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Abstract: The integration of medical signal processing capabilities and advanced sensors into Internet
of Things (IoT) devices plays a key role in providing comfort and convenience to human lives.
As the number of patients is increasing gradually, providing healthcare facilities to each patient,
particularly to the patients located in remote regions, not only has become challenging but also
results in several issues, such as: (i) increase in workload on paramedics, (ii) wastage of time,
and (iii) accommodation of patients. Therefore, the design of smart healthcare systems has become an
important area of research to overcome these above-mentioned issues. Several healthcare applications
have been designed using wireless sensor networks (WSNs), cloud computing, and fog computing.
Most of the e-healthcare applications are designed using the cloud computing paradigm. Cloud-based
architecture introduces high latency while processing huge amounts of data, thus restricting the
large-scale implementation of latency-sensitive e-healthcare applications. Fog computing architecture
offers processing and storage resources near to the edge of the network, thus, designing e-healthcare
applications using the fog computing paradigm is of interest to meet the low latency requirement
of such applications. Patients that are minors or are in intensive care units (ICUs) are unable to
self-report their pain conditions. The remote healthcare monitoring applications deploy IoT devices
with bio-sensors capable of sensing surface electromyogram (sEMG) and electrocardiogram (ECG)
signals to monitor the pain condition of such patients. In this article, fog computing architecture is
proposed for deploying a remote pain monitoring system. The key motivation for adopting the fog
paradigm in our proposed approach is to reduce latency and network consumption. To validate the
effectiveness of the proposed approach in minimizing delay and network utilization, simulations were
carried out in iFogSim and the results were compared with the cloud-based systems. The results of
the simulations carried out in this research indicate that a reduction in both latency and network
consumption can be achieved by adopting the proposed approach for implementing a remote pain
monitoring system.

Keywords: fog computing; cloud computing; remote pain monitoring; e-healthcare; IoT

1. Introduction

There are to be about 237.1 million wearable body devices available on the market by 2020 with
an estimated reach of market share related to the healthcare industry of USD 117 billion by 2020 [1].
The data flow by healthcare applications based on such a large number of bio-sensors is approximated
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to be 507.5 zettabytes [2]. Presently, most of the healthcare applications are designed by connecting the
Internet of Things (IoT) with cloud servers. Cloud servers provide substantial on-demand resources
to process, store, and analyze this large volume of health-related data. For employing healthcare
applications, among the available solutions, cloud computing is currently the most feasible one [3].
Cloud computing provides all computational and storage resources at cloud servers for the processing
of data generated from healthcare IoT devices. A massive and diverse amount of data is generated by
healthcare applications. However, the centralized nature of cloud architecture limits the implementation
of healthcare applications on a large scale because response time from the cloud rises with an increase
in the volume of data to be processed. The consequences of transmitting and processing of such a
huge amount of data at a remotely located cloud server result in high latency and network utilization.
However, a rapid response is required in the case of healthcare applications, so processing the
real-time data of patients is necessary. There are more strict quality of service (QoS) requirements when
dealing with the processing of electrocardiogram (ECG) and electroencephalogram (EEG) signals [4,5].
Therefore, cloud architecture is unable to fulfil the stringent QoS requirements for medical data.

Pain is an important parameter to detect the discomfort and illness of a patient. The results of
a survey conducted through different groups of patients endorse the necessity and effectiveness of
remote pain monitoring [6]. Three major limitations in the self-report procedure are non-compliance of
patients to manual entry, delay in treatment, and patients who are unable to express their conditions.
The major reason behind the obsolescence of the self-report method is delayed diagnosis, due to
which the patients have to bear the pain for a long period. These are the factors influencing recent
research on automatic pain detection schemes. Important techniques used for automatic pain detection
include facial expression recognition using face video [7], physiological signal fusion [8], and facial
surface electromyography (sSEMG). However, some efforts have been made in designing remote
pain monitoring systems by integrating cloud computing with automatic pain detection tools [9,10].
Several researchers have proposed remote pain monitoring systems using cloud computing and IoT
devices. The major challenge to be addressed is the fulfillment of healthcare QoS requirements during
large-scale implementation.

High latency and network usage are the key factors limiting the large-scale implementation of
cloud-based remote pain monitoring systems. In [11], a remote pain monitoring system is proposed in
which wireless sensor nodes and web platforms are connected through a cloud server. The authors
designed a wearable bio-sensing facial mask to detect intensity of pain through analyzing sEMG
and ECG signals. The cloud server receives biopotential signals from sensors and after processing
and displays pain-related information in a web application for real-time monitoring. However,
connecting sensor nodes directly to the cloud server results in a long delay, which is not suitable for
such time-sensitive healthcare applications. Therefore, we propose a fog computing architecture-based
remote pain monitoring system to overcome the inadequacies of cloud computing architecture.

The key contributions of this research work are summarized as follows:

e An efficient fog-based remote pain monitoring system is proposed, consisting of a three-tier
structure. Fog nodes reside in the middle tier, implementing the fog computing concept. Fog devices
process the biopotential signals and transmit the pain information to the web servers via
gateway devices.

e The parameters under consideration are execution cost, latency, and network consumption.
The proposed architecture reduces these factors, making the proposed system most suitable for
health-related applications. Moreover, it ensures real-time monitoring of patients and rapid
medical assistance provisioning by minimizing the time spent from pain detection to display in
the web application. The proposed architecture not only reduces time but also reduces the data to
be transmitted to the cloud by discarding the unwanted data at the fog nodes.
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e  Simulations are performed on different scales for appraising the proposed fog-based remote pain
monitoring architecture. The results of the comparison performed between cloud architecture and
proposed architecture validate the superiority of the proposed architecture in terms of execution
cost, delay, and network consumption.

