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Abstract: The understanding of occupancy patterns has been identified as a key contributor to
achieve improvements in energy efficiency in buildings since occupancy information can benefit
different systems, such as HVAC (Heating, Ventilation, and Air Conditioners), lighting, security,
and emergency. This has meant that in the past decade, researchers have focused on improving
the precision of occupancy estimation in enclosed spaces. Although several works have been done,
one of the less addressed issues, regarding occupancy research, has been the availability of data
for contrasting experimental results. Therefore, the main contributions of this work are: (1) the
generation of two robust datasets gathered in enclosed spaces (a fitness gym and a living room)
labeled with occupancy levels, and (2) the evaluation of three Machine Learning algorithms using
different temporal resolutions. The results show that the prediction of 3–4 occupancy levels using the
temperature, humidity, and pressure values provides an accuracy of at least 97%.

Keywords: occupancy estimation; environmental variables; Internet of Things; enclosed spaces;
Machine Learning; energy efficiency

1. Introduction

The understanding and modeling of occupancy patterns have been identified as key contributors to
achieve improvements in energy efficiency [1,2]. Therefore, the International Energy Agency (IEA), in their
Annex 66 [3] and Annex 79 [4], highlights the need for further explorations in this area. For example,
the prediction of occupancy status in buildings and homes can lead to energy savings, between 30%
and 50% of total consumption [2,5]. It is estimated that buildings represent from 30% to 40% of the total
consumed energy and that such energy came mainly from fossil fuels. Thus, it is expected that in the next
20 years, the total energy consumption for buildings will increase by up to 40% [5–7].

Several systems are benefited by the occupancy information gathered in buildings, mainly the
Heating, Ventilation, and Air Conditioners (HVAC) system. Similarly, real-time occupancy information
can enable and benefit other building management services, such as security, emergency systems,
fire systems, flow management, and automated energy management [5,8–10]. However, occupancy
detection systems face several challenges, such as reliability, adaptability, and accuracy.

The efforts to estimate occupancy in buildings can be classified into two categories: direct methods and
indirect methods [8]. On the one hand, direct methods are based on technologies that can directly report the
presence of human beings. Some examples of these technologies are video cameras incorporating people
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counting methods and infrared illuminators, Radio Frequency Identification (RFID) sensors, optical tripwires,
Wireless Fidelity (WiFi), and Bluetooth Low Energy (BLE). Although direct methods have proven to be a
viable mechanism for measuring occupancy, they present serious disadvantages, such as expensive
hardware, privacy issues, intrusiveness, complex processing, and installation feasibility [1,5,8,10,11].
On the other hand, indirect methods derive occupancy information by measuring the effects of human
beings in an enclosed environment, these effects can be changes in CO2 concentration, temperature,
humidity, luminosity, sound levels, among others. To measure these environmental parameters,
indirect solutions use the following technologies: microphones, vibration detectors, CO2 concentration
monitors, as well as light, humidity, and temperature sensors. Indirect methods are considered to be a
valid alternative to deal with the limitations of direct methods [8,11,12].

Another important topic regarding occupancy detection is the Internet of Things (IoT). IoT has
increased drastically the number of devices connected to Internet and the computational power
provided by them. Furthermore, one characteristic of the IoT devices is their significantly lower cost
compared to equipment used in surveillance solutions or in existing commercial systems for occupancy
detection [5,9,10]. This and other characteristics have led to the fast development of IoT, which in turn
has driven Edge Computing (EC) [10].

These benefits have sparked the interest of researchers on these technologies. For example,
Parise et al. [13] developed an open-source IoT architecture for occupancy detection based on
temperature, humidity, and pressure as environmental parameters, and composed of an EC
environment and a cloud-based infrastructure. Similarly, Zemouri et al. [10] used EC devices and a
cloud-based platform to detect occupancy in office buildings. In the same way, Adeogun et al. [12]
detected and estimated occupancy in an office building by implementing an IoT LoRa (low-power
wide-area network protocol) monitoring system based on a combination of temperature, humidity,
light, and CO2 (as environment parameters), nine different sensors, and more than 20 nodes.

Nevertheless, despite many efforts by researchers to solve the problem of detecting occupancy,
little attention has been paid to building a standard dataset that allows different algorithms to be
easily compared. For the specific case of indirect techniques for occupancy detection, there are only a
few publicly accessible datasets [14–17] but most of them are poorly documented or have not been
used in formal research. There are two datasets that can be used for occupancy detection: Occupancy
Detection Dataset [18] and Ecobee’s Donate Your Data program [19]. Occupancy Detection Dataset
is from the University of California, Irvine (UCI), which contains seven features and more than
20,000 instances [18]. While this dataset is publicly available, it lacks information related to the number
of people or the occupation range, which represent important attributes to estimate the occupation.
Ecobee’s Donate Your Data program is made up of a large amount of data from various residences
at different seasons of the year [19]. However, this dataset does not have the ground truth regarding
occupancy and the access is not guaranteed (it can only be accessed upon request from Ecobee).

Regarding the occupancy estimation, several works have been carried out based on one or more
environmental variables [1,8,11,12,20–22]. However, few works that did not use non-environmental
variables as additional support for the estimation were found. On the one hand, there are works, such as
Adeogun et al. [12], which achieved an estimation accuracy of 0.91 using pressure, humidity, and CO2,
in addition to a Passive Infrared (PIR) sensor. A second example is the work of Chitu et al. [21],
which in addition to using CO2, also registers the state of all the airflow sources, obtaining an accuracy
of 0.69. On the other hand, among the works that only use environmental variables, Jiang et al. [22]
and Zhou et al. [11] were found. Both used CO2 to estimate occupancy, obtaining an accuracy of
0.77 and 0.82, respectively. Another example is the work of Viani et al [8], which obtained an accuracy
of 0.82 using temperature, humidity, and CO2. This is another of the few works in which temperature
and humidity are considered to estimate occupancy. It is relevant to mention that there are no research
works based only on environmental variables that do not use CO2. Furthermore, none of the studies
based only on environmental variables presents an accuracy similar to that obtained by works using
environmental and non-environmental variables, such as Adeogun et al [12].
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Thus, this research work aims to generate an open dataset consisting of environmental variables
collected from real scenarios (indirect method) as well as evaluating different Machine Learning
algorithms on this dataset in order to estimate the occupancy level in an enclosed space. Thereby,
the main contribution of this article is two-fold:

1. Two datasets built with real-world information: one dataset collected from a fitness gym and
another gathered from the living room in a house inhabited by seven people.

2. The evaluation of three Machine Learning algorithms: Support Vector Machine (SVM), k-Nearest
Neighbor (kNN), and Decision Trees (DT), to estimate 3-4 occupancy levels with different temporal
resolutions using the built datasets and only the temperature, humidity, and pressure values.

