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Abstract: Mobile manipulation, which has more flexibility than fixed-base manipulation, has always
been an important topic in the field of robotics. However, for sophisticated operation in complex
environments, efficient localization and dynamic tracking grasp still face enormous challenges.
To address these challenges, this paper proposes a mobile manipulation method integrating
laser-reflector-enhanced adaptive Monte Carlo localization (AMCL) algorithm and a dynamic tracking
and grasping algorithm. First, by fusing the information of laser-reflector landmarks to adjust
the weight of particles in AMCL, the localization accuracy of mobile platforms can be improved.
Second, deep-learning-based multiple-object detection and visual servo are exploited to efficiently
track and grasp dynamic objects. Then, a mobile manipulation system integrating the above two
algorithms into a robotic with a 6-degrees-of-freedom (DOF) operation arm is implemented in an
indoor environment. Technical components, including localization, multiple-object detection, dynamic
tracking grasp, and the integrated system, are all verified in real-world scenarios. Experimental results
demonstrate the efficacy and superiority of our method.

Keywords: mobile manipulation; object detection; visual servo; dynamic tracking grasp; triangle match

1. Introduction

Mobile manipulation is an important issue in the field of robotics. Traditionally, though the
breaking down of sophisticated tasks into many single tasks, fixed-base manipulators, such as
palletizing robots [1] and assembly robots [2], can complete tasks with high precision via
pre-programming. Emerging applications in the industry, such as material handling and mobile
welding, demand high mobility and flexibility of robots. A considerable amount of literature has
grown up around the theme of mobile manipulation in recent decades [3].

With the developments of robotic technology and artificial intelligence, mobile manipulation has
become increasingly practical. In a typical mobile manipulating process, the mobile manipulator should
autonomously and safely reach the operating space, avoiding obstacles and achieving self-localization
during movement. Then, it will proactively detect and locate the target and complete the grasping task.
On the one hand, external sensors (e.g., laser radars) and simultaneous localization and mapping (SLAM)
algorithms facilitate the autonomous navigation and localization of mobile robots [4]. The adaptive
Monte Carlo localization (AMCL) algorithm has been proved to be an efficient probabilistic localization
method [5]. On the other hand, with the assistance of deep learning, more environmental information can
be extracted from the vision sensors, and the robot’s ability to perceive the environment is enhanced [6];
thus, the accuracy of object detection has been greatly improved. Accordingly, mobile manipulation can
provide highly flexible services and dexterous operations in structured and unstructured environments.
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Autonomous mobile manipulators are gradually used in many fields, such as various industries [7],
living spaces [8–10], and agriculture [11,12].

However, some complex tasks pose huge challenges for mobile manipulation. First, high-precision
localization is critical for sophisticated work such as fixed-point operation and material handling
in a warehouse environment. Existing approaches need to further improve the localization
accuracy and cannot handle the kidnapping problem well, especially in highly similar environments.
Furthermore, in dynamic scenarios (e.g., an assembly line), the objects to be grasped are usually
diverse and moving. How to rapidly locate and accurately grasp these dynamic objects based on
visual information is another important issue, which remains to be further studied [13].

To address the above problems, in this paper, we present a mobile manipulation system capable
of performing high-precision localization and dynamic tracking grasp. To accomplish this task,
we decompose the system into two subsystems: the navigation subsystem and the grasp subsystem.
By using triangle-matched laser-reflector landmarks to continuously improve the weight and accuracy
of the particles in AMCL, the navigation subsystem realizes rapid navigation toward the target area
and achieves high-precision positioning. The grasp subsystem dynamically grasps moving objects by
visual servo, which uses a deep-learning model for real-time object detection and uses the closed-loop
feedback of the image position to achieve dynamic object tracking. The main contributions of this
work are provided as follows:

(1) The localization accuracy of the AMCL algorithm is improved by adaptively adjusting the weight
of particles based on the laser-reflector information.

(2) Efficient dynamic grasping is realized by exploiting real-time object-detection results to achieve
closed-loop tracking.

(3) An integrated system containing hardware and software is developed and tested in real-world
environments, which is capable of autonomous high-precision localization and dynamic object
grasping. The key algorithm components and the complete system are both verified.

The paper is organized as follows. In Section 2, related work on mobile manipulation is reviewed.
Section 3 presents the improved localization algorithm and the dynamic grasping policy. In Section 4,
real-world experiments of mobile manipulation are described and discussed. Section 5 draws the
conclusions and future work.

2. Related Work

Mobile manipulation is a fundamental problem in the field of robotics, and researchers are
conducting extensive research on this problem. In the following section, we discuss and review some
of the work related to mobile manipulation and our methods.

2.1. Mobile Manipulation

Extensive research on mobile manipulation has been conducted in many robot subdivisions,
such as humanoid robots [14,15], wheeled robots [7,16], legged robots [17,18], unmanned aerial
vehicles [19–21] and underwater robots [22]. In recent years, a large number of competitions related
to mobile operations have been held, such as the Amazon Robotics Challenge [23,24], the DARPA
Robotics Challenge [25], and the FetchIt! Mobile Manipulation Challenge [26]. The results of
these challenges and projects suggest that the research and application of mobile manipulation is a
logical integration of operation, navigation, perception, self-learning and multi-robot collaboration;
therefore, we would expect that a mobile manipulators should be able to perform complex tasks in
both structured and unstructured environments.