The rest of this paper is organized as follows. Section 2 presents the background information
of cloud and fog computing architectures. Recent research work related to cloud- and fog-based
healthcare systems is presented in Section 3. The proposed architecture for remote pain monitoring is
explained in Section 4. Section 5 describes the simulation setup and results obtained in this research.
Discussion on the results and comparison with other systems is presented in Section VI. To summarize
this research, a conclusion is presented in Section 6.

2. Background

Cloud computing has emerged as the most feasible solution for the development of IoT and big
data applications by providing resourceful cloud servers for storage and processing. High latency,
extra network utilization, energy efficiency, and QoS are challenges arising due to rapid growth
in data traffic [12]. These problems do not allow the implementation of time-sensitive applications
on cloud computing architecture. Fog computing architecture consumes less network bandwidth
with has low latency to offer improved quality of experience (QoE). By offloading applications from
the cloud to fog nodes, a 41% power reduction was achieved in a theoretical built-in model [13].
To satisfy the requirements of the latency and network load of sensitive and sophisticated applications,
fog computing distributes computational resources near to the edge devices [14,15].

Delay in cloud-centric healthcare applications increases when deployed on a large scale [16],
thus failing to attain real-time data provision for time-sensitive healthcare applications [17].
Latency requirements to maintain QoS in E-healthcare services are presented in Table 1 [18,19].
Cisco introduced the idea of fog computing in January 2014 to resolve the high network utilization and
latency issues caused in cloud-based implementations [20].

Table 1. Quality of service (QoS) requirements for real-time e-healthcare services.

Real-Time E-Healthcare

Services Healthcare Applications Type of Media Maximum Delay

. L Audi tion betw . .

Audio communication udio conversation between Audio <150 milliseconds one-way
patients and doctors

Video conferencing between

Video communication .
patients and doctors

Video <250 milliseconds one-way

Control signals related
to robotics
Biosignal of patients gathered
by sensors

Robotic services Tele-ultrasonography <300 milliseconds round-trip time

Monitoring services Remote pain monitoring <300 milliseconds for real-time ECG

Fog computing has a distributed architecture to reduce the load on the cloud. Fog computing
distributes the cloud resources throughout the network by introducing fog devices with limited
resources between cloud and edge devices [21,22]. All devices with limited storage and processing
capability come under the definition of a fog node. The main goal of fog computing is to provide
services with less latency between cloud and end devices [23].

Different researchers have proposed fog-based architectures in creating different applications
that are more effective, secure, and cost-efficient. A multi-level fog-based architecture was proposed
by Chen et al. [24] which enables seamless service sharing at network edges between cross-domain
IoT applications. Wang et al. [25] proposed a Gini coefficient-based fog computing nodes selection
algorithm (GCFSA) to get optimized computational resource allocation and off-loading decisions
for maximizing the revenue of user equipment (UE) in mobility-aware three-tier fog architecture.
To enhance privacy and secure communication in fog-based vehicular ad hoc networks, Ma et al. [26]
designed a new authenticated key agreement protocol. By utilizing cloud and fog resources to provide
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network virtualization, edge computing, and other IoT services to the end user by telecommunication
network operators, a fog-based architecture was proposed by Vilalta et al. [27].

Designing applications in the fog computing paradigm reduces frequent data transmissions
between cloud and edge devices, assuring low latency and minimum network utilization.
Research performed in [28-30] concludes that reduced latency is offered by fog computing models
as compared to the cloud. Fog nodes are distributed throughout the network, providing scalability
and mobility [31]. Consuming fog node resources to reduce the burden on the cloud significantly
reduces network usage [32]. To resolve the resource allocation problem and to achieve cost efficiency,
Jia et al. [33] proposed a double-matching computing resource allocation strategy in three-layer
fog networks. To address the dynamic offloading and resource allocation issues in multi-layer fog
computing networks, Gao et al. [34] proposed predictive offloading and resource allocation (PORA),
which achieves low latency and optimal power consumption.

Fog nodes are geographically distributed throughout the network with locally available enough
computing power to provide services to a variety of heterogeneous devices [35]. In this paper,
we proposed to employ fog computing architecture to implement a remote pain monitoring system.
An adaptable structure, low latency, and service provision near to the edge make fog computing the
most suitable candidate to satisfy QoS requirements of real-time applications [36].

The proposed remote pain monitoring system makes real-time information about the pain
conditions of patients available in the web portal using digital signal processing techniques and fog
computing architecture. To ensure immediate medical relief to patients, the pain-related information
has to be processed to make it available for remote monitoring purposes on a real-time basis. Therefore,
it is desirable to achieve minimum latency and network usage. Fog computing can effectively resolve
these issues by providing data processing and storage capacity near to the end devices and consequently
reducing the load on the cloud [37].

In our proposed architecture, fog nodes are located to process biopotential signals of patients
in hospitals to gather their pain-related information. A web application is linked with the system to
present the pain-related information for remote monitoring. The platform used for the evaluation
of the proposed architecture is iFogSim. Fog computing-based and cloud computing-based models
for remote pain monitoring system are created and compared on different scales. The result of these
simulations confirms that the proposed remote pain monitoring architecture is more effective than
cloud-based architecture in terms of network load and latency.

3. Related Work

We briefly define the state-of-the-art healthcare monitoring systems pertinent to the cloud- and
fog-based architectures in the following section.

