ﬂ SCNSors m\py

Article

An Automated Planning Model for HRI: Use Cases on
Social Assistive Robotics

Raquel Fuentetaja *'*/, Angel Garcia-Olaya'”, Javier Garcia'”, José Carlos Gonzalez
and Fernando Fernandez

Computer Science Department, Universidad Carlos III de Madrid, 28911 Leganés, Spain;
agolaya@inf.uc3m.es (A.G.-O.); figpolo@inf.uc3m.es (J.G.); josgonza@inf.uc3m.es (J.C.G.);
ffernand@inf.uc3m.es (EF.)

* Correspondence: rfuentet@inf.uc3m.es; Tel.: +34-91-624-88-42

check for
Received: 1 October 2020; Accepted: 11 November 2020; Published: 14 November 2020 updates

Abstract: Using Automated Planning for the high level control of robotic architectures is becoming
very popular thanks mainly to its capability to define the tasks to perform in a declarative way.
However, classical planning tasks, even in its basic standard Planning Domain Definition Language
(PDDL) format, are still very hard to formalize for non expert engineers when the use case to model
is complex. Human Robot Interaction (HRI) is one of those complex environments. This manuscript
describes the rationale followed to design a planning model able to control social autonomous robots
interacting with humans. It is the result of the authors’ experience in modeling use cases for Social
Assistive Robotics (SAR) in two areas related to healthcare: Comprehensive Geriatric Assessment
(CGA) and non-contact rehabilitation therapies for patients with physical impairments. In this work
a general definition of these two use cases in a unique planning domain is proposed, which favors the
management and integration with the software robotic architecture, as well as the addition of new
use cases. Results show that the model is able to capture all the relevant aspects of the Human-Robot
interaction in those scenarios, allowing the robot to autonomously perform the tasks by using a
standard planning-execution architecture.

Keywords: Automated Planning; Human-Robot Interaction; Social Assistive Robotics;
knowledge representation

1. Introduction

Social robots [1] must autonomously interact with people on dynamic and uncertain environments.
A common way to control such robots is the use of finite-state machines (FSM) [2-6], where each state
corresponds to a certain situation during the interaction, and transitions between states depend both
on actions performed by the robot and information received by sensors. FSMs are simple and fast
mechanisms to control the robot, particularly in structured environments, but, in more sophisticated
applications, to identify and correctly specify all possible states that could appear and the transitions
among them can be a really hard task. Moreover, adding or modifying functionality once the robot is
deployed can be very difficult given that all behaviors are heavily hard-coded.

Automated Planning (AP) allows to model the task using declarative languages, and general
problem-solving techniques are used to build plans from the initial state to a state where goals
are achieved. AP is a broad field, where various approaches, like Action-based Planning [7] or
Timeline-based planning [8], and different representation languages [9,10] coexist. The approach used
in this work, Classical Planning, and its extensions belong to the Action-based Planning paradigm.
This allows to model the actions the robot can perform and the possible states of the system using a
predicate-logic based language, the Planning Domain Definition Language (PDDL) [10]. There are

Sensors 2020, 20, 6520; d0i:10.3390/s20226520 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-3856-2629
https://orcid.org/0000-0002-4531-5896
https://orcid.org/0000-0002-5638-5240
https://orcid.org/0000-0002-9709-5338
https://orcid.org/0000-0003-3801-6801
http://dx.doi.org/10.3390/s20226520
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/22/6520?type=check_update&version=2

Sensors 2020, 20, 6520 2 0of 19

some other works in the robotics literature using either timeline-based planning [8,11-14], action-based
planning [15-17], or a mix of them [18,19]. However, only few of them deal with HRI on Social
Assistive Robots [14,18,19]. AP has been also applied in the context of HRI for other tasks, as language,
dialog and conversation generation [20-23] and situated natural language generation [24].

Using AP for high level control of robots has several advantages [13,25]. With AP, the model
specifies action schemes in terms of the facts that must be true for the action to be applied
(preconditions), the changes in the state after the action is executed (effects), the initial state and
the goals. Then, a domain-independent planner will find the sequence of actions that once executed
allow to reach the goals. Thus, it is not required to enumerate every state and every possible transition,
as in FSMs, and additionally any improvement from the planning community can be incorporated just
by selecting the best planner available.

However, even in the case of simplest task representation models, like the ones generated for
Classical Planning using PDDL2.1 [26], formalizing complex tasks is hard for non-expert engineers [27].
Insufficient knowledge about the rationality of the causal models, the limitations of current planners,
or even the lack of good editors make it difficult to use AP solutions. This is the case of the area
of Human-Robot Interaction, where specific tasks, like Comprehensive Geriatric Assessment (CGA)
or robotic rehabilitation are very complex to model even when many simplifications are assumed.
In previous works [16,28,29], AP has been successfully used to control robots able to perform
patient-robot interactions in some Social Assistive Robotics (SAR) [30] applications like CGA or
rehabilitation. The systems were tested on real patients with success. However, they were designed
using a different PDDL domain model for each task. This solution presents two main problems: (i) all
the common elements of the tasks are replicated, so any modification in those parts need to be updated
in every domain, and (ii) including new tasks requires to design the domain model from scratch.
These limitations can be softened since the tasks share a common structure, which can be extrapolated
to other robot-driven interactions in similar health related scenarios.

The contributions of this work are:

1. A conceptual model which generalizes the elements and relations to consider while building
robots able of performing different robot-driven HRI tasks sharing a common structure; the robot
behavior is assumed to be generated automatically by an automated planner, as described in
Section 3.1. The conceptual model supports the organization of the knowledge and its relationship
with the execution model.

2. A generic model described as a PDDL domain which formalizes the conceptual model. Given a
task, the generic domain together with the corresponding problem, which is specific to the task,
allow the planner to generate an execution flow. This execution flow is prepared to deal with
corrective actions and exogenous events, as described in Section 3.2.

3. The formalization of four HRI tasks of different nature described in the four PDDL problems,
respectively. Three tasks are in the scope of CGA (see Section 2.3) and another one in the scope of
rehabilitation (Section 2.4).

4. An evaluation equivalent to the one performed with a robot tested with real patients showing
that there is no loss of performance when the robot behavior is defined using the proposed
general model.