Many mobile manipulators are designed to handle complex tasks in different scenarios.
Human Support Robot (HSR) [27] is a real home robot that can be used in a real home environment.
The robot can accomplish the Tidy-Up task independently according to the layout of the furniture and
the environment information given in advance. In [28], in order to overcome the system uncertainties
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and anomalies inherent in autonomous mobile manipulator, a coordinated control strategy combining
visual and force servos into a sophisticated reactive task control is proposed, and this control strategy
achieved high reliability in the “peg-in-hole” type of insertion assembly task. To enhance the autonomy
of mobile manipulation, Chen et al. [29] developed a stereoscopic vision system based on the modified
iteration of the closest point algorithm to optimize the point cloud and enhance the teaching ability of
the robot by using the stereoscopic vision-guided tele-operation control algorithm. Through these two
functions, the mobile manipulator can learn semi-autonomously and work autonomously. In 2019,
Chen et al. [30] improved the stereo vision algorithm and the iterative closest point (ICP) algorithm
for object pose estimation. Based on this algorithm, the robot can select and adjust the robot’s pose,
and the grasping pose relies on the object pose to maximize the maneuverability of the end-effector.
With the development of deep learning, it is constantly applied to mobile operations. In reference [31],
Wang et al. proposed a novel mobile manipulation system, which combines the deep reinforcement
learning algorithm with visual perception. Although using the visual perception advantage of deep
reinforcement learning, the robot can operate the grasping task in an unstructured environment.
The effectiveness of the mobile manipulation system is verified in simulations and in the real world.

2.2. SLAM for Manipulation

The navigation and location of mobile robots in uncertain environments are always the basic subjects
of robot research. A lot of research and reviews have been undertaken to explore the simultaneous
localization and mapping (SLAM) in mobile manipulation [6,32–34]. Kohlbrecher et al. [35] described a
Hector-SLAM-based [36] open-source SLAM system for urban search-and-rescue missions, which enables
robots to map and locate themselves in a degraded urban environment, and independently explore
disaster sites to identify victims and other interesting objects. Similarly, Wang et al. [37] used optical flow
calculation and wavelet transformation to solve the problem of SLAM in emergency search-and-rescue
environments. The three-dimensional (3D) reconstruction, based on RGB-D information, is carried
out by combining a two-dimensional (2D) map and three-dimensional objects in order to realize the
positioning of the robot in unfamiliar environments. In [38], Xu et al. proposed a mobile robot extensible
positioning system. The system integrates a stereoscopic camera, an inertial measurement unit (IMU) and
an ultra-ultra-wideband network made up of five anchors. Based on the mobile robot constantly adding
new anchor points to the network and estimating anchor point location by recursive least square (RLS),
the network is extended. With extended networks, the robot can determine its location in unfamiliar
environments. For dynamic environments, the work of [39] presents a SLAM system that automatically
projects objects into dynamic environments for semantic processing and creates a global 3D environment
map to eliminate the influence of dynamic objects and unknown objects.

2.3. Visual Tracking Grasp

Dynamic tracking grasp is the most challenging research area in mobile manipulation. Despite the
excellent results of the fixed-based grasp technique, the mobile-based grasp still faces great challenges,
and researchers have conducted numerous studies on the subject. The key to dynamic tracking
grasp is target tracking, especially visual-based target tracking. Zhang et al. [40] detected a target
using the support vector machine (SVM) classifier, which was trained by the scale-invariant feature
transform (SIFT) feature points, and used the Kalman filter to estimate the location and direction
of the target. This method captures objects on the conveyor belt at a speed of 0.4 m/s. Similarly,
Kim [41] developed an Opti-Track system to track the target ball, load by objects, and quickly predict
the trajectory of the target and capture it, where the trajectory of the target was learned and trained
by machine-learning algorithms. Furthermore, in [42], the authors proposed a method of dynamic
switching between local and global planners to track and grasp moving objects. The local planner
maintained the end-effector with a steady grasping posture to smoothly follow the object motion.
If the previous graspable part becomes unreachable, the global planner quickly moves the end-effector
to a new grasp pose to track and grasp the target. In contrast to the previous methods for tracking
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fast-moving objects, Ardon et al. [43] designed a fully functional grasping system based on the visual
servo framework for humanoid service robots to track and grasp targets. This system uses a marker-less
tracker model to track the target, and deal with the inaccurate kinematics of the robot based on a
pattern tracking method for the end-effector. All of these are based on monocular camera and improve
the grasp success rate by 48.8%. In [44], the authors also designed a precision assembly robot system
for small components. This system adopts monocular vision guidance for dynamic grasping and two
eye-to-hand cameras are used to posture alignment, where the end-effector position is compensated
for according to differential motion principle.