In [38], the authors discussed different strategies for interconnecting healthcare applications and
articulate the approach of implementing them in the healthcare system using mobile cloud computing.
The benefits of deploying healthcare applications using cloud infrastructure are also part of this
article. They designed a fall detection system for elderly people using cloud computing architecture.
Tejaswini et al. [39] proposed remote pain monitoring based on cloud architecture for newborn infants
to reduce the mortality rate. Infant crying is a pathological tool used as an indicator of pain in this
research. Pattern classification is achieved by using support vector machine (SVM)-based neural
networks. The ThingSpeak IoT platform and mobile devices are used to link clinician and nurses.
In [11], the authors proposed a cloud-based remote pain monitoring architecture in which the cloud
works as a bridge between IoT devices and a web application. A low-energy wearable bio-sensing
mask was designed to capture sEMG and ECG signals, which were further processed to evaluate pain
conditions. A web application was developed to present data for real-time remote pain monitoring.
The same architecture was employed in [40] for remote monitoring of persistent vegetative state (PVS)
patients through analyzing real-time signals related to facial expressions.
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Mobile cloud computing is used by the authors in [41] to provide ubiquitous healthcare services in
smart cities that require collecting and processing patients’ data anytime and anywhere. Network delay,
high bandwidth consumption, and reliability are major hurdles in the implementation of futuristic
healthcare applications. To address these issues, the authors proposed a healthcare structure, UbeHealth.
To provide improved QoS, the proposed system is based on four layers and three major components.
The first layer consists of healthcare professionals for remote supervision. The second layer of the
architecture comprises cloudlets on which future network traffic is predicted and this information is
used to maintain QoS by adapting the data rate accordingly. The network layer predicts the application
that sends data using deep learning techniques to adjust the connection according to the requirements
of the application to retain QoS. Finally, the cloud layer consists of resourceful cloud servers to provide
data processing and storage facilities for various healthcare applications.

Rahmani et al. [16] explained the importance of locating gateway nodes near to the edge in the
architecture to offer advanced-level services. To cope with the challenges involved in the implementation
of ubiquitous healthcare systems, the authors proposed a fog-based architecture. To evaluate the
performance of the proposed fog-based architecture, a prototype of an early warning health monitoring
system was developed. The issues involved in the implementation of healthcare applications using
mobile cloud architecture are discussed by Farhani et al. [42] and the fog computing paradigm was
proposed to deal with these issues and to facilitate efficient network utilization in such applications.
Negash et al. [43] proposed a fog-based healthcare application that consists of three tiers. The first tier
of the proposed architecture consists of various sensors to detect different signals related to patients,
health, the environment, and activities. The fog layer resides between the cloud and sensor layer
which is responsible for the compression of received sensed data and transmitting them to the cloud
for further processing. Gaigawali and Chaskar [44] structured a cloud-based healthcare system for
monitoring ECG and fibrillation signals into three parts. The first part consists of biopotential sensors
to acquire ECG signals. The second part is based on the cloud server to provide resources to process
and store the collected ECG data. The third part is a smartphone application to provide remote access.
This approach improves the healthcare systems in the provision of remote ECG monitoring in terms
of accuracy.

The authors described data secrecy and the improper use of advanced information and
communication technologies to be among the major reasons behind the unacceptability of cloud-based
healthcare applications by patients in developing countries. In [45], a social-technical design approach
was used to develop a cloud-based health center in the Nigerian healthcare system. This system provides
services related to remote healthcare to rural areas, which results in cost and time reductions. A specific
type of mosquito bite transmits the chikungunya virus, which causes disease. Due to problems in the
availability and affordability of diagnostic tests in developing countries, fog-based remote detection
and monitoring in healthcare systems are emerging as a solution to these problems. The authors in [46]
designed a fog-based chikungunya virus identification and diagnosis system to enable the fast rescue
to prevent an outbreak. In their design, classification is performed on user data using a decision tree
for the identification of infection and the instantaneous result is transferred to users through patients’
mobiles. Furthermore, temporal network analysis is performed on the users” data collected from the
vicinity to detect the virus outbreak state.

iFogSim is a toolkit to simulate IoT applications in cloud and fog computing architectures.
Several researchers have used iFogSim to evaluate their research work. In [47], the authors briefly
explained the architecture and steps involved in the modeling and simulation of fog-based applications
using iFogSim. Dar et al. [28] proposed an loT-based disaster management system and compared
its cloud- and fog-based implementation using the iFogSim toolkit. Qaddoura and Manaseer
used [48] iFogSim to evaluate the effects of the central processing unit (CPU) speed of fog nodes
on the energy consumption and end-to-end delay of the network. For optimized task scheduling,
Jayasena and Thisarasinghe [49] compared the whale optimization algorithm with several heuristic
and meta-heuristic algorithms in a smart healthcare application model using the iFogSim simulator
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tool. Fog computing-based architecture for efficient car parking is proposed in [50] and the result
of simulations performed in iFogSim show that network consumption and latency in the proposed
architecture is less than in the cloud-based architecture. Mahmud et al. [51] have labeled iFogSim as
the most effective tool among the available simulators for simulating applications in fog computing
architectures. Fang and Ma [52] proposed an application module placement and task scheduling
strategy based on a heuristic dynamic task processing algorithm and the proposed schemes were
evaluated in iFogSim, and the results confirm the improvement in power consumption.