The importance of the contributions relies on the fact that the domain of the planning model is
generic, and therefore it is shared by the different tasks and defined just once. The domain specifies
the rationale of a generic HRI for those tasks. The particularities of each task are defined separately
in the problem of the planning model. Once the specific problem is defined, the control architecture
uses both, the domain and the problem, to plan the robot behaviour (see Figure 1). This approach
overcomes the aforementioned limitations of generating specific models from scratch for different
tasks, and greatly facilitates the development of new tasks. To the authors’ knowledge, there are no
such general planning models for robot-driven HRI in the literature. All other approaches, either using

Sensors 2020, 20, 6520 30of 19

automated planning or other control techniques, rely on ad-hoc models, created for the HRI task at
hand and difficult to generalize even for close related tasks [2,4-6].

HRI Formal
e —— Model o= Automated
HRI (PDDL Domain) Planning
Conceptual Based
Model Specific Task C(_)ntrol
0 Formal Model o0 Architecture
(PDDL Problem)

Figure 1. Formal models of HRI for a control architecture based on AP.

The next section describes the background of the paper, which includes AP, how it can be
used for HRI, and a brief description of the use cases in CGA and robotic rehabilitation. Then,
Section 3 introduces the conceptual model representing the knowledge needed to control the interaction.
That section describes also a planning domain, based on the conceptual model, which is general for all
the considered use cases and extensible to other interaction tasks following a similar structure, as well
as an example on how to formalize one of the CGA tasks. An evaluation of the domain model and its
ability to guide a robot is presented in Section 4. The paper finishes with conclusions and future work
in Section 5.

2. Background

This section introduces classical planning, briefly describes an architecture to use it for HRI,
and finally it presents the specific use cases that will be modeled in the HRI scope.

2.1. Automated Planning

A planning task can be formally defined as a tuple IT = {F, X, A, I, G}; where F is a set of
propositional facts, that can only be true or false, X is a set of numerical facts, A is a set of actions, I is
the initial state, and G are the goals. A state is defined by a subset of propositional facts (those that
are true in that state) and by the values of the numerical facts in the state. The goal set G is a partially
defined state. Each action a € A is defined in terms of its preconditions and effects, defined both over
facts. An action a € A is applicable in a given state if its preconditions hold in that state. Regarding
propositional facts, action preconditions express conditions about the truth value of the corresponding
fact. Regarding numerical facts, action preconditions express conditions that include comparison
operators (>, <, >=, <=, =) over their values. Action effects are defined as pairs < c,e > where
c is the condition triggering that effect and e the changes on the state where the action is applied.
Effects e can be either to add/delete a propositional fact or to modify the value to a numerical fact.
Unconditional effects have an empty condition. In this context, a plan 7w = {ay,ay,...a,} is a sequence
of actions such that for each i with 1 <i <, a; is applicable in s;_, being sy = I and where the goal
condition is satisfied in the last state, G C s,,.

The former definition corresponds to classical planning with numerical fluents and conditional
effects, as defined by PDDL2.1 [26]. This approach allows to achieve a good balance between model
complexity and control capabilities. Numerical fluents are useful to represent in a compact way the
order of the different interaction elements and phases. Conditional effects are also a way of compacting
the representation to be more legible.

In PDDL the models are divided into two files: the domain, which contains the definition of the
predicates and numerical variables involved in the states and the action schemes, whose parameters
are instantiated on objects in a preprocessing phase of the planner to generate ground actions; and the
problem file, which contains the descriptions of the objects in the specific planning task, the initial
state of those objects and the goal conditions. Using this partition, a domain file can represent a

Sensors 2020, 20, 6520 4 0f 19

family of planning tasks, which are specified by different problem files. Any use case for HRI with a
general structure that fits the proposed conceptual model can be formalized using the same domain
file; different use cases will require different problem files.

2.2. Using Automated Planning for HRI

In addition to a planner that provides the sequence of actions, the use of AP to allow the robot
behaving autonomously when conducting an HRI use case in a real environment requires a control
architecture [31]. This work assumes one of such architectures is given, specifically the Planning,
Execution and Learning Architecture (PELEA) [32]. Its design and implementation are out ofthe scope
of this paper, but Figure 2 describes a conceptual schema of how it, or any equivalent architecture,
must be used to control a robot in HRI. More technical details on the architecture can be found in the
works of Bandera et al. [28] for CGA and Gonzalez et al. [16] for rehabilitation.

Control architecture

? Domain
‘]
Task :|—> Planner

5 —

y l\(ﬂonitoring Problem -
T New problem
Monitor Executor
State T l Action
Converter
. Sensors T lCommand
‘ | Communicative act]
) < ‘
| L\. Reply

v

Figure 2. Conceptual schema of the use of Automated Planning for HRI in Social Assistive Robotics.

First, the healthcare professional decides the task the robot will perform. The actions it can execute
to carry out tasks will be encoded in a generic way in a PDDL domain. The details of the task will be
encoded in a PDDL problem. Specifically, the PDDL problem contains the initial state and the goals of
the problem to solve. This information allows to instantiate the actions defined in the PDDL domain.
Using the domain and the problem, a Planner creates a plan of actions to perform the required task.
This plan is forwarded to the Executor, which sends the first action to the robot. Planning is usually
performed at a high abstraction level, so actions have to be translated into the real low-level commands
the robot can execute. This is the duty of the Converter module, which also translates the raw data
coming from robot sensors (low level information) into a high-level state. The robot then interacts
with the patient and receives feedback using its sensors. Converter abstracts a high-level state from the
information received and sends it to Monitor, which checks if the interaction is proceeding as expected.
If so, the next action is sent to the robot. If not, the plan is discarded, a new problem reflecting the
current state is created and the Planner is invoked again to find a new plan. This cycle is repeated until
the robot has completed the task.

Sensors 2020, 20, 6520 50f 19

In the authors’ previous works, a different domain was created for each task (each of the CGA
tests and rehabilitation). The approach in this paper goes one step further by defining a general
conceptual model that allows to formalize all the four tasks as a unique domain.