It is important to point out this work is focused on estimating occupancy based solely on internal
environmental conditions in enclosed spaces; external environmental conditions are out of the scope
of this research. Furthermore, the internal environment is considered static, as temporal dependency
in the data is not taken into account. In addition, even though the proposed solution design took into
consideration integrating with other building management services, the real integration with such
systems is out of the scope of this research as well.

The rest of this document is organized as follows. Section 2 provides the related work to
the detection and estimation of the occupancy in enclosed spaces. Then, Section 3 addresses the
methodology carried out in this approach and the approach itself. Subsequently, Section 4 presents
the results of the proposed experimentation as well as its discussion. Finally, Section 5 gives the
conclusions and future work.

2. Related Work

This work focuses on estimating occupancy in enclosed spaces using Machine Learning algorithms
and environmental variables. To later use these results to reduce the energy consumption in buildings
derived from HVAC systems, which are powered mainly by fossil fuels. In this section, relevant
literature for this research is reviewed.

Of the multiple environmental variables that exist to determine the presence of human beings,
temperature, humidity, and CO2 are among the most frequently used [1,5,7–13,18,20–22]. A reason for
this is the large variety of sensors available on the market and their accessible cost when compared
to more traditional solutions, such as weather stations. Among the works that use these variables,
three approaches were found: (1) those based on temperature and humidity, (2) those based on CO2,
and (3) those based on a model that combines the three mentioned variables plus others.

Among the most recent works based on temperature and humidity, the research of
Zemouri et al. [10] and Huchuck et al. [7] were found, which proposed solutions to detect occupation
based mainly on these variables and excluding the use of CO2. They obtained an accuracy of
0.83 and 0.75, respectively, despite that their research works were limited only to the detection
problem; that is, the authors did not carry out any estimation approach, which is generally considered
to be a more difficult task. Moreover, both approaches obtained lower accuracies compared to
other approaches [5,13]. On the other hand, among the works focused on CO2, the studies of
Jiang et al. [22] and Chitu et al. [21] were identified, which went one step further and tackled the
problem of estimating the level of occupation in ranges (high, medium, and low). They obtained an
accuracy of 0.77 and 0.69, respectively. As mentioned before, for the estimation issue the accuracy
is a little lower than in the detection, however, there are works with multiple use of environmental
variables that have obtained a significantly higher accuracy (0.91) [12].

An effective way to obtain better results is by using multiple environmental variables together,
specifically, temperature, humidity, and CO2 [21]. This was the approach followed by Parise et al. [13],
obtaining a detection accuracy of 0.96. Another example is the work of Kumar et al. [5], which obtained
also for detection accuracy of 0.99. Another way in which researchers have tried to increase accuracy is
by adding the state of doors and windows to the set of features used by the algorithms. Cali et al. [20]
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explored this idea, finding that with the 4.9% of the time that a window is open it is enough to have
benefits in the accuracy of the model. Adeogun et al. [12] also incorporated this idea into their work.
They trained a detection and estimation model using the temperature, humidity, CO2, windows,
and doors; and used a two-layer Feedforward Neural Network (FNN), obtaining an accuracy of 0.94
for detection and 0.91 for estimation.

Although very good levels of accuracy have been achieved for detection and estimation, little has
been done to achieve a generalized solution that can replicate these results in different spaces. This gap
is addressed by Adeogun et al. [12], where they tried to use a trained algorithm in one room to perform
the prediction in another room, obtaining a significant reduction in accuracy, from 0.94 to 0.60. Another
important factor to consider is that few works have used only the three environmental variables
mentioned above without the support of other auxiliary variables or sensors. For example, the work of
Kumar et al. [5], which used the UCI dataset [18], used also light measurement which, for the case
of detection, has been shown to be one of the variables that best predicts occupancy for the interior
of the locations [12]. One of the most outstanding works is the work of Viani et al. [8], which only
uses temperature, humidity, and CO2 without the help of supporting variables. They used only these
three variables and along with a network of 29 IoT sensors, trained an SVM to estimate the occupation,
obtaining a promising result of 0.82 of accuracy. Using only these three variables is a very important
matter because unlike other variables, it is common for HVAC systems in buildings to already have
such information available; and in the absence of this, the necessary sensors can be installed in a
simple, non-intrusive, and low-cost way [22].

Another problem that can be noticed among the different works is the difficulty in comparing
results due to the difference in the scale of the demos implemented for the experimentation of each one.
These variations occur in both the temporal resolution and the spatial resolution of the experiment.
For example, in the case of temporal resolution, the range of the experiments varied from eight
days [20] to a full year [7], and in the case of spatial resolution, the scale is extended from one room [13]
to an entire building [8]. An additional factor that could be added is the number of devices used,
where a variation from one [10] to 29 devices [8] was found. Likewise, there are significant variations in
the number of people involved, from three [10] to 28 people [22]. It is important to note that as the size
of the demo increases (mainly in spatial resolution and the number of people in the case of estimation),
a reduction in the maximum accuracy achieved is perceived. For example, the works [11–13] which
achieved high accuracy results in the case of estimation used four to six people and no more than two
rooms in their experiments.

Regarding the algorithms used for the detection and estimation of the occupation, three categories
were found: (1) Physical Models, (2) Machine Learning, and (3) Deep Learning. In the first
category, the mass balance equation is found and used almost exclusively with works based on CO2

concentration. Cali et al. [20] used this technique to estimate the occupation of a room for eight days,
obtaining a correct estimation in 79% of the monitored period. Lately, this approach has lost interest
because, in general, better results have been achieved with techniques of the other two groups [5,12].
As a consequence, currently, Machine Learning and Deep Learning are the most explored approaches
among researchers. In the Machine Learning category, some of the most frequent algorithms are
SVM, kNN, Random Forest (RF), Hidden Markov Model (HMM), Extreme Learning Machine (ELM),
and Logistic Regression (LR) [1,5,7–10,13,21,22]. Regarding the Deep Learning category, algorithms
like Long Short-Term Memory (LSTM), FNN, and Deep Forest were identified [7,11,12].

A final factor to note is that the vast majority of the articles reviewed used a dataset of their own
elaboration, and only three of them worked with a dataset provided by other researchers [5,7,21].
This is important because it represents one more obstacle to make a fair and objective comparison of
the results obtained in each work. Likewise, it was found that some of the datasets that were used in
previous scientific publications are not publicly available to the community for further experimentation.
This is also a major drawback to the development of the occupation estimation field. Table 1 presents a
condensed summary of the reviewed literature.



Sensors 2020, 20, 6579 5 of 21

Table 1. Summary of the reviewed related work.