4. Proposed Architecture

The proposed three-layer architecture is illustrated in Figure 1. The first layer consists of biopotential
sensors attached to the patients in the hospitals to detected and transmit their sSEMG and ECG signals
after preliminary processing to the fog nodes. The central layer of the architecture contains fog nodes
to which all the sensor nodes are connected through a Wi-Fi module. The third layer is based on a
cloud to which all the fog nodes are connected through a proxy server. The key purpose of the cloud
server is to provide extra storage and computational resources to the system. A web application is
linked with the system to provide access to pain statistics of patients for real-time monitoring, therefore
minimizing the delay in providing relief to the patients and reducing the load on the paramedics.
An overview and layers of the proposed architecture are defined in the following section.

Edge of the network R
- Proxy ’ ’ Healthcare IoT Devices
‘.ijﬂ;,_ ~ Server Fog Device 1
0 @ Healthcare IoT Data
Resource P = G recaans > < n %
Management 3 EEG Sensor ECG Sensor|  |EMG Sensor
.m0 P v T 4
" Cloud ! '3 0 =
g Gateway 1 \ ¢
i
1
1
i
< »
Fog Device N
Medical Data 4
Storage © © )
) ToT, Tnternet of Things nn
Web ECG, Electrocardiogram n
Web . >
Application EMG, Electromyography Patients Patients Patients
PP EEG, Electroencephal
High Complexity e GOSN PG Hospital Hospital Hospital
Computing
Fog nodes connected to cloud through gateway! Fognodes processes the biopotential signals Sensors transmitting biopotential signals to fog nodes

Cloud Layer

- Big Data Processing
- Business Logic
- Data Warehousing

Fog Layer
- Local Network
- Data Processing & Reduction
- Temporary Storage
- Pain Detection
- Remote Pain Monitoring

Sensor Layer

- Wearable Sensors

- IoT Devices

- Real-Time Data Acquisition
- Embedded Systems

- Basic Data Processing

Figure 1. Three-tier architecture for a fog-based remote pain monitoring system.

4.1. The Sensor Layer

The firstlayer of the proposed architecture consists of wearable sensors that include two modules for
sensing and transmitting the detected biopotential signals. To satisfy the data acquisition requirements
of the EMG and ECG signals of patients, sensors are designed with passive electrodes with a battery
power supply. For the transmission of data to fog nodes, the Wi-Fi module is integrated with the sensor
nodes. Sensors have to continuously provide signals for pain monitoring so low power consumption
is seriously considered while designing the sensor nodes to prolong battery life. The sensors deployed
in our proposed system for the collection of biopotential signals have a sampling rate of 1000 samples



Sensors 2020, 20, 6574 7 of 21

per second, satisfying the Nyquist criteria. The sensors detect the EMG and ECG signals and transmit
the sensed data to the fog nodes where they are further processed as defined in [11].

4.2. The Fog Layer

This layer exists between the sensor and the cloud layer. The fog layer consists of fog nodes
to collect biopotential signals from sensors to perform further processing for the identification of
pain. Among most of the prominent features of fog computing, interoperability is a significant
one. Interoperability deals with a diverse variety of IoT devices, as shown in Figure 2. Each fog
node contributes some of its local resources to interconnect with neighboring fog nodes to fulfill
their processing and storage requirements [53]. In our proposed framework, we do not consider the
latency factor in communication between the fog nodes, considering it an advantage of fog computing
interoperability features [50]. To differentiate among different patients, specific indexes, for example,
HS11 defining patient 1 of hospital 1, are used as shown in Figure 3. Fog nodes process the incoming
biopotential signals using their local resources and transfer the status related to pain to the web
application for remote pain monitoring. For a specific time, data are temporarily stored in the local
storage, then the fog node transfers this data to the storage module located at the cloud server for
maintaining the medical history of patients. Fog computing architecture provides resources to collect,
process, and transmit data from the edge to the web server, enabling real-time remote pain monitoring.

I |
I |
I |
I |
I |
I |
| L '
| N '
| - % |
| o N '
| /s N |
| 7 N |
| 7 N |
[ 7 AN I
| 7 N |
| . Communication Communication - |
: ) Coordinating Coordinating = :
I |
| |
| / 4 / 4 |
| /i I g ! |

| / I
| 7] I 7 £ ! |
N A S N e [

/ ' / i 7 =

¥/ I / | / |

/ | / | / |

% 1 / | / !

/ 1 f | / |

}) }) )
== ML ) m b
T— Sensor Sensor Sensor
Actuator Actuator Actuator

Figure 2. Interconnection of cloud server, fog devices, and sensors.
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Figure 3. The architecture of the remote pain monitoring system for one hospital.

4.3. The Cloud Layer

The third layer in our proposed architecture is the cloud layer which comprises the cloud server.
The main purpose of the cloud is to provide extra storage capacity. The storage module is embedded
in the cloud server, which is used for storing and updating pain-related data for record-keeping.
Fog nodes are connected to the cloud via a proxy server. Fog nodes periodically submit the biopotential
signal data to the cloud server after consuming these data for remote pain detection. In our proposed
model, the cloud server is bypassed when computational resources available at fog nodes fulfill the
processing requirements of incoming biopotential data, thus reducing the additional delay.

4.4. Overview

The proposed fog-based remote pain monitoring system consists of biopotential sensors,
Wi-Fi modules, fog nodes, a web application, and a cloud server. The sensor node continuously
detects the EMG and ECG signals of the patients in hospitals using electrodes. To detect pain using the
facial action coding system [54], different facial muscles under the monitoring of the sensor nodes are
frontalis, corrugator, orbicularis oculi, levator nose, zygomaticus, and risorius. Subsequently, fog nodes
detect the pain by applying different digital signal processing and filtering techniques on the perceived
data, as presented in [11]. Fog nodes update the pain-related information in the web application for
remote monitoring. Multiple sensors are employed in hospitals to monitor all the patients. In our
proposed architecture, one fog node per hospital is deployed to analyze the data received from the
sensors to detect pain. Moreover, fog nodes make this pain information available for remote monitoring
by transmitting it to a web application. The patient record is periodically updated in the database
placed in the cloud server.