3. Method

To accomplish autonomous mobile operation in a complex environment, the robot needs to reach
the operating area quickly and accurately, then search and lock the target, and complete the operating
task. Therefore, the mobile manipulation system needs to be composed of different subsystems, such as
mobile chassis, manipulation arm, navigation and positioning systems, and environment perception
and object-detection systems. To elaborate on the method we propose in this paper, the mobile
manipulation system is divided into the SLAM subsystem, including the mobile chassis and navigation
system, and the grasping subsystem, including the manipulation arm and perception system.

3.1. Enhanced Localization Based on Laser-Reflector Landmarks

Location plays an important role in mobile manipulation. In order to further improve the positioning
accuracy of the mobile platform, we improved the particle filter positioning algorithm in AMCL based
on the triangle matching. This idea was inspired by the method proposed by de Miguel et al. in [45].
Several modifications are made to integrate reflector information and the result of trilateration into the
loop. In this section, all those modifications and adjustments are described in detail.

3.1.1. Map Building and Matching Template Library Establishment

The autonomous movement of the robot depends on reusable environmental maps. For our
method, we use Gmapping [46] to build the occupancy grid map of the scenarios and mark
the position of the laser reflector as a landmark point as shown in Figure 1a. We establish the
global triangle-matching template library M, which contains all the triangles composed of any three
landmarks in the map. Each item of M contains the side length and the vertex coordinates of the
triangle. All items are sorted by the maximum side length of corresponding triangles, as shown in
Figure 1b.

Laser Reflector Landmarks
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Matching Template Library

Figure 1. Map building and template library establishment. (a) Map generated by Gmapping [46],
where the red dots are laser-reflector landmarks. (b) Establishing the matching template library M of
the laser-reflector landmarks. In the template library, all items contain the side length and the vertex
coordinates of the triangles and are sorted by the maximum side length.
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3.1.2. Laser-Reflector Identification Based on Triangle Matching

The mobile robot uses the detected laser reflectors to position itself, and its positioning accuracy
depends on the position accuracy of the detected laser reflectors. When the robot detects the
laser-reflector landmarks, it will identify their ID and obtain corresponding coordinates through
triangle matching. If the number of detected laser reflectors is no less than 3, the laser-reflector
identification process based on triangle matching will be activated. First, based on the received laser
data (distance and orientation information), the mobile robot calculates the relative locations of the
detected laser reflectors, and thus obtains the side length of the detected triangles. Then, the mobile
robot searches the matched triangle in the matching template library by the side length of the detected
triangle. Once all side lengths of the detected triangle match successfully with a matched triangle
in the library, its coordinate is identified and added to the set of the identified laser reflectors R.
Taking Figure 2 as a simple example, A, B and C are the detected laser reflectors and their coordinates
are (xA, yA), (xB, yB) and (xC, yC), respectively. The detected triangle4ABC formed by these three
detected laser reflectors has side lengths of lAB, lAC, and lBC. Assuming lAB > lAC > lBC, the maximum
length lAB is first searched in M, and lAC, lBC are used to match the triangle sequentially. As a result,
the detected triangle4ABC matches the triangle4289 in the library. In this case, A, B and C would
be identified as 2, 8 and 9, respectively.
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Laser Reflector Identification

Figure 2. The process of triangle matching. A, B, C are the detected laser reflectors and (xi, yi) is the
coordinate of the i-th detected laser reflector. lij is the distance between the reflector i and j. G is the
mobile robot. The number is the ID of the laser-reflector landmarks in matching template library M.

3.1.3. Position Weight Calculation

AMCL is a robot probability localization method that tracks the robot position by particle filter.
In this paper, we change the weight and position of the particles to solve the problem of kidnapping
and improve the location accuracy. Unlike [45], we use the estimated position of the mobile robot as
input to enhance the weight of the particles in the AMCL algorithm. During navigation, the robot
detects many laser reflectors and quickly determines the location of the laser reflector based on the
triangle matching. The position of the robot can be estimated by the principle of trilateration.

Assuming the robot detects n laser reflectors, we can obtain the ID and corresponding coordinates
of each detected laser reflector by triangle matching. Therefore, the relationship between the robot and
the detected laser reflectors can be described as follows:
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

(xG − x1)
2 + (yG − y1)

2 = r2
1

(xG − x2)
2 + (yG − y2)

2 = r2
2

...
(xG − xi)

2 + (yG − yi)
2 = r2

i
...