2.3. Comprehensive Geriatric Assessment Tests

Comprehensive Geriatric Assessment (CGA) [33] is a clinical management strategy for frail
elderly patients. It provides a framework for the delivery of interventions to evaluate, on an individual
level, the medical, psycho-social, functional and cognitive state of patients, allowing for personalized
treatment and follow-up. Usually it is carried out every 6 months and consists of three different steps.
The first one is the Clinical Interview, where patients and relatives report their perceptions about
patient status. In the second step, Multidimensional Assessments, different tests are done by patients
or relatives to evaluate the functional, cognitive, motor and social status of patients. Information
gathered during these two first phases is used to create an Individualized Care Plan in step 3.

CGA is a powerful procedure which aims to increase the quality and quantity of life of the patient,
but it is also a time-consuming activity challenging the health-care systems capacities. In an attempt to
automatize the procedure and save clinicians’ time allowing them to concentrate on more added-value
tasks, the European Project ECHORD++ (See http://echord.eu for more information.) launched
in 2015 a challenge for the use of robotics to perform phase 2 of CGA. The idea is to have a social
robot, the CLARC robot [29], to help health-care professionals in collecting information. The robot
should autonomously perform the tests while the health-care professional discusses with the relatives.
This may reduce the duration of the CGA process, avoiding waiting time for patient and relatives,
and saving clinicians’ time. Examples of the performed tests are:

e The Barthel’s Index Rating Scale [34] measures the functional status asking about patient’s
capabilities performing daily living activities. Ten questions with three or four closed-answers are
evaluated following a Likert scale structure. Questions like: “Are you able to eat by yourself?”,
with possible answers: “Yes, I need no help”, “Yes, but I need some help, for example cutting
food”, “No, I need to be fed”. Given that this a closed-answer test, where patient replies verbally
or using a tablet, it is relatively easy to perform by a robotic platform.

e Mini-Mental State Examination (MMSE) [35] evaluates cognitive changes in patients suffering
from dementia. Orientation, immediate and short-term memory, attention, calculation, recall,
language understanding, and ability to follow simple commands are examined. It includes
closed-answer questions, but also open-answer ones (“What day is today?”), or even monitoring
of simple movements (“close your eyes”) and painting or hand-writing, which poses more
challenges from an HRI point of view.

o The Get Up & Go test [36] measures balance and fall risk. Unlike the previous ones it is a pure
physical test requiring the patient to stand up from a chair, to walk for a short distance, and to
come back to the chair to sit down again. The goal of the robot is both to guide the patient giving
verbal instructions, and to place itself in a suitable location allowing to perceive the gait and to
evaluate balance and speed.

Clinicians chose these tests because they assess various dimensions of the patient status,
are diverse in nature and present different challenges from an HRI point of view. Each of them
was initially modeled as a different planning task, i.e., using different domain and problem files for
each test.

2.4. Robotic Rehabilitation

AP has also been used in an autonomous robot performing non-contact upper-limb rehabilitation
therapy for kids with medical conditions like cerebral palsy and obstetric brachial plexus palsy [16,37].
A NAO robot performs a set of predefined arm-poses to be imitated by the patient. In addition it checks

http://echord.eu

Sensors 2020, 20, 6520 6 of 19

the patient’s pose, corrects it in case it does not meet the requirements, and also handles non-expected
events as the kid leaving the training area.

Session starts with the patient entering the training room while tracked by the system,
which captures body characteristics using a 3D sensor. After greeting the patient, the robot introduces
the first exercise; a sequence of poses where each one must be maintained for a certain amount
of time. If patient pose is not satisfactory a correction mechanism is started: After the first failed
attempt, the robot points the incorrect arm and asks the kid to correct it. If the pose is still incorrect,
the robot imitates the wrong posture and shows how to reach the correct one, in what is called
“mirrored correction”. After these two tries, if the patient keeps failing the pose is skipped (An example
of a rehabilitation session can be seen at: https://www.youtube.com/watch?v=75xb390Q8QEg).

3. Design of a General Domain Model

Based on the authors’ experience in the previous SAR projects a generic model of human-robot
interaction controlled by AP that can be used in similar scenarios has been developed. This section
presents a conceptual model that captures all the types of interactions that were detected from previous
works. Using this conceptual model a unique PDDL domain able to control a robot while performing
different tasks has been designed. The domain file is unique for all the tasks; all the specific information
is included only in the problem file. In this sense, the domain file formalizes the structure of the human
robot interaction while the problem files formalize the specific task, session and patient information.

The interaction is driven by the robot. It sends petitions to the human to perform some task
as, for example, answering a question. Then, in the best case, the recipient will perform the task
and the robot will continue to the following one. The model proposed in this section is adequate
for interactions of this type, with a common structure where the interaction is divided into several
sequential phases.

The next subsection defines a conceptual model that describes the patient-robot interactions.
Using this model allowed us to create a general planning domain useful for generating plans for
controlling the behavior of the robot for different human-robot interaction tasks, which is presented in
Section 3.2. Currently, it has been tested for CGA tests and the rehabilitation tasks described above.
The obtained planning domain is the same for the different tasks. However, each planning problem
defines the particularities of every task and it is therefore specific to it.

3.1. Conceptual High Level Knowledge Model

The planning domain is based on the conceptual knowledge model summarized in Figure 3.
It represents, in a generic way, the main concepts to allow the high level definition and management of
the interaction between the robot and the patient.

Each of the interaction phases [38,39] is called interaction component. In CGA tests, each one of
these components is a part of the test: the test introduction, the first question, the second question, etc.
Each component is associated several ordered communicative acts. A communicative act represents an
uninterrupted act of the robot to communicate something to the recipient. It is typically a sentence
expressed either by voice or text. It can also involve some additional behavior of the robot as showing
a video, adopting a particular pose, etc.

Two broad types of communicative acts are considered: directive and non-directive. Directive
acts [40] imply asking, ordering, etc., so a response of the recipient is expected immediately after them.
The response will be typically a spoken answer but it could be also to do something. Such a response is
not required by non-directive acts. Examples are acts to give some information as the test introduction,
the introduction at the beginning of a question, etc.