Cloud computing has enough resources to store and process the data. However, repeated communication
between sensors and the cloud produces excessive delays with high network consumption. Therefore,
employing cloud computing architecture for this type of application is not desirable. Introducing a
fog computing layer in between the sensor and cloud layer reduces the latency, as fog nodes provide
extra capacity to process the biopotential signals close to the edge of the network. The transmission
of detected pain information directly from fog nodes to the web server reduces latency and network
consumption. The architecture proposed in this paper avoids the cloud server while transmitting
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detected pain information from fog nodes to the web application, thus offering reduced network
consumption and low latency. Signal processing tasks for achieving pain information are performed at
the fog nodes. Our proposed fog computing-based architectures for single and multiple hospitals are
presented in Figures 3 and 4, respectively.

HOSPITAL 1 »ﬁ ©

TIS 11| TS 12 |TIS 13

Fog Node 1 | [HSI4[HSI5[HS 16 "_>ﬁ°
HS 17[HS 8[HS 19] gy

Proxy HOSPITAL 2 ________ >ﬂ °
Server
R <o TR 0
Ve o
A 1S 21 118 22 [ 11S 23

Fog Node 2 7 T T ©
1S 24 [ 11S 25 | 1S 26 >ﬁ

HS 27 | HS 28 | HS 29

1 Cloud
Gateway

-
A \‘-‘ P R — yoren g )
. R
HS N1[HS N2[HS N3
Fog Node N | [Hs N4[HS N5[HS N6 ___,ﬁ"
_—

HS N7 [HS N8|HS N9

Web
Application Sensors transmitting biopotential
signals of patients of Hospitals
Tier 3 Tier 2 Tier1

Figure 4. The architecture of the remote pain monitoring system for multiple hospitals.

In Figure 3, patients of only one hospital are to be monitored, hence there is a single fog node
connecting sensors with the cloud and web server. On the other hand, Figure 4 presents the scenario
where multiple fog nodes are deployed to monitor patients of multiple hospitals. In the first case,
the fog node has to send data of a single hospital to the cloud and web server. However, in the second
case, combined data of all the hospitals have to be delivered to the cloud and web server. In both cases,
each fog node has to monitor a fixed number of patients. Therefore, latency and network consumption
are the same on each fog node but there is an increase in time and network utilization when data from
all the fog nodes have to be uploaded on the cloud and web server simultaneously.

At the start, all the sensors are initialized for the acquisition of EMG and ECG signals of patients.
After the signal acquisition phase, biopotential signals are transferred to fog nodes, where the pattern
recognition of facial expressions is achieved using root mean square (RMS) feature extraction and
visualization techniques. Later, the signal is segmented and dimension reduction is performed [55,56].
Processed signals are transferred to the web application through a web server for remote pain
monitoring. Finally, data are submitted to the cloud for record-keeping. The processes involved in the
execution of a remote pain monitoring system are presented in the form of a flowchart in Figure 5.
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Figure 5. Flow diagram of proposed fog-based remote pain monitoring system.
5. Simulation Setup and Results

In our simulations, different scenarios are evaluated, comprising a different number of biopotential
sensors to detect SEMG and ECG signals of the patients. These captured biopotential signals are
frequently transmitted to the fog nodes. Further processing is performed by the fog nodes to detect pain
status and they transmit the pain information to the web application and cloud for remote monitoring
and record updates, respectively. The connection of fog node(s) with the web application and the
cloud server is established via a proxy server. For simulating and evaluating our scenarios in terms of
latency, execution cost, and network consumption, we used the iFogSim toolkit.

Variables of hospitals and sensors are created in the simulations. In our scenarios, there are four
hospitals and one fog node is assigned to each hospital. Initially, four sensors are attached to each fog
node to capture the biopotential signals of the patients. Fog nodes are connected with the cloud and
web application through a proxy server. We created sensors in the simulation environment according
to the policies of [1]. Scenarios are simulated with an increasing number of sensor nodes per fog
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device to calculate the latency and network consumption. Table 2 illustrates the biopotential sensor
configuration used in our simulations.

Table 2. Biopotential sensor configuration in iFogSim simulator.

CPU Length Network Length (bytes) Sensor Detecting Interval

1200 million instructions 22,000 bytes 25 milliseconds

The topology created in iFogSim to evaluate fog computing-based architecture is defined in
Algorithm 1 and depicted in Figure 6. Four fog nodes are created and each fog node is initially
linked with four sensor nodes. The metrics under observation are latency and network utilization.
We embedded an RMS data stream module in the sensors to capture the biopotential signals of
the patients. To process the biopotential signals for pain detection, the digital filtering module and
dimension reduction module are embedded in fog nodes. Moreover, the pain detection module runs
on the web server to present pain information in the web application. To define data dependency
among the modules of the proposed remote pain monitoring system, edges are created between the
application modules, as shown in Algorithm 1. In iFogSim, the tasks are described in the form of
tuples. Tuples are generated by sensors and processed at the application modules (virtual machines)
placed at the fog nodes. Each virtual machine (VM) executes a specific type of tuple. Fog devices
provide resources to these application modules for performing their computations. A first come first
served (FCFS) scheduling scheme is used in our simulations that assigns resources to modules in the
order of entry.