(xG − xn)
2 + (yG − yn)

2 = r2
n

(1)

where (xG, yG) represents the estimation position of the robot which can be obtained by solving
Equation (1) with the least squares method. (xi, yi) is the position of i-th detected laser reflector.
Moreover, the orientation of the robot can be obtained as follows:

θG=



1
n

n
∑

i=1

[
arctan

(
yi−yG
xi−xG

)
− ϕi

]
xi > xG

1
n

n
∑

i=1

[
arctan

(
yi−yG
xi−xG

)
− ϕi + π

]
yi ≥ yG, xi < xG

1
n

n
∑

i=1

[
arctan

(
yi−yG
xi−xG

)
− ϕi − π

]
yi < yG, xi < xG

1
n

n
∑

i=1

[
π
2 − ϕi

]
yi > yG, xi = xG

1
n

n
∑

i=1

[
−π

2 − ϕi
]

yi < yG, xi = xG

(2)

where θG represents the orientation of the robot, ϕ is the observation angle of the detected laser reflectors.
Therefore, the estimated pose of the robot can be expressed as µG = (xG, yG, θG). Figure 3 shows an
example of the positioning process where the mobile robot G detects four reflectors A, B, C and D.
The estimated position of the robot can be obtained by Equations (1) and (2). And the position weight of
the particle can be calculated as follows:

d[i] =
1

(2π)
3
2

exp(−1
2
(x[i]t − µG)

T(x[i]t − µG)) (3)

where the position and orientation of each particle is defined as x[i]t = (xi, yi, ϕi).
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Ar

Least Squares 

Figure 3. The process of positioning. A, B, C and D are the detected laser reflectors. ϕ and r are the
observation angle and detection distance of the detected laser reflector, respectively. G is the mobile
robot. θG is the orientation of the robot based on the observation angle of the detected laser reflectors.
µG is the estimation position of the robot.

3.1.4. Orientation Weight Calculation

In navigation, the accuracy of maps determines the accuracy of robot navigation. The map error
often leads to location failures and the kidnapping problem. To improve the accuracy of map matching
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in navigation, the laser-reflector information will be used to enhance the weight of particles in the
AMCL algorithm. Therefore, we compute the weight score to evaluate the accuracy of the particle
matched with the map based on the Gaussian model [47]. The weight score si of the particle is
calculated as follows:

s[i] =
1
n

n

∑
i=1

1
σ
√

2π
e
−(ϕi−µ)2

2σ2 (4)

where n is the number of the detected laser reflectors. µ and σ represents the mean value and the
standard deviation of the observation angle, respectively. With this expression, we can evaluate
the particle position matched with the map and use it to modify the probability of the newly
generated particles.

3.1.5. Weight Adjusting and Particle Generation

In the initialization phase, a set of particles χt =
{
(x[i]t , ω

[i]
t ), i = 0, 1, · · · , N

}
is randomly

added. From the AMCL algorithm, the current state of the robot is predicted by the motion model
p (xt|xt−1, ut), where xt−1 represents the last state of the robot and ut describes the control information.
The predictive probability density function at time t can be expressed as p

(
zt, M̄|x[i]t , M

)
, where zt

and M̄ represent the observation information and the result of trilateration at time t, respectively.
According to [47], the weight ω

[i]
t of each particle can be calculated as follows:

ω
[i]
t = ω

[i]
t−1 p

(
zt, M̄|x[i]t , M

)
(5)

In the positioning process, the new weight of each particle can be generated as follows:

ω
[i]
t−new = α · s[i] ·ω[i]

t + β · d[i] (6)

The coefficients α and β are both constants and used to balance the position and the orientation.
The coefficients α and β are empirically set to 154 and 1, respectively. The weights are then normalized
to make the sum of all the weights equal 1.

In contrast to the AMCL algorithm which determines whether new particles are added according
to the position of robot and the weight of particles, and randomly distributes the particles in the map,
this paper defines a different function to generate new particles Xt−new according to the estimated
position µG and the probability of generating those new particles. The function of the newly generated
particles are to follow a normal distribution centered in µG.

Xt−new = λQ + µG (7)

where Q is a random vector with distribution N[0, 1]. The coefficients λ is empirically set to 1.
In addition, the probability of generating a new particle is:

p (xt−new|xt, ut−1, zt, M̄) =

{
di, if di > 0.01
0, otherwise

(8)

In the experiment, we use the AMCL algorithm to initialize the robot. Then, the robot updates the
weight of the particles based on the result of the identified laser reflectors and the estimated position
of the robot. Finally, we randomly add new particles near the estimated position µG according to the
weight of d[i], which indicates the distance between the particle position and the estimated position of
the robot. This improved algorithm is shown in Algorithm 1.
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Algorithm 1 The improved adaptive Monte Carlo localization (AMCL) algorithm.
Input: control information ut, observation information zt, matched template libraries M;
Output: new particles set χt;

1: Initialization: R = M̄ = χt = ∅, ωt−new = 0, new particle xi−new = ∅, cache particle set χ̄t = ∅;

2: R,M̄ = LaserReflectorIdentification(zt, ut, M);

3: if M̄ = ∅ then

4: for i = 0 to N do

5: Sample x[i]t ∼ p
(

xt|x[i]t−1, ut

)
;//Original AMCL

6: ω
[i]
t ∼ measurement_model(zt, x[i]t );//Original AMCL

7: χ̄t = χ̄t +
〈

x[i]t , ω
[i]
t

〉
;

8: draw i withprobability ∝ ω
[i]
t−1;

9: add x[i]t to χt;