Following the defined interaction model, the proposed conceptual model includes three main
concepts: Interaction, Interaction Component and Communicative Act. The Interaction concept represents
the overall interaction which is composed of a sequence of Interaction Components. At the same time,
every Interaction Component is composed of a sequence of Communicative Acts. There are also other

https://www.youtube.com/watch?v=75xb39Q8QEg

Sensors 2020, 20, 6520 7 of 19

concepts related to the definition and management of the different events that can occur during the
interaction and interrupt the nominal execution flow. In those cases, the robot must perform some
corrective behavior accordingly to the detected situation. The involved concepts are Event and Behavior.
The former represents the possible events that can be detected. The later represents the possible
behaviors that the robot can perform. The concepts Component Event Behavior and Act Event Behavior
allow to relate events and behaviors to components and communicative acts respectively. They define
which should be the behavior when an event is detected during a component or after a communicative
act. Additionally, communicative acts can be also associated to a behavior to be executed during the
act, as for instance showing a video.

part-of
& s part-of
Interaction . Z> -
DEFINITION Interaction Component N
#components T
#max_failed_components DEFINITION Communicative Act
o ternative | SomPOnent_id DEFINITION
alternative | #component_position oo i
INTERNAL CONTROL #responses_required = .
configured v #max_failed_responses hint zaCUDOS'UOH
finished requires_response_confirmation S K mlax_re?etmons
current_component has_alternative !S,fastfoffcomponent ; "
current_com_act has_restoration_points is_first_of_component_farewel
current_restoration_act has_hints is_restoration_point
#failed_components requires_behaviour
Y B o - fequires_plausible, response
EXTERNAL CONTROL component_finished ul usible_|
can_continue #failed_responses requires_correct_response
waiting_for_response #responses_received
waiting_for_response_confirmation component_failed ‘#,;‘;EeFt{i:\i‘oAanCONTROL .
response_change_required required
waiting_for_response_change EXTERNAL CONTROL behaviour
response_received
4“‘T i response_is_plausible
response_is_correct
on
on
L T .
behaviour_of_event
behaviour_of event
o oN
detected Component Event Behaviour =
Act Event Behaviour
oN
oN
oN -
e
1
oN Event Behaviour

1 1 00N

Figure 3. High level interaction conceptual knowledge model.

The conceptual model is the base for defining a planning domain for controlling the high level
behavior of the robot. The information that comes (or can be modified) from the environment through
the robot sensors is considered as external to the planner. Thus, the conceptual model in Figure 3
distinguishes between three types of attributes:

e Definition: those that define the structure and characteristics of the interaction.

e Internal: those that express internal control information about the current state. These attributes
are never modified externally.

e External: those that represent control information that could be modified externally, i.e., perceived
by sensors.

Tables 1-3 contain a detailed description of every attribute in the model. The symbol # refers to
numeric attributes. Attributes without this symbol are either identifiers or Boolean. The remaining of
this section explains the most relevant parts of the model.

Communicative acts are identified just by labels. The specific texts of the sentences together with
their corresponding labels are stored at the low level. When a response is expected just after the robot
performs a communicative act, it should be defined as a required_response act.

Sensors 2020, 20, 6520 8 of 19
Table 1. Description of definition attributes.
Concept Attribute Description
Interaction #components Number of components

#max_failed_components

Max number of allowed failed components

Component component_id Label to identify the component
#component_position Position of the component in the interaction
#responses_required Number of recipient responses required for the component
#max_failed_responses Max number of failed responses allowed
requires_confirmation Before finishing the execution of the component the user must confirm the information is correct
has_alternative There is an alternative component
has_restoration_points The component has restoration points in its com. acts, for going back if necessary
has_hints One or more of the com. acts of the component has a hint
Com. Act act_id Label to identify the com. act
#act_position Position of the act in the corresponding component
#max_repetitions Maximum number of times it can be repeated
is_last_of_component This act is the last one of the component
is_1st_component_farewell ~ This act is the first one of the component farewell
is_restoration_point It is a restoration point for going back if necessary
requires_behavior Behavior that should be executed during the act
requires_response This act is a directive one. A response is required
requires_plausible_response The response after this act should be validated
requires_correct_response The response after this act should be correct
Table 2. Description of internal attributes.
Concept Attribute Description
Interaction configured The interaction has been configured
finished The interaction is finished
current_component Id. of current component
current_act Id. of current com. act
current_restoration_point 1d. of the com. act representing the current restoration point
#failed_component Number of failed components
Component component_finished This component is finished
#failed_responses Number of failed attempts to achieve the response
#responses_received Number of responses received for this component
component_failed This component is considered as failed
Table 3. Description of external attributes.
Concept Attribute Description
Interaction can_continue The test can continue. This predicate is removed when the interaction
cannot continue due to several causes as low battery, the patient asked
for help or the stop button has been pressed
waiting_for_response The recipient should give a response now
waiting_for_confirmation The recipient should confirm the response now
response_change_required The recipient has requested a response change
waiting_for_response_change The recipient should change the response now
Com. Act response_received The response has been received

response_is_plausible
response_is_correct

Plausibility of response has been checked
Correction of response has been checked

The recipient responses associated to communicative acts are not explicitly represented in the

conceptual model, since they are processed at a lower level. However, the high level control could
be different if the response is or not received. This is represented by the attribute response_received.
Also, there could be cases where it is necessary to validate that the response is plausible and/or
correct (attributes requires_plausible_response and requires_correct_response). In a question, plausible
responses are those that answer the question meaningfully but are not necessarily correct. For instance,
the question What weekday is today? has seven plausible answers, but only one of those is correct.
The high level plans will contain response-related actions such as validate-plausibility or validate-accuracy,

Sensors 2020, 20, 6520 9of 19

to trigger validations of the response in the low level. The result of the corresponding validation is
represented by the attributes response_is_plausible and response_is_correct.

Additionally, a communicative act can be repeated several times. This is useful to ask again when
the recipient does not provide a response. Every communicative act is associated a maximum number
of repetitions, #max_repetitions, indicating the maximum number of times the act can be repeated.
In the low level, the same communicative act label can be associated to several sentences to express the
same in different ways for different repetitions, improving the usability of the system.

The model includes also the possibility to include a hint into a communicative act. A hint is
another communicative act related to it. This is useful to help the recipient when she/he provides a
plausible but not correct response. This is represented by the relation hint.