Author Year Variables Algo. OR SR TR BR GT Demo Scale Dataset

Viani et al. [8] 2014 temp., hum., CO2 SVM 2 3 N/A 0.82 acc. N/A 29 IoT nodes own

Cali et al. [20] 2015 CO2 Prof., CO2,
windows, doors Mass balance 2 3 N/A 0.79 custom. man. 8 d., 5 rooms own

Fiebig et al. [9] 2017 VOC, Network, Bt.
K.F., calendar MLP, kNN, DT, RF 1 1 N/A 0.75 F1 man. 52 d., 2 bedroom apt. own

Parise et al. [13] 2019 temp., hum., CO2,
PIR SVM 1 3 10 s 0.96 F1 N/A 2 weeks, 1 room own

Adeogun et al. [12] 2019 press, hum., CO2, PIR,
windows, doors FNN 2 3 5 min 0.91 acc. man. 6 weeks, 2 off., 4 pers. own

Zemouri et al. [10] 2019 temp., hum. LR, LDA, kNN,
CART, NB, SVM, GB 1 3 5 min 0.83 acc. video 37 d., 1 off., 3 pers. own

Huchuck et al. [7] 2019 temp., hum., o. temp.,
PIR, others

LR, MM, HMM, RF,
LSTM 1 3 30 min 0.75 acc. No 1 year, 100 tstat. DYP [19]

Chitu et al. [21] 2019 CO2, Air Flow RF, ELM 2 3 1 min 69.17 acc. algo. 15 d., 4 rooms USD-OD [23]

Jiang et al. [22] 2020 CO2
Bayessian Filtering
with ELM and IMM 2 3 15 min 0.77 acc. video 30 d., 1 off., 28 pers. own

Kumar et al. [5] 2020 temp., hum., hum.
ratio, CO2, light ELM 1 3 1 min 0.99 acc. photos building office UCI [18]

Zhou et al. [11] 2020 CO2 gcForest 2 2 1 min 0.82 acc. video 20 d., 1 lab., 4 pers. own

Yuan et al. [1] 2020 IR array sensor, temp. IHMM 2 3 N/A 0.81 acc. video 6 IoT nodes, 1 lab. own

Columns: Algorithms (Algo.), Occupancy Resolution (OR), Space Resolution (SR), Time Resolution (TR), Best Result (BR), Ground Truth (GT). Variables: Temperature (temp.),
humidity (hum.), CO2Accumulation (CO2), CO2Occupancy Profile (CO2Prof.), Windows State (windows), Doors State (doors), Network Connections (Network), Bluetooth Key
Fobs (Bt. K.F.), Pressure (press), outdoor temperature (o. temp.), infrared(IR), Volatile Organic Compound (VOC). Algorithms: SVM (Support Vector Machine), MLP (Multilayer
Perceptron), kNN (k-Nearest Neighbor), DT (Decision Tress), RF (Random Forest), FNN (Feedforward Neural Network), LR (Logistic Regression), LDA (Linear Discriminant Analysis),
CART (Classification and Regression Trees), NB (Naive Bayes), GB (Gradient Boost), MM (Markov Model), HMM (Hidden Markov Model), LSTM (Long Short-Term Memory), ELM
(Extreme Learning Machine), gcForest (Multigrain Cascade Forest), IMM (Inhomogeneous Markov Model), IHMM (Inhomogeneous Hidden Markov Model). Occupancy Resolution:
(1) Detection, (2) Estimation. Space Resolution: (1) Building, (2) Floor, (3) Room. Best Result: ACC (Accuracy), F1 (F1 Score), Custom (in a period, percentage of time the algorithm
was correct). Ground Truth: M (manual), V (video), P (photograph). Demo Scale: D (days), W (weeks), Y (years), off. (office), apt. (apartment), lab. (laboratory), pers. (person),
tstat (thermostat).
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As a conclusion for this review of related work, it was found that good levels of accuracy have
been reached for both detection and estimation of occupancy. However, variations in the spatial and
temporal scale, number of sensors, and number of participants make it difficult to accurately compare
the different obtained results. Likewise, it was found that there are few works based solely on the use of
environmental variables, such as temperature, humidity, and CO2 without the help of other variables
or sensors (Light and PIR mainly), indicating that this approach needs to be explored. It is also noticed
the existence of a trend towards preferring Machine Learning and Deep Learning techniques over
physical models. Therefore, this work aims to focus on the gaps in the field of occupation mentioned
above, developing a Machine Learning model based only on the use of environmental variables,
which allows obtaining better results than those in the current literature.

3. Estimating Occupancy Levels in Enclosed Spaces Using Environmental Variables

Firstly, the methodology followed in this approach is presented. Subsequently, the research and
development of the proposed estimation approach are described.

3.1. Methodology

This research involves collecting environmental data from enclosed spaces that will be addressed
through Machine Learning techniques to predict occupancy levels in those spaces. Therefore,
the methodology followed includes both activities related to the data collection, preprocessing,
and exploration, as well as the selection and evaluation of the Machine Learning algorithms used to
estimate occupancy levels. These activities are listed below.

• Definition of the collection sensors. The sensors used to collect the data are of utmost importance
since the quality of the data available for further analysis and experimentation will depend on
them. For the specific case of this research, sensors capable of collecting temperature, humidity,
and pressure values with a resolution of 1 s are required in order to obtain a high-resolution
dataset. This feature is key as one objective of this research is to explore the effects of data
resolution on the prediction of occupation.

• Data collection. Two different locations will be selected for the data collection. This will allow
obtaining independent datasets to contrast and enrich the results obtained from the experimentation.

• Data preprocessing. A curation of the data will be performed to remove missing values, analyze
and update/remove sensor reading errors, standardize collected data, and integrate the labels
corresponding to the occupancy levels for each record. All this processing will improve the
quality of the collected data for further experimentation and publication.

• Data exploration. A visual exploration of the data will be carried out to find patterns and
characteristics that could help in the interpretation of the results produced by the predictive models.

• Selection of prediction models. Three Machine Learning models widely used in the detection
and estimation of occupancy levels will be selected through a review of the literature.

• Design of experimentation and evaluation scenarios. Experimentation scenarios will be
designed to find an optimal subset of attributes as well as the optimal resolution of the dataset.
In the same way, assessment scenarios will be proposed using the selected evaluation metric,
which will allow comparing the results to determine the best estimation algorithm.

3.2. Definition of the Collection Sensors

For data collection, an electronic circuit made up of an environmental sensor model BME280 [24]
from Bosh and an controller model ESP32 [25] from Espressif Systems was designed, as shown in
Figure 1.

On the one hand, BME280 is a low-cost, low-energy consumption sensor designed for
meteorological monitoring. This sensor allows measuring the relative humidity (%), temperature (◦C),
atmospheric pressure (hPa), and altitude (m) of the space in which it is located. Sensor ranges and
accuracy are listed below: pressure 300 to 1100 hPa (±1 hPa accuracy), temperature −40 to 85 ◦C
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(±1 ◦C accuracy), relative humidity 0% to 100% (±3% accuracy), and altitude from 0 to 30,000 ft (±1 m
accuracy) [24]. These characteristics make it suitable for the purposes of this research.