) B S Y

S, Sensor

Fog l!k'we -1 Fog Igu =2 Webéerver Fog gi\ce -3 Fog g\ce =4
/ ; A L /|
; \ / | / ‘ . | \
MM R R N M P) M N ORI SIS N DR SR )

[
| ‘ |
s1 s2 3 sS4 S5 6 s7 S8 Web Application S9 10 s11 s12 s13 S14 s15 s16

—

Figure 6. iFogSim topology of the proposed fog-based remote pain monitoring system.
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Algorithm 1 Fog-based remote pain monitoring system with first come first served (FCFS) scheduling.

1:  Build fog broker.
2:  Create application.
3:  Create: cloud server, proxy server, web application.
4: . .
for i=0 to Hospitals, = do
5: Create Fog device.
6: . . .
for i=0 to i< Patlentsperhospiml do

: Create Sensors.
8: end
9: end

10:  Add modules (RMS data stream module, Digital filtering module, Dimension reduction module, Pain detection
module).

11: Defining data dependencies by creating edges between the application modules:

RMS data stream module — Digital filtering module — Dimension reduction module — Pain detection module

12:  Module mapping.

13:  Tuple mapping.

14:  Submit application.
15:  Start iFogSim.

16: Call FCFS scheduling

17:
fPr each VM do
18: .
if Modulemp”t = Module,, then
1

19:

Allocate PEs to VM,
20: end
21: else
22:

Allocate MOdMlemput to VM,
23: end
24: end

25:  Update energy consumption.
26: Stop iFogSim.
27:  Result evaluation.

To evaluate the performance on a large scale, the number of sensors per fog device is increased in
each scenario and the task of pain detection is performed for a growing number of patients using the
resources of each fog node. An increase in the number of sensors attached to a fog node eventually
increases the processing load on that particular fog node, causing a rise in the latency and network
consumption of that specific fog node. The benefit of fog-based processing is a decrease in the
computational burden on the cloud. On the contrary, connecting the sensors and web server directly to
the cloud results in a longer delay and excessive network utilization.

Table 3 illustrates the values of parameters used in the creation of a cloud server, proxy server,
web server, and fog nodes while simulating our scenarios. The parameters include the central processing
unit (CPU) computing capacity in million instruction per second (MIPS), level in the architecture,
bandwidth of uplink, random access memory (RAM), downlink bandwidth, the rate per million
instructions processing, busy power, and idle power. For evaluating cloud-based implementation in
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iFogSim, the web application and sensors are attached to the cloud via a proxy server, as shown in
Figure 7. Biopotential signals detected by the sensors are transferred to the cloud, where they are
processed and information related to pain is transferred via remote access to the web application

through a web server linked to the cloud. For evaluating latency and network consumption, the sensors
attached to the cloud are gradually increased.

Table 3. Value of parameters used for cloud- and fog-based implementations.

Parameter Cloud Proxy Server =~ Web Server Fog Node Sensor Node
Level 0 1 2 2 3
Rate per MIPS 0.01 0.0 0.0 0.0 0.0
RAM (MB) 40,000 4000 4000 4000 1000
Idle power 16 x 83.25 83.43 83.43 83.43 82.44
Downlink bandwidth (MB) 10,000 10,000 10,000 10,000 -
CPU length (MIPS) 44,800 2800 2800 2800 500
Uplink bandwidth (MB) 100 10,000 10,000 10,000 10,000
Busy power (Watt) 16 x 103 107.339 107.339 107.339 87.53
) RSN
S, Sensor Gl
= ‘;roxy S\CJ'VG;/ =

R TS T P D B B R S O R R B )

S4 S5 S6 S7 S8 S9 Web Application S10 S12 S11 S14 513 S16 S15 S1 S2 S3

Figure 7. iFogSim topology of the cloud-based remote pain monitoring system.

5.1. Execution Cost

In our scenarios, there are M smart hospitals (SHs) (M = {my,my, m3, ..., mp}) and the total
processing load of the system to process the biopotential signals of the patients in a given t is the sum
of the processing load of all the hospitals (L}, = {1211 + 1+ lan}). The total delay (D!) of the
system caused due to the processing of biopotential signals can be calculated as

Di—g."Y Lt 1
Y I, M
m=1

where B;, represents time consumed in capturing and processing of biopotential signals of a patient.
Equation (2) is used to calculate the total time consumed (T%) in sensing the biopotential signals
according to the availability of pain status in the web application in fog-based architecture [50].
t_ t t
Ty =D+ D+ Dy, 2)
where D, is the time consumed in transferring of sensed data from sensors to fog nodes and D! -
is the time consumed to transfer pain information from fog node to web platform. Equation (3) is

used to calculate the total delay (T%) offered by the cloud-based architecture. In cloud-based remote
pain monitoring architecture, D!, is the time consumed by transferring the sensed data from sensors to
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the cloud server and D!, is the time consumed by displaying pain information on the web platform.
Total delay (T%) offered by the cloud-based architecture can be calculated as

T: =D!+ D!+ D! (3)

ctw

Atany time t, network consumption for the cloud and proposed fog-based architecture is calculated
using Equations (4) and (5),

Nt = §(D!+ Dt + Dy, ) @)
t __ t t t
Ni = 5(Di+ D%+ D ) 5)

where 0 is the length of data encapsulated in the tuple.