Finally, some communicative acts can be marked as restoration points, attribute is_restoration_point.
Restoration points define points of the interaction to come back when some action is interrupted before
the next restoration point is reached, to recover the interaction context [27]. For example if the patient
leaves the room while the robot is waiting for an answer, when the interaction is resumed the execution
should start by asking the question again.

Components of the interaction domain, as test questions, can involve several directive
communicative acts. Therefore, they can have either several responses or several alternative ways for
obtaining the response. If there is no response for a directive communicative act (or the response is
not adequate), it is considered as a failed act (attribute component_failed). There is a maximum number
of failed responses for every component (#max_failed_responses). When that number is exceeded the
component is considered as a failed component. The interaction control keeps track of the number of
failed components since this number can be relevant to decide what to do next.

It is also possible to define an alternative component, represented by the relation alternative.
The idea is to offer another chance to obtain the responses with a different but equivalent component
when the first one fails.

All unpredictable information that could interrupt the nominal execution is summarized into the
model by the can_continue attribute of the Interaction concept, that depends on external information.
Examples of unpredictable events that can interrupt the execution can be that the recipient is absent
(the robot sensors do not locate the person) or the robot battery is very low.

3.2. Formalization of the Conceptual Model Using Classical Automated Planning

The conceptual model presented in the previous section constitutes a framework specifying the
actions to perform and the information to consider by a robot driving a family of HRI tasks in social
assistive robotics. But to be used in practice the conceptual model needs to be grounded in a real model
used by a deliberation technique [31]. In this work the model is formalized using Automated Planning,
which means the conceptual model needs to be formalized in a domain and a problem. Thanks to
the conceptual model the domain will be unique for the family of HRI tasks; the details of each one,
including possible adaptations to the patient conditions, will be modeled using different problems.
The methodology followed to create the domain, including the selection of the planning approach,
the planning horizon, the model partition, or the design of the actions and the states, is presented
in a previous work [27]. To summarize, since it is a single-robot environment there is neither need
for concurrent actions nor for complex time reasoning. Then, the model was created using classical
planning, and desfined using PDDL2.1 [26]. The planning horizon of the domain is the full interaction,
either a CGA test or a rehabilitation session. Uncertainty in actions and external events have been
handled by establishing a nominal flow. It describes a seamless interaction between the robot and
the patient where both behave as expected. If the interaction diverges from the nominal flow or
an unexpected event appears, replanning is used to perform some corrective actions that bring the
flow back to the nominal one. This model is independent of the planning architecture used: the only
assumption is that it accepts PDDL 2.1 and that a planning-replanning approach like the one presented
in Figure 2 is followed. In that sense other architectures like ROSPlan [25] can be used.

Sensors 2020, 20, 6520 10 of 19

In PDDL domain actions are defined by enumerating their preconditions and effects. Both,
preconditions and effects, refer basically to information defined in the conceptual knowledge model
which has been formalized using predicates and functions. This section provides a general explanation
of the domain actions. The planning domain contains two kinds of actions:

e Actions belonging to the nominal flow of execution of an interaction. The nominal flow represents
the case where the interaction advances in the best possible way; and

e Corrective actions, that try to return the execution to its nominal flow when some event considered
as unexpected occurs.

Figure 4 shows a diagram with the actions of a possible nominal execution flow. The nominal
flow depends on the specific interaction definition. This diagram includes only some of the possible
cases. It contains bifurcations depending on that specific definition. The nominal execution flow
is divided into three broad phases: configuration, execution of components and finish interaction.
The execution has three steps for every component: perform communicative act, process answer
and finish component. The first two steps can be repeated depending on the communicative acts of
the component.

c
9o
s
> configure-interaction
g
S
(&)
k3]
© communicate
IS \ 4
8 M
o P |
g P _p@
g A communicate
o execute_behavior
®
[=4
<
5 @‘— receive_response
a
£
Q
S @
S 2
c S . _
2 3 validate_plausability | | validate_correction
3 <
2 2) 4
w 53 »(D
<4 P
o
offer_confirmation P! receive_confirmation
=
]
= . .
S end-component-interaction
£
Is]
o
<
@
£ l
- 8>
c l
o
‘g finish-interaction-ok
8
£
=
2
£
ic

Figure 4. Nominal flow interaction diagram.

Sensors 2020, 20, 6520 11 of 19

The configuration phase contains the action configure_interaction. The configuration is performed

at the low level, so that the high level just controls it has been done. The configuration consists of the
selection of the interaction language, the verbal tense, etc. Then, the nominal execution flow continues

as follows:

1.

The robot performs the first communicative act of the current component. It may involve to
execute a behavior, as for instance showing a video. Involved domain actions are communicate or
communicate&execute-behavior.

The robot keeps doing 1. until all communicative acts of the component have been executed or a
response is needed (i.e., the communicative act requires a response). In that case, it executes the
action receive_response.

Then, the robot waits for the response, giving the user a maximum number of attempts to receive
it. Each attempt involves to repeat the last communicative act to ask again. Some atomic acts
may require to validate the answer plausibility (for instance, that it is included in the set of valid
answers for a closed-answer question) or to validate its accuracy (for instance, that the answer
makes sense for an open-answer question). If the answer is not acceptable, the communicative act
is repeated to its maximum number of attempts.

If the maximum number of attempts is reached, the flow continues to the following communicative
act which was defined as a different way of achieving the answer. If no such way exists the
nominal flow is interrupted.

If the response is obtained, it could be the case that it belongs to a component that requires a
response confirmation. In this case, the nominal flow will contain two actions: offer_confirmation
and receive_confirmation. When the confirmation is not received the nominal execution flow
is interrupted.

The final action is end-component-interaction, which allows either going to the next question or to
finish the interaction.

In addition to the actions described in the nominal execution flow, the domain contains the control

action prepare-component-farewell. It is not associated to any robot action, but modifies the control
to advance to the first communicative act of the component farewell. This action can appear in the
nominal control flow for components whose communicative acts define alternative ways of getting the
response, when the answer is received before the last of those alternative ways.