On the other hand, the ESP32 controller is a low-cost, low-energy consumption microcontroller
with wireless connectivity, i.e., WiFi and Bluetooth. It supports the security standards WPA and WPA2,
which makes it able to connect to modern wireless networks, and has a dual-core 32-bit 160 MHz
processor and 520 KiB of static random access memory (SRAM). Additionally, ESP32 has software
development kits for the main IoT platforms (e.g., Arduino), which facilitates its integration with other
solutions. Hence, these characteristics make it suitable for a wide range of projects, including IoT [25].

Figure 1. Electronic circuit used for data collection.

3.3. Data Collection

The locations selected for the data collection are a fitness gym at a university and a private
residential home. These locations were selected because of their contrasting characteristics in
environmental and design-use conditions. On the one hand, the fitness gym has an AC unit and
mechanical ventilation operating 24 h. It also has a capacity for 30–40 people to exercise aerobically and
anaerobically. These high-intensity activities are expected to increase the occupants’ body temperature
and exhalation rate, which could impact the enclosed space’s temperature and humidity saturation [26].
On the other hand, a living room is a significantly smaller space with a capacity for up to 10 or 12 people.
It does not have mechanical ventilation, but it has an AC unit and a roof fan, which are turned on
at specific times. This space is designed to relax and, in general, to do low-intensity activities. Thus,
the contrasting characteristics of these locations help to ensure the proposed approach will be validated
under various environmental conditions. Both locations are described below.

3.3.1. Fitness Gym

The monitored space corresponds to the employees fitness gym of the Tecnologico de Monterrey
in Mexico. Such a facility has an AC system with mechanical ventilation, which is an important factor
due to AC systems try to minimize variations in temperature.

The collection was carried out over six days between 18 September 2019 and 2 October 2019.
The data was measured in sessions of approximately 20 min at three different times of the day:
morning, afternoon, and night. These schedules correspond to the periods of greatest traffic of people
in the gymnasium reported by the gym manager, reason why these periods were chosen for data
collection. The resolution of the measurements was one second, obtaining approximately 10 k records
corresponding to about 180 min.

Due to the layout of the space and the limitations of available resources, it was not possible to use
auxiliary cameras or sensors to record the ground truth. Thus, the data indicating the occupation range
was entered manually by the person responsible for the collection. These occupation ranges were
established and labeled in the following three levels: L (low), M (medium), and H (high). However,
the number of people observed was not recorded.
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3.3.2. Living Room

The monitored space corresponds to the living room of a residential building. The monitored area
is approximately 8 × 4 m and has mechanical ventilation: an AC unit, a ceiling fan, and sometimes,
a floor fan. Furthermore, this space lacks windows and therefore has no natural ventilation.

The electronic circuit was carefully placed between the living room and the dining room,
approximately five meters away from the AC unit. This in order to prevent the sensor from having
direct contact with the air flow coming from the AC unit, if this was turned on. A sketch of the living
room is shown in Figure 2.

Figure 2. Sketch of the living room. The locations of the environmental sensor, ceiling fan, and AC unit
are shown. The monitored area is approximately 32 m2.

The collection was carried out for 11 days between 14 May 2020 and 4 June 2020 in sessions
with an average duration of 12 h, although some sessions lasted 24 h (there are periods of inactivity
corresponding to early morning). The resolution of the measurements was one second, obtaining
approximately 300 k records corresponding to 5000 min.

Regarding the ground truth, a camera was used to take photos of the living room every 10 min
and therefore, the number of people can be recorded. This is an improvement over the fitness gym
dataset as the exact occupancy is an unbiased value. Thereby, the maximum registered occupancy was
seven people and the minimum was zero.

3.4. Data Preprocessing

To carry out the preprocessing of the collected data, the datasets were exported from the cloud
storage as CSV files. In the case of the living room, each measurement day was stored in a different
file and additionally, the ground truth of the entire collection was also recorded in a separate file.
When crossing the files, small periods were found where there were data measurements but not
their ground truth. This due to technical details during the collection, i.e., camera storage limitation.
These periods were a minority, representing less than 1% of the data. As they were few records, it was
decided to discard them.

Likewise, when the datasets corresponding to the fitness gym and living room were checked for
missing values, only six measurements with missing values were found. Hence, these missing values
were completed using the average value of the previous instance and the next instance. This solution
was considered adequate since the high resolution of the dataset compared to previous works that
used lower resolutions (1 min or more) [5,10,12,21].

Finally, the altitude information was discarded from the final datasets. This is because the altitude
is not related to the problem of occupation, therefore, it makes no sense to leave such information.
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Moreover, according to the technical sheet of the BM280 sensor [24], the altitude information is
calculated using pressure measurements, thus, the discriminant capacity that this variable could
have would be contained in the pressure variable. Similarly, this relationship was verified by a
Pearson correlation analysis in which both variables showed a perfect positive correlation; that is,
their correlation was 1.0.

3.4.1. Establishing the Occupancy Levels

As mentioned in Section 3.3, in the case of the fitness gym, the occupancy levels were recorded
directly by the person responsible of the data collection. These levels are L (low), M (medium), and H
(high). For this dataset, the level corresponding to Empty was not recorded. However, since the data
collection was carried out during the busiest times of the fitness gym, it is unlikely that there was an
empty period. As the number of people corresponding to each level had not been established and
recorded, the values of the occupancy levels are subjective.

In the case of the living room, as mentioned above, the occupation records were obtained
from photographs taken at ten-minute intervals. Thereby, the occupancy levels were established
taking proportional intervals between the maximum and the minimum number of people observed,
as described in [1]. Hence, since the maximum number of people recorded was seven, the occupancy
levels were established as follows: Empty (0), Low (1–2), Medium (3–5), and High (6–7).

3.4.2. Generating of Datasets with Different Resolutions

For each collection scenario, eight additional datasets were generated using the following
resolutions: 10 s, 30 s, 1 min, and 5 min. That is, two datasets were generated for each resolution:
the first one, taking only one sample for each period and the second one, averaging the samples of the
selected resolution.

In the averaged datasets, for each feature (humidity, pressure, and temperature), two extra features
were generated, which are kurtosis (kurt) and standard deviation (std), having a total of nine features
for each dataset. The reason to add these features is that the information generated, related to the data
for a given resolution window, can be useful to differentiate the occupancy levels. For instance, the std
measures provide how close or far the values are to the mean, while kurt measures represent how
frequent the extreme values can be expected. This idea is supported by the work of Zemouri et al. [10],
where the standard deviation of environmental measurements (in conjunction with some de-trending
techniques) were used to detect the occupancy with an accuracy of 0.87.

3.4.3. Partitioning and Balancing

Each dataset was partitioned using 20% for testing and the rest for training. During this process,
it was found that the datasets were imbalanced. This represents a problem because Machine Learning
models are frequently becoming biased towards the majority class, hence, rendering them useless to
identify the minority class. An effective way to mitigate this problem is by performing an oversampling
to balance the classes represented in the datasets. For this purpose, the Adaptive Synthetic (ADASYN)
algorithm [27] was used.