10: end for

11: else

12: xt = motion_model(xt−1, ut);

13: for i = 0 to N do

14: d[i] = PositionWeightCalculation(M̄, x[i]t );

15: s[i] = OrientationWeightCalculation(zi);

16: ω
[i]
t−new = α · s[i] ·ω[i]

t + β · d[i];
17: χ̄t = χ̄t +

〈
x[i]t , ω

[i]
t−new

〉
;

18: end for

19: ωt−new = normolaizeweight(ωt−new);

20: for i = 0 to N do

21: p (xt−new|xt, ut−1, zt, M̄) = probo f newparticle(d[i]);//function (8)

22: if rand() ≤ p (xt−new|xt, ut−1, zt, M̄) then

23: xi−new = ParticleGeneration(ωt−new);

24: add xi−new to χt;

25: end if

26: end for

27: end if

28: return χt

3.2. Multiple-Object Detection and Dynamic Tracking Grasp

The ultimate goal of mobile manipulation is to operate the target object. Although methods for
manipulating stationary objects or movement-known objects have been well studied [40,48], there are
still great challenges for manipulating randomly placed and moving objects. Therefore, we use the
object-detection model to detect and locate the object, and use the visual servo technology to control
the manipulator to perform a tracking grab on the moving object. In the following section, the details
regarding the object-detection model and dynamic tracking grasp are described.
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3.2.1. Multiple-Object Detection and Location

To manipulate multiple objects, the robot needs to identify the object and locate its position
relative to the mobile manipulator. The main challenge for object detection is the possibility of multiple
simultaneous object instances. The instances might vary in size, shape, attitude, and appearance.
The target detection module should overcome the influence of environment on vision and detect and
locate all objects in the image. In this study, we use the single-shot multi-box detector (SSD) approach,
proposed by Liu in [49]. The mobile manipulation mission is a real-time task, and we choose the SSD
approach since it is renowned for its accuracy and speed performance.

The object-detection module takes RGB images as input and outputs a list of detected targets.
Each detection target contains a category label and the pixel coordinates of the bounding box in the
image. Since the bounding box envelops the contour of the target, the center of the bounding box is
regarded as the center of the object, whereas the longest side of the bounding box is regarded as the
graspable edge. To obtain the 3D position of the object relative to the mobile manipulator, the pose of
the object relative to the camera can be obtained by converting the pixel coordinates of the object center
to the camera coordinate system and the distance is the camera depth value. Therefore, the position of
the object relative to the robot can be obtained by coordinate transformation. The coordinate system
transformation is shown in Figure 4.

{T}

{C}

{G}

{O}

{R}

ROBOT

CAMERA

GRIPPER

OBJECT

IMAGE

Figure 4. Coordinate transforming from the camera to the robot and gripper.

3.2.2. Dynamic Tracking and Grasping

Grasping is one of the important tasks performed in mobile manipulation, especially the
grasping of randomly placed and moving objects. During the process of handling the moving object,
the end-effector needs to locate and track the object in real time. In our method, we combine object
detection and image-based visual servoing (IBVS) method to track and grasp the objects. From the
detection module, taking the image and depth as inputs, we obtained the 2D coordinate in the image
and 3D position in the robot coordinate system of the object’s center. This means that we can map
the end-effector velocities to the velocities of the object center point through the Jacobian matrix,
as follows:

ṗ(t) = Jm(t)q̇(t) (9)

where ṗ(t) represents the velocity of the object center and q̇(t) represents the end-effector velocity at t time,
respectively. Jm(t) is the Jacobian matrix image. Now, we can obtain the desired end-effector velocities,
which are converted into the object center velocities via the inverse Jacobi or the pseudo-inverse,
as shown in Figure 5.
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ሶ𝑝

ሶ𝑞

𝐽m(𝑞)

Object

Gripper

Object center

Gripper center

Figure 5. The tracking module based on visual servo.

To track a moving object in real time, we calibrate the gripper center between the fingers of the
end-effector as the tracking point. Then, we use the error between the tracking point and the object
center as the control parameter. Based on the error, the IBVS method is used as a closed-loop to control
the tracking process. The error e(t) between the tracking point and the object center is:

e(t) = Pc(t)− PT(t) (10)

where Pc(t) represents the object center point; PT(t) represents the tracking point. We take the
derivative of Function (10) and put the result into Function (9). The velocities of the end-effector can
be described as:

q̇(t) = −λJ+m (t)ė(t) (11)

where λ is the parameter of control gain, J+m (t) is the pseudo-inverse and represented as follows:

J+m (t) =
(

JT
m(t)Jm(t)

)−1
JT
m(t) (12)