The domain contains corrective actions to deal with the following situations:

Change of response. It is produced when a response should be confirmed by the patient and he/she
does not confirm it. There are two corrective actions to solve this situation: offer-response-change
and receive-changed-response.

Hint should be activated. It is produced when it is required to provide a hint to the recipient
given that her/his response is not plausible or it is not correct. Associated actions are
validate-plausibility-and-hint and validate-correction-and-hint.

Response failed event. It is produced when a communicative act for obtaining the answer
has been repeated its maximum number of times and the answer (either a plausible or correct
one) has not been received. The involved corrective actions are: raise-response-failed-event and
handle-wrong-response. The second one forces the low level to execute the behavior defined to
manage an event called response-failed-event and to advance to the next communicative act.
Component failed event. It is produced when the maximum number of failed answers for
a component has been reached. In such case, the corrective actions are raise-component-failed-
event-no-response, raise-component-failed-event-max-repetitions and skip-component. The action
skip-component can be activated also directly by an event induced by the patient. This action
advances to the next component and annotates the interaction for calling the supervisor (doctor)
at the end. When the component has an alternative, the action switch-to-alternative-component is
used to change the execution flow to the alternative before skipping it.

Sensors 2020, 20, 6520 12 of 19

e Maximum number of failed components event. It is produced when the maximum number of
failed components has been reached. The corrective action is raise-max-component-failed-event. This
action marks as detected an event defined to identify that situation.

e Detected event. It is produced when an event has been detected during the execution of a
component. It forces the low level to execute the behavior defined to manage the corresponding
detected event. There are two corrective actions in this case: handle-event-and-resume and
handle-event-and-go-back. The first one is applied when the interaction can continue from the
current point once restored the situation generated by the event. The second one is applied when
it is necessary to go back to a restoration point.

e The interaction requires to call the supervisor at the end. It occurs if there has been a situation
during the interaction that requires the supervisor to be called and the end. The involved action
is: finish-interaction-call-supervisor.

This domain has enough expressive power to guide the interaction for the Barthel, Minimental
and Get up & Go tests and also for upper-limb rehabilitation tasks, included in the evaluation of the
next section. The files can be downloaded from a public repository (https://bitbucket.org/fjaviergp/
planningforhri).

The general domain contains 25 actions. Figure 5 shows one of them, to illustrate the actions’
structure. This action will appear in plans to indicate that the robot has to perform a communicative
act of a component that does not require to execute a behavior. As it can be observed the action
preconditions control that nothing is interrupting the interaction and that the interaction has been
configured. Also, they control that the communicative act corresponds to the current interaction state
and that it was not repeated more times than the maximum allowed repetitions. Then, they contain
some checks about the response, as for instance that it has not been received. The action effects increase
the number of repetitions of the communicative act. There are also some conditional effects related to
the response control and to the update of the current restoration point.

(:action communicate

:parameters (?q - component 71 - com_act)
:precondition

(and

(can_continue)

(interaction_configured)

(belongs 71 ?7q)

(= (component_position ?q) (current_component))
(= (com_act_position 71) (current_com_act))
(< (repetitions ?71) (max_repetitions 71))
(not (requires_behavior 71))

(not (waiting_for_response))

(not (response_received 7q))

(not (waiting_for_confirmation)))

:effect

(and

(increase (repetitions ?1) 1)

(when (is_restoration_point ?1)
(current_restoration_point 71))

(when (requires_response 71)
(waiting_for_response))

(when (not (requires_response ?71))
(increase (current_com_act) 1))))

Figure 5. Example of domain action.

The action communicate belongs to the nominal flow of the interaction. As aforementioned,
the domain contains alsocorrective actions, as the one showed in Figure 6. The execution of this specific
action forces the low level to execute the behavior defined to manage the corresponding detected event.
The action is for the case that the interaction can continue from the current point once restored from
the situation.

https://bitbucket.org/fjaviergp/planningforhri
https://bitbucket.org/fjaviergp/planningforhri

Sensors 2020, 20, 6520

(:action handle-event-and-resume

:parameters (?7q - component 7e - event 7b - behavior)
:precondition

(and

(not (can_continue))

(detected_event ?7e)

(behavior_of _event ?7q 7e 7b)

(= (component_position ?7q) (current_component))
(not (has_restoration_points 7q)))

reffect

(and

(can_continue)

(not (detected_event ?7e))))

Figure 6. Example of domain action to recover from an interruption of the nominal flow.

3.3. Formalization of the Different Tasks in PDDL Problems

13 of 19

As described above, the PDDL domain is shared by the different HRI tasks to be
addressed, but there are different planning problems defined for each of the use cases defined in
Sections 2.3 and 2.4. As an example, Figure 7 shows a fragment of the problem definition for the
Barthel test. Specifically, it shows part of the definition of the first component, which represents the
first question of the test (identifier q1). The definition starts indicating the question position and
defining the behaviors for different events. This question is composed of several communicative

acts, with identifiers q1_<X>. Each communicative act has it own definition indicating its position,

the maximum number of repetitions and some other information, as for instance that the act q1_a1

requires a plausible response.

(= (component_position q1) 1)

(behavior_of __event ql component_failed ignore)
(behavior_of _event ql doctor_needed call_doctor)
(behavior_of_event ql patient_absent call_patient)
(behavior_of_event ql max_q_failed call_doctor)
(behavior_of _event ql max_a_failed ignore)

(= (responses_received ql1) 0)

(= (responses_required ql1) 1)

(= (number_failed_responses ql1) 0)
(= (max_failed_responses ql) 1)

(belongs ql_s1 ql)

(= (com_act_position ql_s1) 0)
(= (max_repetitions qi_s1) 1)
(= (repetitions ql_s1) 0)

(belongs ql_al q1)

(= (com_act_position ql_al) 5)

(= (max_repetitions qi_al) 3)

(= (repetitions qi_al) 0)

(requires_response ql_al)

(requires_plausible_response ql_al)
(response_failed_behavior ql_al response_failed ignore)

Figure 7. Fragment of problem definition for Bathel test. First question (component q1).

Finally, and also as illustration, Figure 8 shows part of the nominal plan for the Barthel test.
The plan contains the high level actions the robot has to execute. The Barthel test is composed of

10 questions (from q1 to q10). The complete plan in this case contains 104 actions.