The basic functioning of ADASYN is as follows: First, the number of instances of the minority
class to generate is calculated. Then, the “difficulty” of each instance xi belonging to the minority class
is calculated, taking the kNN and calculating the ratio ri = ∆i/K; where ∆i is the number of neighbors
belonging to the majority class for xi instance. Afterward, the ratio ri is used to calculate the number
of instances gi to generate for each instance xi belonging to the minority class. Finally, the gi instances
for each xi in the minority class are generated as follows: an xzi is randomly selected from the closest
neighbors to xi, and after that, the instance si = xi + (xzi − xi) ∗ λ is generated; where λ is a random
number ∈ [0, 1].

Two important differences are found among ADASYN and other balancing algorithms
(e.g., SMOTE): (i) ADASYN focused on generating new instances using the most “difficult” instances,
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and (ii) ADASYN introduces a random error λ to reduce linear dependency between instances.
These differences make it a preferred choice over SMOTE.

Therefore, after applying the ADASYN algorithm over the fitness gym and living room datasets,
the size of the training datasets before and after balancing are shown in Table 2.

Table 2. Datasets before and after being balanced.

Dataset Before After

Class Empty Low Medium High Empty Low Medium High

Living room 10 s 4098 16,325 2830 547 16,353 16,325 16,330 16,329
Living room 30 s 1345 5450 956 188 5445 5450 5436 5452
Living room 1 min 673 2730 480 92 2720 2730 2720 2732
Living room 5 min 136 553 96 19 556 553 555 554
Gym 10 s N/A 202 430 189 N/A 430 430 430
Gym 30 s N/A 149 149 59 N/A 149 149 150
Gym 1 min N/A 33 77 34 N/A 77 77 77
Gym 5 min N/A 21 9 5 N/A 21 21 21

3.5. Data Exploration

For each scenario, the original dataset with the one-second resolution is used to perform the
data exploration. First, variance analysis is carried out to understand how much measurements
change between occupancy levels. Then, a time-line visualization of the environmental variables and a
three-dimensional plot of the humidity, temperature, and pressure values is performed to identify any
possible pattern.

3.6. Selection of Prediction Models

For the occupancy prediction, three classification models frequently used in the reviewed
literature were selected [8–10,13]. Each model has different configuration parameters, which allow its
performance to be adjusted. The fundamental operation of each model is described below:

• k-Nearest Neighbor (kNN): This is a classifier based on the concept of similarity. It finds the k
neighbors most “similar” to the instance to be classified, and assign the statistical mode as the
class of the new instance. Although there are several similarity measures, such as Manhattan,
Minkowski, and Chebyshev, Euclidean distance was selected for this work because of its ease of
being generalized in domains of n features [28]. Another important parameter is k, the number of
neighbors used to classify each point. It is important to choose the value of k carefully since a low
value increases the model bias but a value too high produce overfitting and an increment in the
computational cost.

• Support Vector Machine (SVM): This algorithm can be used for classification and regression.
It works by performing a projection of the data points to a higher dimension, where they can
be separated using a line or a hyperplane [29]. The points that lie exactly at the limit of the
decision surface are called Support Vectors. For the systemic search of the optimal hyperplane,
a kernel function is used. Examples of some kernels are (but are not limited to): linear, polynomial,
and radial base function (RBF). Besides the kernel, other important parameters of the model are the
regularization parameter C and Gamma, which control the tolerance to classification errors and
how large the area of influence of the decision boundary is (for non-linear kernels), respectively.

• Decision Trees (DT): This classifier works by creating a tree based on the features. Each non-leaf
node of the tree represents a partitioning rule of the dataset using some attribute. The tree is
recursively created by calculating the importance of each feature after a split. An important
benefit of DT is that the result can be easily interpreted, i.e., to understand why a specific point
was assigned to a class, just read the rule at each node. Among the parameters to optimize the
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model are the maximum depth, the minimum number of instances to make a separation, and the
criteria to determine the importance of each attribute [28].

3.7. Design of Experimentation and Evaluation Scenarios

To test the prediction capabilities of the selected models, two experiments were designed. Each one
of the experiments was applied to the fitness gym and living room datasets. In each case, an exhaustive
search was made to find the best set of parameters using the training splits along with stratified
cross-validation of five-folds and four repetitions. Thereby, the corresponding test split of each dataset
was used to obtain the final scores on each experiment. The proposed experiments are described below:

• Feature Selection: To find the optimal subset of features, two feature selection techniques were
implemented: (i) recursive feature elimination (RFE), and (ii) k-best with ANOVA F-value as
score function. Chi-square was discarded as a score function due to the data contains negative
values. This experiment was executed on the averaged 10-s datasets. This is because they are
the highest resolution datasets that contain the extra attributes (kurtosis and standard deviation).
For each scenario, the prediction was made using the following datasets:

– FULL: 10 s averaged dataset with nine attributes (including kurtosis and standard deviation
for humidity, pressure, and temperature).

– RFE: 10 s averaged dataset with five best features selected by the RFE technique.
– KBEST: 10 s averaged dataset with five best features selected by the k-best technique.
– MIN: 10 s averaged dataset with three features (humidity, pressure, and temperature).

• Resolution Selection: Predictions using the distinct resolution datasets were performed: 10 s, 30 s,
1 min, and 5 min. Additionally, predictions were also made using the corresponding averaged
datasets to contrast the performance of the models using a single sample against the averages.

Evaluation Metrics

Accuracy was used to evaluate the three selected models. As the prediction of the occupancy
level is a multi-class problem, the macro-average was used to obtain the final value in each experiment.
This is the approach followed by other works in occupancy detection [1,12]. The accuracy expresses
the proximity of the obtained value to the real value. One of its benefits is that it takes into account the
predicted negative values correctly. Formally the accuracy is defined as follows:

Acc =
TP + TN

TP + TN + FP + FN

where TP corresponds to true positives, TN to true negatives, FP to false positives, and FN to
false negatives.

4. Results and Discussion

Firstly, the data visualization carried out to explore the collected data is presented. Subsequently,
the results and findings related to the evaluation scenarios for the fitness gym and living room datasets
are described. Finally, the comparison of this research work with the reviewed literature is provided.
The datasets generated in this research work can be consulted in the Supplementary Materials.

4.1. Visual Exploration

Figure 3 shows the distribution of humidity, temperature, and pressure grouped by location. In the
case of the fitness gym, there is a tendency for humidity to decrease as occupation increases. For the
case of temperature, similar behavior is observed but in the opposite direction, that is, the temperature
tends to increase when the occupancy level also increases. Regarding pressure, the values are more
dispersed, therefore, there is no clear relationship with respect to the occupation. On the other hand,
in the case of the living room, the data behave in a similar way to the data collected in the fitness gym;
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however, lower average values are observed for humidity and higher average values for temperature.
In the case of pressure, contrary to the fitness gym, a trend is observed in relation to occupation, i.e.,
as the occupancy increases on average, the pressure value decreases.