Fog devices receive and process the data sensed by the edge devices by using the locally available
resources. The data which require more computational and storage resources than those available at
the fog nodes are transferred to the cloud. This fog-based orchestration minimizes the load on the
cloud, thus reducing the cost of execution. The execution of application modules at the cloud increases
the total execution cost. Equations (6) and (7) are derived from [57] to calculate total execution cost (E)
and reduction in execution cost (Ag), respectively.

E = T + (Ci - Liime - Rvips - Lu - Taaips) (6)

Ap = Ecjoud — Efog @)

where T is the execution cost, C; is the CloudSim clock, Ly, is the last utilization update time, Ryyps is
the rate per MIPS, L, is the last utilization, and TMIPS is the total MIPS of the host.

Fog architecture provides processing resources near to the edge of the network. Fog devices
collect and process the biopotential data coming from the sensors. The data demanding higher storage
and processing resources than available at the fog node are transferred to the cloud. The execution
cost at cloud includes the cost required for the execution of application modules in the cloud [57-59].
Fog computing adaptation reduces the execution cost in the cloud by minimizing the amount of
data transfer to the cloud server. The tasks are described in the form of tuples in iFogSim. Tuples are
generated by sensors and processed at the application modules placed at the fog nodes. An increase in
the number of sensors increases the tuples to be processed at the modules. Figure 8a illustrates the
comparison of the cost of execution at the cloud for both fog- and cloud-based remote pain monitoring
systems. The cost of execution in the cloud for the proposed approach is lower than the cloud-based
system, indicating the reduction of data to be executed at the cloud. The reason for this data reduction
at the cloud is the engagement of fog nodes in the system, providing an extra layer of data processing
between the source of data and the cloud server. Figure 8b presents the reduction in execution cost
during fog-based implementation.

Comparison of execution cost Reduction in execution cost
350 250
300

200
250
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150
100
s
o Il r i |l I

10 20 30 40 50 6l

0 70 80 90 100 110 120

150

(in thousands $)

100

Execution cost (in thousands $)
Reduction in execution cost

10 20 30 40 50 60 70 80 9 100 110 120
Number of Sensors

Number of Sensors
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(@) (b)

Figure 8. Cost of execution in the cloud. (a) Comparison of execution cost between cloud- and fog-based
implementation. (b) Reduction in execution cost using proposed approach.
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5.2. Latency

Latency is an obligatory aspect to be reduced when implementing in real-time environments that
demand high efficiency. The key advantage of fog architecture is that it tends to repetitively minimize
access to the cloud by executing the required task at the fog nodes by using locally available resources
to provide rapid response to the edge nodes, reducing latency.

As one fog node is allocated to each hospital, sufficient processing capacity is available to
process the signals of patients for detecting pain and make it available for remote monitoring in
the web application within less time. We simulated all the scenarios in iFogSim to compute the
results. Figure 9 compares the latency for all the scenarios for both cloud and fog architecture-based
simulations. Latency in cloud-based architecture significantly increases with an increase in the number
of sensors. In fog-based scenarios, the fog nodes only process the sensed data of the sensors attached
to them. Contrarily, the cloud server has to process the signals sent by all the sensors so, subsequently,
the latency in the cloud increases with an increase in the number of sensors.

Comparison of Latency
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B
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Figure 9. Latency comparison of proposed fog-based architecture with cloud computing architecture

for implementing remote pain monitoring.

To evaluate the fog-based system, there are four fog devices to which sensors are attached. Initially,
in the first scenario, there are four sensors attached to each fog node to monitor patients. In each
succeeding scenario, there is an increase of one sensor per fog device. With an increase in the number
of sensors, the data to be processed at the fog devices also increase. Modules at the fog nodes have to
process the data of an increasing number of sensors using locally available limited resources. Therefore,
an increase in the data to be processed by the modules results in increased execution delays offered by
modules. An increase in processing load on each fog device at the same instant results in an abrupt
rise in the latency of the system, as depicted in Figure 9, when the number of sensors increases from
48 to 52. This rapid increase in latency of the system is the combined effect of delays offered by all
fog devices. This abrupt increase in latency can be avoided by increasing the number of fog nodes in
the system.

5.3. Network Consumption

Only cloud resources are available to process the inquiries in the case of cloud-based
implementation. An increase in the number of patients to be monitored results in increased traffic
towards the cloud server, thus causing increased network usage. In the case of geographically dispersed
servers, a single fog node is assigned to a hospital to monitor patients of only that specific hospital.
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As a result, the use of the network in this situation decreases, thus providing improved throughput for
the remaining traffic.

The outcomes of the simulations verified that for implementing a remote pain monitoring system,
our proposed architecture, which is depicted in Figure 6, is more effective than cloud-based architecture.
In the cloud-based scenario, all the sensors are attached to the cloud via a proxy server. To evaluate
fog-based architecture, there are four fog devices to which sensors are attached. Initially, in the first
scenario, there are four sensors attached to each fog node. In each succeeding scenario, there is
an increase in the number of sensors attached per fog device. For example, the third scenario has
twenty-four sensors, which means the attached number of sensors per fog device is six.

Figure 10 presents the comparison of network usage in cloud- and fog-based scenarios. It is
observed that with an increment in the number of sensors, the network utilization also increases.
The reason behind the additional increase in network utilization in the case of the cloud-based
environment is that all the sensors are attached to the same cloud server, which has to process all the
signals coming from the sensors at the same time. On the other hand, in the fog-based implementation,
an equal number of sensors are attached to each fog node to process patient data for a specific hospital.
In this case, each fog node only has to process the signals of the sensors directly linked to that fog node.
The results of the simulations carried out implementing both fog architecture and cloud architecture
for the targeted metrics, namely latency and network usage, indicate that the proposed fog-based
architecture is more effective in employing a remote pain monitoring system.