Sensors 2020, 20, 6520 14 of 19

(CONFIGURE-INTERACTION)

(COMMUNICATE QI1 INTRO1)

(COMMUNICATE QI1 INTRO2)
(END-COMPONENT-INTERACTION QI1 INTRO2)
(COMMUNICATE Q1 Q1_S1)

(COMMUNICATE Q1 Q1_01)

(COMMUNICATE Q1 Q1_02)

(COMMUNICATE Q1 Q1_03)

(COMMUNICATE Q1 Q1_E1)

: (COMMUNICATE Q1 Q1_A1)

10: (RECEIVE-RESPONSE Q1 Q1_A1)

11: (VALIDATE-RESPONSE-PLAUSABILITY Q1 Qi_A1)
12: (COMMUNICATE Q1 Q1_T1)

13: (END-COMPONENT-INTERACTION Q1 Q1_T1)

0N WN RO

©

104: (FINISH-INTERACTION-OK Q10)

Figure 8. Plan fragment of the nominal plan for the Barthel test.
4. Evaluation

This section presents the experimental results collected from the use of the general planning
model for the four proposed HRI tasks. Section 4.1 introduces the experimental settings and scope,
and Section 4.2 shows the particular results of the evaluation.

4.1. Experimental Settings and Scope

In previous works [29,37] four different PDDL models were created (four domains and four
problems) for the four applications shown before and tested them with real patients. Having four
different domain files and fine-tuning them as a result of evaluations turned out to be a time-consuming
and error-prone process. Lessons learned after those evaluations gave rise to the general model
introduced in this paper, which systematizes the interactions using a common conceptual model.
This section shows the evaluation of the unified model and its comparison to the previous specific
ones. Evaluation is done in two dimensions: On the one hand the domain and problems created must
allow finding a plan respecting the real-time constrains imposed by patient-robot interaction. On the
other hand, the plan created must be able to control the robot while performing both CGA tests and
rehabilitation sessions in a similar way as the specific domains allowed. It is important to bear in
mind that building specific models for each particular HRI task is the common approach found in the
state-of-the-art [4-6], so the aim of the proposed evaluation is to check if that specific domains can
be replaced by a single one keeping reaction times and making the robot to externally behave in the
same way.

The experiments in this section are defined using the same framework as in the experiments
with real patients: the PELEA [16] planning-execution architecture, and the Metric-FF [41] high-level
planner. The experiments were run in a Linux 64 bits Intel Xeon 2.93 GHZ Quad Core processor
with 2GB RAM. Given that pilot studies with real patients have ended, the results here correspond to
simulations with the following settings. There is a 10% probability that the robot loses track the patient.
Also, for Barthel and Minimental tests, an interaction error has been included, with a 30% probability,
simulating that the patient does not respond or the robot does not receive the answer. In the case of
Get up & Go test, several detection errors have been included: the patient is not detected near the chair
(10%), the patient is not detected seated (20%), and the robot detects the patient walked more than the
required distance (10%). Finally, in rehabilitation two different exercises were simulated including an
error of 20% in the poses performed by the patient.

4.2. Results

This section shows the results of the proposed evaluation. In particular, each row in Table 4
provides the results for a given test using the general domain, and also the results of the ad-hoc
formalizations, i.e., the old PDDL domain and problem files created specifically to solve the
corresponding application. All these PDDL files are also public and can be downloaded from the
repository (https:/ /bitbucket.org/fjaviergp/planningforhri).

https://bitbucket.org/fjaviergp/planningforhri

Sensors 2020, 20, 6520 15 of 19

Table 4. Comparison of the general and specific domains in Barthel, Get up & Go, Minimental

and Rehabilitation.
Test Domain Actions Replan Planning (s.) Response (ms.)
Barthel General 1235+84 63+£28 0.08+0.01 281.5+53
Specific 1020+£53 58433 051+0.01 277.7+ 6.8
General 33.0+27 3.0£09 0.01£0.0 232.5+4.9
GetUpGo e
Specific 20.0+1.8 22+0.7 0.054+0.02 236.1+5.6
Minimental General 1782+63 84+34 0.18 £0.0 284.8+79
Specific 1604 +£52 92+47 1.53 £0.02 281.1+5.7
Rehabilitation General 752+6.7 42+09 0.01+0.0 2425458
Specific ~ 584+78 52417 0.02+£0.0 2462+7.6

In particular Table 4 shows the number of actions in the executed plan, the number of replanning
episodes needed due to an unexpected event, the number of seconds needed to find a plan, and the
average time the system needs to send the next action to the robot in milliseconds (Response). The table
shows means and standard deviations from ten different executions for each domain and test.

The first aspect that is important to notice is that the general domain creates longer plans.
Therefore, it allows to improve the generalization capacity, but at the cost of a higher number of
actions. However, these additional actions just control the internal flow of the planning process and,
hence, there are no associated low-level actions the robot needs to perform. It must be remembered
that plans created using both the specific and general domains are low-level equivalent, so the actions
performed by the robot are similar, there is no external difference on robot behavior by using one or
other approach. As an example, in the CGA tests the corrective action handle-wrong-answer has no any
associated behavior to manage this event as nothing must be done if an answer is not correct and,
hence, it is ignored.

A second aspect to notice in Table 4 is that general plans are found faster in the general domain
than in the specific ones. This is because one of the aims of the general domain is to simplify the
previous ones. It contains only the required information to reason, leaving other aspects to the low
level. For example, pauses between speech segments are not planned in the general domain but left to
the low-level, while they were planned in the original ones. This will make the general domain faster
and easier to understand.

The third aspect to consider from Table 4 is that the number of replanning situations (dimension
Replan in Table 4) is not affected by the use of one or other domain and, in both cases, the mean
response time per action of PELEA (dimension Response) is similar. Response times allow for a correct
social interaction.

In summary, the proposed general planning model can be used to perform a wide variety of HRI
tasks, without losing performance against specific planning models, and even improving planning
times. In fact, this is the main benefit of the proposed approach in comparison to the previous work:
a general classical planning model that can be easily adapted to automatically conduct different HRI
tasks, avoiding fine-tuning of specific planning models and their time-consuming and error-prone
modifications throughout the evaluations.