(a) Relative Humidity. (b) Temperature (c) Pressure

Figure 3. Data distribution for (a) relative humidity, (b) temperature, and (c) pressure grouped by
occupancy level and location. Where the occupancy levels are E = Empty, L = Low, M = Medium,
and H = High.

Figure 4 shows the living room and fitness gym data in three axes: humidity, temperature,
and pressure. The data of the living room correspond to a single day of the collection while the entire
set of data is shown for the case of the fitness gym. The occupancy level is indicated using the following
color code: yellow for low occupancy, orange for medium occupancy, and red for high occupancy.

(a) Living room. (b) Fitness gym

Figure 4. 3D scatter plot based on the (a) living room and (b) fitness gym data. The occupancy levels
are indicated as follows: low (yellow), medium (orange), and high (red).

The most noticeable observation is the existence of a clear pattern of data separation in both cases.
For the living room, the data with high occupancy are grouped at the top of the graph while the data
with low occupancy is grouped at the bottom, leaving most of the data with medium occupancy in
the center. No data of empty occupation were registered on this observed day. On the other hand,
in the case of the fitness gym, it is observed that the data with medium and high occupancy are
grouped at the top and bottom of the graph while the data with low occupancy are closer to the
center. The observed differences between these two locations suggest that occupancy estimation is
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constrained by the characteristics of each space, making it difficult to establish a generalized model.
That is, an occupancy prediction model trained with data from one enclosed space will hardly perform
well when tested in another enclosed space that does not embrace similar characteristics. Further
experimentation must be carried out regarding this matter.

In previous works, it was established that for enclosed places the temperature and humidity
values show the opposite behavior when people are not in situ. While when humans are present, this
pattern is disturbed in a specific way, which differs from disturbances caused by other factors [5,10,12].
Therefore, such behavior is key to identify the occupation. Figure 5 shows the humidity, temperature,
and occupancy timeline for the living room dataset. The gaps between the collection sessions were
removed to facilitate the reading of the graph. It is important to highlight that in the periods of empty
occupation, the opposite behavior between humidity and temperature is observed, specifically, a lower
temperature with a higher relative humidity is presented, compared with occupied periods.

Figure 5. Humidity (green), temperature (blue), and occupancy (red) timeline of the living room data.
Time gaps are not shown and occupancy is encoded from zero (Empty) to three (High).

4.2. Experimentation Setup

All the experiments were carried out in a laptop computer with the following specifications:
2.2 GHz 6-Core Intel i7 processor and 16 GB 2400 MHz DDR4 of RAM. In each experiment,
an exhaustive search was performed on the training set to find the optimal parameters for every
algorithm. Table 3 summarizes the optimal parameters found in each case. Regarding the Machine
Learning algorithms, the Python programming language, and the Scikit Learn library [30] were used.
The Scikit Learn library provides open-source implementations for the three selected algorithms (DT,
kNN, and SVM).

4.3. Fitness Gym

As mentioned in Section 3.7, for the feature selection the averaged 10 s dataset was used (which
contains nine attributes) to generate four datasets with different subsets of features. These datasets
were named: FULL, RFE, KBEST, and MIN. The subset of features that each dataset contains is specified
in Table 4, with FULL being the dataset with all the features and MIN being the dataset with only the
humidity, temperature, and pressure features. In the case of the KBEST and RFE datasets, the five
best features were selected using the technique indicated in the name of the dataset. Table 5 shows
the results of the experimentation. In general, all the datasets reached a high averaged accuracy
(at least 0.96), however, the one that obtained the best score was MIN with an averaged accuracy of 1.0.
On the other hand, the FULL dataset achieved the lowest score (0.966). The RFE and KBEST datasets
obtained scores very close to 1.0, positioning them between the FULL and MIN datasets. Regarding
the algorithms, it can be noticed that the difference in the averaged accuracy between DT (highest) and
kNN (lowest) is 0.011, no significant difference is noted.
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Table 3. Parameters used for Features Selection and Resolution Selection experimentation.

Location Dataset DT kNN SVM

Criterion Max Depth Algorithm Neighbors c Gamma

Feature Selection
Fitness Gym

FULL entropy 10 ball_tree 1 10 1
RFE entropy 6 ball_tree 1 1 1

KBEST entropy 10 ball_tree 1 1 1
MIN entropy 8 ball_tree 1 1 1

Feature Selection
Living Room

FULL gini 12 ball_tree 1 N/A N/A
RFE gini 12 ball_tree 1 N/A N/A

KBEST gini 12 ball_tree 1 N/A N/A
MIN gini 12 ball_tree 1 N/A N/A

Resolution Selection
Fitness Gym

10 s entropy 8 ball_tree 1 1 1
10 avg. entropy 10 ball_tree 1 1 1

30 s entropy 16 ball_tree 1 1 1
30 avg. entropy 14 ball_tree 1 1 1
1 min entropy 14 ball_tree 1 1 1
1 avg. gini 16 ball_tree 1 1 1

Resolution Selection
Living Room

10 s entropy 22 ball_tree 1 100 10
10 avg. entropy 24 ball_tree 1 100 10

30 s entropy 22 ball_tree 1 100 10
30 avg. entropy 22 ball_tree 1 100 10
1 min entropy 20 ball_tree 1 100 10
1 avg. gini 20 ball_tree 1 100 10
5 min entropy 18 ball_tree 1 100 10
5 avg. entropy 12 ball_tree 1 100 10

Table 4. Subsets of features for the fitness gym dataset. An X indicates a selected feature.

Humidity Temperature Pressure

Mean Kurt Std Mean Kurt Std Mean Kurt Std

FULL X X X X X X X X X
RFE X X X X X
KBEST X X X X X
MIN X X X

Table 5. Feature selection results for the living room and the fitness gym. Individual scores are shown
in green, and mean scores in yellow. A stronger color indicates a higher score.

Living Room Fitness Gym

FULL RFE KBEST MIN Mean FULL RFE KBEST MIN Mean
SVM NA NA NA NA 0.9512 1.0 0.9951 1.0 0.9866
kNN 0.7868 0.9231 0.9172 0.9848 0.9030 0.9512 1.0 0.9853 1.0 0.9841

DT 0.9441 0.9562 0.9586 0.9663 0.9563 0.9951 0.9951 0.9902 1.0 0.9951
Mean 0.8655 0.9397 0.9379 0.9756 0.9658 0.9984 0.9902 1.0

Regarding the resolution selection, datasets were generated with the following resolutions: 10 s,
30 s, and 1 min. An attempt was made to use a resolution of 5 min, but due to the dataset was too
small this idea was discarded. Subsequently, for each resolution, two datasets were generated: the first
takes a single sample per interval, and the second averages the corresponding humidity, temperature,
and pressure values that lie within the interval. Hence, a total of six datasets were generated by
using the subset that obtained the best performance evaluation: the MIN dataset. These datasets
were used to perform the occupancy prediction, concentrating in Table 6 the accuracy scores obtained.
The best-evaluated datasets were the 30-s datasets with 1 sample and the 1-min averaged datasets,
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both with an averaged accuracy of 1.0. Regarding the algorithms, kNN averaged and kNN with
1 sample are the best evaluated with an averaged accuracy of 1.0 and 0.998, respectively.