Generally, the multi-DOF manipulator has singularity, joint limit and maximum extension limit.
To overcome these limitations and achieve better control of the system, we adopt two approaches.
First, due to the manipulator being fixed onto the mobile platform, appropriate platform mobility can
ensure that the object will be within the manipulator’s working space and can avoid the manipulator
reaching the limits of its operating position. Second, we reconfigure the mobile manipulator’s
configuration space in the null space to minimize these undesirable effects. Due to the multiple degrees
of freedom, the arms often have a high degree of redundancy and large null spaces in which the system
can reconfigure, without changing the pose of the end-effector. To address this, the Function (11) can
be further rewritten as:

q̇(t) = −λJ+m (t)ė(t) + Nq̇0 (13)

where N is a null space projection of the Jacobian and q̇0 is a set of additional end-effector velocities.
Manipulability is a metric that represents the distance to a manipulator singularity in joint space.
In this context, the manipulability is computed as:

Ω =
√

det(Jm(t)(JT
m(t)) (14)

Please note that when a joint reaches a singular configuration, the Jacobian loses rank and Ω
becomes zero due to a zero eigenvalue of Jm(t)(JT

m(t)) . We maximize this metric to avoid singularities
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and improve control stability. In the domain of mobile manipulation, the mobile base can be used
to improve manipulability than a manipulator alone. For example, the mobile base can improve the
manipulator’s maneuverability by moving closer to the target, when the arm extends to the edge of
its workspace.

4. Experiment

Mobile manipulation systems usually integrate many actuators and sensors to accomplish
complex mobile operation tasks. This section focuses on the evaluation of the proposed mobile
manipulation system through experimentation. First, the settings of the mobile manipulator system and
the experiment environment are introduced, then the mobile operation task is defined and evaluated.

4.1. System Overview

4.1.1. System Hardware

To evaluate the proposed mobile manipulation system, we developed a mobile manipulator,
as shown in Figure 6. The mobile manipulator is composed of a mobile platform,
a six-degrees-of-freedom (DOF) arm with a two-finger gripper, and multiple sensors for object detection
and environmental perception. The mobile platform consists of a passive universal wheel and two
active drive wheels driven by DC motor. The 6-DOF arm is UR5e, supported by Universe Robotics
and mounted on the mobile platform, with a workspace of 850 mm and a maximum payload of 5 kg.
The end-effector for completing the grasping task is a two-finger gripper, manufactured by Robotiq,
with a stroke of 85 mm. The grip force is adjusted to be under 110 N, and the maximal payload is
5kg. The perception sensors include the LIDAR for SLAM and the RGB-D camera used for grasp.
The control system of the mobile manipulator consists of an upper control system and a bottom
control system. The upper control system runs on a computer equipped with an NVIDIA GPU and
is responsible for the navigation control of the mobile platform and the detection and tracking grasp
of the objects. The bottom control system runs on an STM32 and is responsible for calculating and
executing the motion of each motor according to the upper control movement instruction. The detailed
hardware parameters of the mobile manipulator are shown in Table 1.

UR5e

RealSense

Robotiq

Laser LIDAR

Chassis

Router

UR5e

Controller

Controller

Figure 6. The prototype of the proposed mobile manipulator.
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Table 1. The hardware parameters of the mobile manipulator.

Parameter Value

Computer I7-9700, 16G, 512SSD
GPU GTX 1070, NVIDIA

LIDAR NAV350-3232, SICK
RGB-D Camera RealSense d435i, Intel

Manipulator UR5e, UR
Gripper 2F-85 Gripper, Robotiq
Battery 48V 32AH

Chassis size (L ×W × H) 810 mm × 493 mm × 671 mm

4.1.2. Control Framework

We use the Robot Operating System (ROS) [50], which integrates the subsystems, such as the
mobile chassis, sensors, and manipulator subsystems. The subsystems communicate with each other
through the topic. The ROS-Based Control Framework is shown in Figure 7.

ROS

Chassis

Laser IMU

Odometry Motor

STM32 UR5e Robotiq RealSense

Objects

Operator

Laser 
Driver

IMU
Driver

Detection

MoveIt

Robotiq 
Driver

RealSense
Driver

Template
Library

Move base

UR5e 
Driver

Manipulatorሶ𝑋, ሶ𝜑 𝑛 imageslabel

Global
Planner

Local
Planner

label

LaserScan ∅, 𝜃, 𝜑, ሶ∅, ሶ𝜃, ሶ𝜑, ሷ∅, ሷ𝜃, ሷ𝜑 𝑣, 𝜑

Transform

Label

(u, v)

(𝑥, 𝑦, 𝑧)

imagesdepth

images

depth(𝑥, 𝑦, 𝑧)𝐽𝑜𝑖𝑛𝑡 𝜃

𝐽𝑜𝑖𝑛𝑡 𝜃

(𝑥, 𝑦, 𝑧)

(𝑋, 𝑌)

𝐼/𝑂

Landmarks

Figure 7. ROS-Based Control Framework.

4.2. Experiment Setting

4.2.1. Environment Description

Figure 8 shows the real environment used to evaluate the performance of the proposed mobile
manipulation system in practice. The environment includes a lobby and a corridor, as shown in
Figure 1. The work area is in the lobby and is surrounded by nine laser reflectors. The target objects
are randomly placed on a desk. The height of the desk is 350 mm. The other environment setting is
similar to the indoor environment.

