments.
Nevertheless, the validation and quantification of the quality of the collected data is a critical step that
should be performed each time the technology or the WDs are updated.
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