Table 6. Resolution selection results for the fitness gym location. Individual scores are shown in green
and mean scores in yellow. A stronger color indicates a higher score.

1 Sample Averaged

10 s 30 s 1 min Mean 10 s 30 s 1 min Mean
SVM 0.9951 1.0 1.0 0.9984 1.0 0.9857 1.0 0.9952
kNN 0.9951 1.0 1.0 0.9984 1.0 1.0 1.0 1.0
DT 1.0 1.0 0.9722 0.9907 0.9902 1.0 1.0 0.9967
Mean 0.9967 1.0 0.9907 0.9967 0.9952 1.0

4.4. Living Room

Feature selection was performed similarly to the process described for the fitness gym.
The features corresponding to each subset are shown in Table 7. It should be noticed that the RFE and
KBEST datasets only differ in one feature to their corresponding pairs in the previous experiment, i.e.,
both methods swapped humidity kurtosis by temperature kurtosis. Hence, the difference between
both subsets is just one attribute. Table 5 shows the results of the experiments. The MIN and FULL
datasets were again the subsets of features with the highest and lowest performance with an accuracy
of 0.976 and 0.866, respectively. Presenting a difference of 0.11, which is three times more than the
difference presented in the previous experiment (0.034). In this experiment, the DT algorithm achieved
the best-averaged accuracy of 0.956 followed by the kNN algorithm with an averaged accuracy of
0.903. Nevertheless, the SVM results are incomplete due to excessive execution time. By comparing
the results of this experiment with the fitness gym is evident that the MIN dataset is the best subset of
features and DT had the best-averaged accuracy. However, DT cannot be declared as the best algorithm
as only one resolution was used for the experimentation. Therefore, it is necessary to first review the
results of the resolution selection experimentation to make a decision.

Table 7. Subsets of features for the living room dataset. An X indicates a selected feature.

Humidity Temperature Pressure

Mean Kurt Std Mean Kurt Std Mean Kurt Std

FULL X X X X X X X X X
RFE X X X X X
KBEST X X X X X
MIN X X X

For the resolution selection, the datasets were generated following the same procedure described
for the fitness gym. Additionally, for this experiment, it was possible to generate a dataset with a
resolution of five minutes; thus, a total of eight datasets were generated. Table 8 shows the results
of experimentation. Overall, the best resolutions are 10 s averaged and 10 s with 0.982 and 0.98,
respectively. The difference between the best and worst resolution is 0.1. However, by not taking into
account the five minutes datasets this difference is reduced to 0.03 roughly. This suggests that a five
minutes resolution loses too much information and impacts negatively on the performance of the
models. Comparing these results with the fitness gym results, an important difference is identified:
on the fitness gym results, there is no clear trend that the prediction improves with an increment
in resolution. This could be due to the difference in the amount of data between the two datasets
(the living room datasets have approximately 30 times more data than its fitness gym counterpart),
but it could also be due to the difference in the occupancy patterns described in Section 4.1. Hence,
further research is required to clearly explain this matter.
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Regarding the algorithms, kNN with the averaged datasets has the best score with an accuracy
of 0.968 roughly. Furthermore, if the comparison is limited to datasets of the same type (averaged
vs. 1 sample), kNN has the best-averaged accuracy in both cases. On the other hand, DT is the worst
algorithm with an accuracy of 0.933, and the difference between the best and the worst models is 0.033.
Comparing these results with the fitness gym results, a congruence between both results is observed;
hence, kNN is considered as the best algorithm overall.

Another result to highlight is that all the averaged scores outperformed their 1-sample
counterparts, which suggests that, in general, the averaged datasets are more suited to predict
occupancy levels. This conclusion seems reasonable since the averaged datasets have more information
summarized. However, shall not pass unnoticed that this extra information comes with a trade-off
in the computational resources required to collect, store, and process that information. This also
applies to the high-resolution datasets; for example, the number of training instances corresponding
to the 10 s and 30 s datasets are approximately 23 k and 2 k, respectively. Furthermore, since the
difference between the averaged accuracy of both resolutions is just 0.012, it is clear that the strengths
and weaknesses must be carefully analyzed.

Table 8. Resolution selection results for the living room location. Individual scores are shown in green
and mean scores in yellow. A stronger color indicates a higher score.

1 Sample Averaged

10 s 30 s 1 min 5 min Mean 10 s 30 s 1 min 5 min Mean
SVM 0.9716 0.9652 0.9517 0.9054 0.9485 0.9756 0.9657 0.9657 0.8955 0.9506
kNN 0.9848 0.9753 0.9577 0.9104 0.9571 0.9882 0.9768 0.9607 0.9452 0.9677
DT 0.9825 0.9712 0.9436 0.8358 0.9333 0.9831 0.9743 0.9476 0.9054 0.9526
Mean 0.9796 0.9706 0.9510 0.8839 0.9823 0.9723 0.9580 0.9154

4.5. Comparison with Other Approaches

From the related work, the six works most similar to the approach proposed in this article were
selected to perform a comparison. These works were based mainly on environmental variables to
estimate the level of occupation. Table 9 shows the accuracy obtained in each case. The last two
columns correspond to the results obtained in this research. It is evident that none of the related works
comes close to the results obtained in this research. The closest of them is Adeogun et al. [12] with an
accuracy of 0.91; however, they used ten variables and a PIR sensor. It should be noted that all the
remaining works used CO2 either individually or together with other variables to predict occupation.
Nevertheless, none of them reached an accuracy equal to or greater than 0.90. Another aspect in favor
of the approach proposed in this work is that the variables used can be collected using a single sensor,
which applies only to Jiang et al. [22] and Zhou et al. [11]; however, they have a significantly lower
score than the one obtained in this work.

Viani et al. [8] is the work closest to the approach proposed here. Although they used the humidity
and temperature as environmental variables, and they also focused on occupancy prediction (OR
= 2), the accuracy that they obtained was lower than in this work, with 0.82 and 0.98, respectively.
Nevertheless, it is important to notice that the experiments’ scale was significantly different between
both works, with Viani et al. [8] using 29 sensor nodes in a much larger space (a whole museum).
Therefore, this suggests that analyzing the relation between scale and accuracy is of utter importance.