Object

Desk Laser reflectors

Work area Mobile manipulator

Figure 8. The experimental scenario.
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4.2.2. Task Definition

To evaluate the capability of the integrated mobile manipulation system, we choose a classical
mobile manipulation task, i.e., a mobile picking task. This manipulation task is challenging because it
requires a feasible policy that seamlessly considers both the navigation and manipulation, based on
the onboard sensors. The mobile manipulator needs to be able to randomly initialize and start in the
corridor, autonomously navigate to the work area, rapidly search the desk, and then accurately detect
and grasp the object. The task pipeline is as follows:

(1) The mobile manipulator navigates to the work area without collisions;
(2) The mobile manipulator locates and approaches the desk;
(3) The manipulator detects and grasps the object;
(4) The manipulator dynamically tracks and grasps the moving object.

4.3. Experiment Results

4.3.1. Localization Experiments

In real experiment environments, the location of the robot is randomly initialized. The robot
navigates to a target point and measures the error of the position. To evaluate the proposed method,
the AMCL [5] and Hector-SLAM [35] algorithms are compared for the position tasks. As shown
in Figure 9, the position error provided by our approach is better than the others and has almost
the same errors for its orientation. However, compared to the other algorithms, our method has a
smaller steady-state error. In 20 repeated experiments, all methods successfully navigated the mobile
manipulator to the target point, but the position errors vary between methods. As shown in Table 2,
the position error of our proposed approach is lower than the other methods. The position error of
the proposed method is within 12 mm and the pose error is within one degree (the angle with x-axis).
We consider a position error of less than 12 mm to be the standard for successful navigation, and our
proposed method achieves a 95% success rate, which is superior to the other methods. The reason for
this is that in the process of mobile manipulator movement, the weight and position of particles are
changed based on the triangulation matching, the convergence of particles is accelerated, and thus the
position accuracy of the mobile manipulator is improved.

Table 2. The result of the localization

Methods
Position Mean Error (cm) Pose Mean Error (rad) Success Rate

x y Position Theta Position Error < 1.1 cm

AMCL [5] 3.91 3.32 5.14 0.027 0.20
Hector-SLAM [35] 4.63 3.84 6.12 0.032 0.35

Ours 0.82 0.73 1.09 0.017 0.90
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Figure 9. Comparison between the proposed method with AMCL and Hector SLAM. (a) Position Error
vs. Time, (b) Yaw Error vs. Time.

In real scenarios, the situation that less than three reflectors can be detected frequently
occurs due to the movement of people or obstacles. To further evaluate the proposed
method, AMCL, the trilateration-only method and the method combining trilateration and AMCL
(T-AMCL), are compared. As shown in Figure 10, when the robot detects less than three laser
reflectors (around 150 s), the trilateration-only method failed and the T-AMCL method took
about 25 s to re-initialize and converge, thus reducing the positioning accuracy and robustness.
However, our proposed method is to improve the positioning accuracy by improving the particle
weights in AMCL. In this case, the particles can be directly applied to the AMCL algorithm and help
the robot get out of trouble quickly. Therefore, our proposed method is more robust in dynamic
complex environments.
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Figure 10. Comparison results of our proposed method with trilateration-only method, AMCL
and T-AMCL. (a) Position Error vs. Time, (b) Yaw Error vs. Time.

4.3.2. Multiple-Object Grasp Experiments

The speed and accuracy of object detection determines the success of mobile manipulation tasks.
However, the most time-consuming and memory-consuming part is object detection. To address this
issue, we simplify the object-detection model by using the state-of-the-art algorithm NetAdapt [51] to
reduce memory consumption. For the trained model, NetAdapt automatically and iteratively identifies
and removes redundant channels from the model to reduce the computational complexity. In addition,
histogram homogenization, edge detection and mean filtering are used to preprocess the image before
being sent into the detection module. This method improves the success rate of target detection in
dark environments. In the experiment, we choose three light conditions and seven different objects,
such as yida bottle, tennis, paper cup and so on, as shown in Figure 11. For the different objects,
the yida bottle and water bottle have a cylinder shape, the yellow glue and the stick are have a slim
cylinder shape with different textures, the tennis ball has a ball shape, and the cube has a cube shape.
These objects are good representations of most common objects. Table 3 shows the grasp success rates
in different light situations with various objects. The result shows that the system achieves a higher
success rate, except for the bottle, which is bigger than the others and could lead to unstable grasping.
Because blue is a difficult color to be detected in a dark environment, the success rate of detecting the
stick is the lowest. The performance of non-reflective objects is better in the high-light environment
and comparative in the dark environment compared with the reflective objects. Figure 12 shows the
successful detection and grasping for the multiple objects and Figure 13 shows the process of detecting
and grasping in the high-light environment. All of these operations can be done in real-time.
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yellowglue

tennis cubic

bottle stick

papercup

Figure 11. The seven different objects.