Comparison of Network Usage
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Figure 10. Network usage comparison of proposed fog-based architecture with cloud computing

architecture for implementing remote pain monitoring.

When using the fog-based architecture for remote pain monitoring, information about the pain of
patients of a certain hospital can be extracted promptly and will also reduce the delay in the provision
of medical assistance to the patients. The findings also enable us to understand the importance of fog
computing architecture in IoT applications, where a rapid response is extremely desired. In conclusion,
low latency and efficient network utilization make fog-based architecture more viable for real-time
health applications.

6. Results and Discussion

We have presented improvement in the results by adopting a fog computing approach in different
applications. To the best of our knowledge, no application using fog computing architecture for
remote pain monitoring has been proposed before. To validate the effectiveness of the proposed
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architecture, the results are compared with the cloud-based systems that use sEMG or ECG signals for
pain detection and healthcare service [11,40,60]. Execution costs in cloud, latency, and network usage
are the parameters that are observed during the comparison. The results of the simulations performed
on different scales validate the effectiveness of the proposed architecture for the implementation of
remote pain monitoring applications as compared to the cloud.

Various simulations are performed to compare the proposed fog-based approach with the
cloud-based implementation of remote pain monitoring applications. Network consumption calculated
for each scenario is shown in Figure 10, which shows that the cloud-based system consumes more of the
network as compared to fog architecture. In cloud-based implementation, a cloud server is used for all
storage and processing tasks and, therefore, all the data from the sensors are transmitted to the cloud,
resulting in high utilization of network resources. Figure 9 compares the latency for all the scenarios for
both cloud and fog architecture-based simulations. Latency in cloud-based architecture significantly
increases with an increase in the number of sensors, as fog nodes only process the sensed data of the
sensors attached to them. Contrarily, the cloud server has to process the signals sent by all the sensors
so, subsequently, the latency in the cloud increases with an increase in the number of sensors. The key
advantage of fog architecture is that it tends to repetitively minimize access to the cloud by executing
the required task at the fog nodes by using locally available resources to provide a rapid response to
the edge nodes, reducing latency. Fog computing adaptation reduces the execution cost in the cloud by
minimizing the amount of data transfer to the cloud server, as shown in Figure 8a. The reason for this
data reduction at the cloud is the engagement of fog nodes in the system, providing an extra layer of
data processing between the source of data and the cloud server. Figure 8b presents the reduction in
execution cost during fog-based implementation.

In [11], a remote pain monitoring application was designed that detects SEMG signals of patients
using sensors. Subsequently, the sensed data are transmitted to the cloud for processing and storage.
Finally, the pain-related statistics are transferred to a mobile web application for remote access. Similarly,
in [40], a cloud-based system for the remote monitoring of persistent vegetative state (PVS) patients
using SEMG sensors was designed. In [60], a cloud-based health monitoring system was designed to
monitor body temperature, oxygen saturation, and heart rate of patients. All these systems engage
cloud servers for the processing and storage of biopotential data coming from patients. Moreover,
web and mobile applications are linked with the cloud to offer remote monitoring services.

Cloud computing architecture provides resources in a centralized manner. Latency is a major
concern in the deployment of remote health monitoring applications. Fog computing introduces a
new layer comprising fog nodes near to the edge of the system. Resources available at fog nodes are
limited but are sufficient for the pre-processing of the biopotential data coming from the edge of the
network. Therefore, to meet the QoS requirements of e-healthcare applications, especially in terms of
real-time response, the results of simulations performed in this research confirm fog computing-based
deployment to be a more suitable option than the cloud. In Table 4, we briefly compare our proposed
fog-based remote pain monitoring system with the existing healthcare systems. Simulation results
presented in the previous section shows that a significant reduction in network consumption and
execution cost can be achieved by using fog architecture as compared to the cloud.

Table 4. Comparison of the proposed remote pain monitoring system with the existing systems.

Reference Paradigm Remote Response Time Cost of Execution Network
Monitoring in Cloud Consumption
[61] Cloud Pain Moderate High High
[39] Cloud Pain Moderate High High
[62] Cloud Health Moderate High High
[40] Cloud Patient Moderate High High
[11] Cloud Pain Moderate High High

Proposed System Fog Pain Minimum Low Low
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7. Conclusions

To ensure the provision of medical facilities to each patient, the healthcare industry is moving
towards remote health monitoring applications. Several cloud computing-based remote healthcare
applications are available on the market. The key factor limiting the large-scale implementation of
such applications is latency. Fog computing architecture provides an additional layer of resources
near to the edge of the network. For this purpose, we proposed a fog computing-based remote pain
monitoring system that collects and processes sEMG signals of patients to detect pain. In the proposed
model, pain-related information is available for remote access through a web application within a
minimum time, thus enabling timely medical facilitation to the patients. The result of the simulations
carried out on different scales reveals that the proposed fog-based approach not only reduces latency
but also minimizes the network consumption and execution cost as compared to the cloud.

The proposed approach limits the use of a single fog device for a hospital. An increase in
the number of patients requires more processing resources than assigned to a fog node. Therefore,
load balancing will be required to maintain the efficiency of the system. Hence, our future work includes
the investigation of load balancing issues in fog computing and presenting an effective solution to
resolve them. Moreover, our proposed system is just limited to pain monitoring and, in future, we are
enthusiastic to design and implement a real-time fog computing-based remote healthcare system
capable of monitoring multiple biostatistics related to the overall health of a patient.
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