Regarding the environmental variables, another variable relevant to the occupancy field is Volatile
Organic Compounds (VOCs). VOC measurement has proven to be a viable approach capable of
achieving a high accuracy, comparable to that obtained with CO2 [31]. However, Pedersen et al. [32]
found a significant drawback that must be taken into account: after first arriving at the monitored
space, detection by VOC sensors was delayed more than three-fold compared to CO2 or relative
humidity (39 min vs. 12 min) detection. The authors strongly recommended the use of VOC sensors in
conjunction with other sensors with quicker detection times in order to obtain a high accuracy when
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estimating occupancy. Furthermore, the cost of VOC gas sensors can be as much as four times the
cost of humidity/temperature sensors. For these reasons, an approach using temperature, humidity,
and barometric pressure is considered more convenient for a low-cost solution.

Another alternative approach to detect occupancy is through statistical analysis. Zemouri et al. [33]
compared the performance of Machine Learning to detect occupancy against an algorithm developed
using statistical analysis, obtaining accuracies of 0.82 and 0.87, respectively. Although they obtained a
higher accuracy using statistical analysis, the authors highlighted two significant drawbacks of this
approach: (1) the requirement of expert knowledge in the subject area and knowing the physical
properties of the variables measured; (2) the slower and more costly performance of this approach,
compared to Machine Learning, due to the manual extraction of features. For these reasons, a Machine
Learning approach was preferred over statistical analysis in this work. From the literature review,
in Section 2 it can also be observed that Machine Learning techniques are the most accepted approach
because of the encouraging results obtained with them.

Regarding the occupancy information, this work focused on estimating the occupancy level
instead of estimating the exact number of people. According to Jiang et al. [22], two significant benefits
can be drawn from this approach: (1) in a dense occupancy environment, fewer low-cost sensors
would be necessary for obtaining a high accuracy using occupancy levels rather than the exact number
of occupants. (2) For many demand-driven control systems, like Central Domestic Hot Water and
building management systems, occupancy levels are adequate to achieve the most energy-efficient
control strategy. Hence, occupancy estimation by level is a viable approach that allows the occupancy
information systems to be scaled at an efficient cost.

Additionally, the datasets generated in this investigation are considered an important contribution,
since no public dataset could be found that offered information on the number of occupants or the
level of occupation. Therefore, it is considered that there is a gap in the field of occupation research.
In Section 2, it was mentioned that two reliable datasets were found. The first one is the UCI dataset [18],
which is an important reference because it is well documented and has been used in multiple works
before. However, this dataset offers only binary information regarding the occupation, i.e., if the space
is occupied or empty. The other one is the Ecobee’s Donate Your Data program [19], which completely
lacks the occupancy ground truth. Therefore, these datasets do not fill the aforementioned gap,
nor could it be used for comparison with this work.

It is also important to stress this work has internal and external sources of uncertainty that may
have influenced the observed results. First, as it was mentioned in Section 3.3, the subjectivity of the
observed occupancy in the fitness gym may be considered a source of uncertainty, with a negative or
positive impact on the results. Second, different occupancy levels were used between locations. In the
fitness gym, three levels (high, medium, and low) were used, while in the living room an additional
empty level was used to complete a total of four levels. Since information related to the empty level
was not obtained from the fitness gym, it was not possible to measure the direct impact of the number
of levels on the model’s accuracy. Third, external weather conditions are another factor that may
influence the results. As mentioned in Section 1, this work does not directly address the impact of
weather on the building’s internal environment conditions. However, it is important to stress the
collections were carried out in four different months over two years. Those months and their respective
average temperatures are September (26.2 ◦C) and October (22.4 ◦C) for the fitness gym, and May
(26.2 ◦C) and June (27.9 ◦C) for the living room [34]. These months can be considered warm rather
than cold, with the exception of October, which has an average temperature of at least 4 ◦C lower
than the others. Even though differences were described in ground truth collection, number of levels,
and outside weather, the results from the fitness gym and the living room are congruent in terms of
the accuracy obtained for each algorithm in each scenario. This provides confidence that the obtained
results are robust and the ground truth collection of the fitness gym had a minimal impact.
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Table 9. Comparison of best results with results in the related works.

Viani
et al. [8]

Adeogun
et al. [12]

Chitu
et al. [21]

Jiang
et al. [22]

Zhou
et al. [11] Fitness Gym Living Room

Accuracy 0.82 0.91 0.69 0.77 0.82 1.0 0.98

Variables
temp.
hum.
CO2

temp.
pre.

hum.
7 more

CO2
air flow CO2 CO2

temp.
hum.
pre.

temp.
hum
pre.

5. Conclusions and Further Work

In this work, the use of environmental variables (indirect method) and Machine Learning
algorithms to estimate occupancy was explored. In the present study, two datasets that concentrate
information on environmental variables (humidity, temperature, and pressure) and corresponding
occupancy levels were generated from different enclosed spaces. These datasets will allow comparing
the effectiveness of the different techniques used by researchers in a standardized way. Thereby,
it was possible to estimate the occupancy with an accuracy of at least 97% using the kNN algorithm.
This accuracy exceeds previous results found in related works.

It is important to highlight that this accuracy was achieved under the following factors: the use of
few environmental variables (i.e., humidity, temperature, and pressure); the exclusion of CO2 in the
model because it is difficult to take accurate measurements in real-life environments due to the need
to consider all the airflow sources; and the use of well-known Machine Learning models combined
with a correct establishment of occupancy levels. In this research work, kNN was selected as the best
algorithm to estimate the occupation. However, because of its O(n2) time complexity, DT and SVM
algorithms might be considered for future developments insomuch as both achieved a similar accuracy
(0.95), using the averaged living room dataset.

As future work, exploring the temporal dependence of data on the occupancy level should be
considered. Similarly, researching external factors (weather conditions) on the accuracy of estimation
should be taken into consideration. In addition, collecting information from other similar enclosed
environments and developing an IoT architecture for estimating occupancy using the FIWARE
open-source platform are also contemplated.

Supplementary Materials: Data for both scenarios are available at this link: https://github.com/AndreeVela/
occupancy_estimation. Files include the original data, as well as the data aggregated at different time resolutions
and the data used for feature selection.
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Abbreviations

The following abbreviations are used in this manuscript:
AC Air Conditioner
ADASYN Adaptive Synthetic
BLE Bluetooth Low Energy
CART Classification and Regression Trees
DT Decision Trees
EC Edge Computing
ELM Extreme Learning Machine
FNN Feedforward Neural Network
GB Gradient Boost
HMM Hidden Markov Model
HVAC Heating, Ventilation, and Air Conditioners
IEA International Energy Agency
IoT Internet of Things
kNN K-Nearest Neighbor
LDA Linear Discriminant Analysis
LR Logistic Regression
LSTM Long Short-Term Memory
MLP Multilayer Perceptron
MM Markov Model
PIR Passive Infrared
RF Random Forest
RFE Recursive Feature Elimination
RFID Radio Frequency Identification
SRAM Static Random Access Memory
SVM Support Vector Machine
UCI University of California, Irvine
VOC Volatile Organic Compound
WiFi Wireless Fidelity
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