1# 2# 3# 4#

Object Detection Object Detection Object Detection Object Detection

Object DetectionObject DetectionObject DetectionObject Detection

1# 2# 3# 4#

a b c d

e f g h

Figure 12. The process of multi-object grasping. (a) Detecting the multiple objects(1# yellow glue, 2# paper
cup, 3# tennis, 4# yida). (b) Approaching the 1# object. (c,d) Grasping the 1# object. (e) Detecting the 4#
object. (f) Approaching the 4# object. (g,h) Grasping the 4# object.

a b

c d

Figure 13. The process of grasping in a high-light environment. (a) Detecting the object.
(b) Approaching the object. (c) Grasping the object. (d) Placing the object.
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Table 3. Mobile manipulation success rate for different objects in different light conditions

Object Type
Light Conditions

High-Light Normal Dark

yida 0.90 0.95 0.80
yellowglue 0.80 0.90 0.80

tennis 0.95 0.95 0.70
cubic 0.85 0.90 0.75
bottle 0.75 0.85 0.75
stick 0.85 0.90 0.50

papercup 0.90 0.90 0.65

4.3.3. Dynamic Tracking Grasp Experiments

In some situations, the mobile platform needs to deal with a moving object. As such, the manipulator
needs to have the ability to dynamically track and grasp the object. As described in Section 3.2, the dynamic
tracking grasp systems are combined with the object detection and visual servo. In the tracking grasp
experiment, the object is moved randomly by the operator and the manipulator tracking the object
depends on the object-detection module. The dynamic tracking grasp process is shown in Figure 14.
The result shows that the manipulator can track and grasp the object well when the object velocity is
normal (v < 0.1 m/s). However, when the object moves fast, the manipulator fails to track the object and
stops moving, waiting for the target to reappear in order to continue tracking.

a b c d

e f g h

Figure 14. The process of dynamic tracking grasp. (a) Detecting the object. (b,c) Approaching the
object. (d–f) Dynamically tracking the object. (g,h) Grasping the object.

4.3.4. Integrated System Experiments

To evaluate the integrated system, the mobile manipulator is assigned to execute a complex
mobile manipulation task of object grasp. First, the position of the robot is randomly initialized in
the corridor. Then, the operator sends the object name. Next, the mobile manipulator navigates
to the target area and completes the high-precision self-location and search of the target desk by
rotating. Then, the manipulator detects and returns a list of results to the operator and autonomously
grabs the target object. Some of the robot navigation and grasping process are shown in Figure 15.
Table 4 summarizes the success rates of mobile manipulation with three kinds of objects. Compared
with other objects, the papercup has the lowest grasping success rate due to its soft structure, while the
tennis ball has the highest detection and grasp success rate, because its spherical shape is easy to be
recognized and grasped.
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a b c d

e f g h

Figure 15. The process of autonomous mobile manipulation. (a) Robot initiating. (b,c) Navigating
to the target area. (d,e) High-precision localization based on laser reflectors. (f) Detecting the desk.
(g) Detecting the object. (h) Grasping.

Table 4. Mobile manipulation success rate for different objects (total = 20)

Object Type
Success Rate

Navigation Detection Grasping

yida 0.85 0.88 0.93
tennis 0.95 0.95 0.94

papercup 0.90 0.89 0.88

4.3.5. Discussion

Our experiments demonstrate the effectiveness of the proposed method on a mobile robot.
The mobile manipulator can automatically navigate to the target area and locate itself with high-precision,
and then detect and grasp the object based on vision. For the moving object, based on visual servo, it can
dynamically track and grasp the object in real time. However, some problems exist. On the one hand,
the positioning accuracy depends on the accuracy of the position of the laser reflectors. Although the robot
can achieve high-precision positioning based on laser-reflector information, if the position of laser-reflector
changes, the matched template library needs to be reconstructed. On the other hand, if we combine object
detection with the visual servo, the closed-loop control and dynamic tracking grasp of the manipulator
are realized. To grasp the objects precisely, the performance of the proposed method should be improved,
which is a subject of our future work.

5. Conclusions

In this paper, a mobile manipulation system is proposed, which integrates navigation, high-precision
positioning, object detection and dynamic tracking grasp. Based on the triangle matching with
the laser-reflector data, the mobile robot can achieve high-precision positioning in a target area.
The object-detection model can detect multiple objects under different lighting conditions. The closed-loop
control of manipulator and the dynamic tracking control of moving targets are realized by combining
target detection with visual servo. Finally, experiments in the real world demonstrate the effectiveness of
the proposed method. The mobile manipulator can autonomously complete mobile manipulation tasks in
a real environment, and can achieve a high success rate of 90% for localization and 95% for grasping.

In future research, we will pay more attention to the intelligence and stability of robots in
mobile operation. First, we will study the practical application of visual navigation in mobile robots,
further integrating visual information with laser data, or replacing laser data to improve the robot’s
ability to perceive environmental data. Second, we would like to study the object pose estimation
method based on vision and apply it to the mobile manipulation. Finally, we will further study
the cooperative motion of the mobile chassis and the mechanical arm, and solve the problem of
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occlusion in the grasping process, and apply it to more complex mobile manipulation tasks and
complex environments.
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