5. Conclusions

This paper introduced a conceptual model and a planning domain for the formalization of the
interaction control for a social robot. The planning domain was defined in PDDL, the standard
language for automated planning, so any domain-independent planner can be used to generate plans
to control the robot. Four use cases were developed in different areas related to healthcare: CGA tests
and rehabilitation sessions.

Sensors 2020, 20, 6520 16 of 19

Human-robot interaction, and specifically the interaction in the defined use cases, is a stochastic
task which, a priory, does not seem to be suitable for a classical planning approach. However modeling
the task accurately, and supported by a complete planning, execution and monitoring architecture [28]
achieves a reasonable trade-off between the model construction cost, the real time requirements,
and the complexity of robot behavior. The main contribution on this aspect is the idea of nominal flow
of interaction plus corrective actions, which allows to handle the inherent uncertainty appearing when
working with humans in real environments, while maintaining the models simple and the reaction
times low.

The approach presented in this paper showed that different interaction tasks do not necessarily
require different formalization of the planning domain but that a general domain can be used so,
when new tasks are required, only the problem file should be changed, which permits a better long-term
maintenance and extension of the whole system. This is the main advantage of using a conceptual
model and generic domain: their ability to represent different types of HRI and to produce plans in
real time. Such ability for generalization represents a strong contribution over previous state of the art,
in which the behavior of the HRI is modeled ad-hoc, in most of the cases as FSMs, attending to the
specific needs of the task, and without the ability that their specific solutions can be reused for other
HRI tasks.

The introduced conceptual model is designed for time-limited interactions between the robot and
the patient, where the goal of the robot is the patient to do something (answering a test, doing some
exercises, etc.). It does not consider long-term interactions as the ones shown by other works [14].
This approach is particularly suitable for applications where a nominal behavior of the robot can be
defined, considering any event deviating from this nominal flow as a disruption that needs to be solved
by means of corrective actions. The planning/replanning approach could be also used in domains
where no such expected flow can be specified or where it is more likely it will be interrupted, by either
increasing the number of considered events, the number of corrective actions or the replanning
episodes. But in those scenarios other approaches as timeline-based planning [14], probabilistic
planning [42] or Markov Decision Processes could be more appropriate.

The experimental evaluations show that the number of actions of the general model is higher
than the obtained by specific models, i.e., the proposed general domain allows to model a wide variety
of HRI tasks, but it also requires a higher number of actions to solve each particular task. However,
most of these additional actions are control actions that do not impact in the time required to solve
each task. Therefore, the real-time planning requirements of the platform are satisfied, and plans are
generated in less than one second even in cases where replanning episodes are required.

Possible future works include the modelling of new tasks at the request of clinicians, increasing
the number of procedures that can be automatized with the system and the formalization of some
other different types of questions that can appear in CGA tests. This formalization and the use of a
shared single domain is a key component for a graphical user interface, currently under development,
that will allow to build models almost without technical support or knowledge of PDDL [43].

Another future line in the hope that the built CGA and rehabilitation robots keep being used
with real patients in real interactions, is to learn from these interactions to better tailor their behavior
to each person. From the modeling point of view the nominal flow can be adapted to each patient,
even if taking into account that it is a medical procedure with strict requirements and little space for
changes. Aspects like the preferred interaction means or the probability of failing in a given interaction
will be used to adapt the system to each user. The experience gathered in real evaluations will allow
also to extend the number of unexpected events and of corrective actions. Here, works like the one of
Konidaris et al. [44] seem a good starting point.

Sensors 2020, 20, 6520 17 of 19

Author Contributions: Conceptualization, R.F, A.G.-O.,].G,,].C.G. and EE; methodology, R.F.,, A.G.-O.,].C.G,,
and EF; software,].G. and J.C.G.; validation,].G.; formal analysis, R.F,].G., A.G.-O.; investigation, R.F,, A.G.-O.,
J.G. and EF; resources,].G.,].C.G. and EF; data curation, J.G.; writing-original draft preparation, R.F., A.G.-O.,
J.G.; writing-review and editing, R.E.,, A.G.-O.,].G. and EF,; visualization, J.G.; supervision, A.G.-O. and EE,;
project administration, A.G.-O. and EF,; funding acquisition, A.G. and F.F. All authors have read and agreed to
the published version of the manuscript.

Funding: This work has been partially funded by the European Union ECHORD++ project (FP7-ICT-601116),
and grants TIN2017-88476-C2-2-R and RT12018-099522-B-C43 of FEDER /Ministerio de Ciencia e Innovacién—
Ministerio de Universidades—Agencia Estatal de Investigacion. Javier Garcia is partially supported by the
Comunidad de Madrid funds under the project 2016-T2/TIC-1712.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

AP Automated Planning
CGA Comprehensive Geriatric Assessment
HRI Human-Robot Interaction

FSM Finite-State machine

MMSE Mini-Mental State Examination

PDDL Planning Domain Definition Language

PELEA Planning, Execution and Learning Architecture
SAR Social Assistive Robotics

References

1. Leite, I.; Martinho, C.; Paiva, A. Social Robots for Long-Term Interaction: A Survey. Int. J. Soc. Robot. 2013,
5,291-308. [CrossRef]

2. Fasola, J.; Mataric, M. A Socially Assistive Robot Exercise Coach for the Elderly. J. Hum. Robot. Interact.
2013, 2, 3-32. [CrossRef]

3. Rodriguez-Lera, F]J.; Matelldn-Olivera, V.; Conde-Gonzélez, M.A.; Martin-Rico, F. HiMoP: A three-component
architecture to create more human-acceptable social-assistive robots. Cogn. Process. 2018, 1-12. [CrossRef]

4. Hong, A,; Lunscher, N.; Hu, T.; Tsuboi, Y.; Zhang, X.; Dos Reis Alves, S.F.; Nejat, G.; Benhabib, B.
A Multimodal Emotional Human-Robot Interaction Architecture for Social Robots Engaged in Bidirectional
Communication. IEEE Trans. Cybern. 2020, 1-15. [CrossRef] [PubMed]

5. Zlatintsi, A.; Dometios, A.; Kardaris, N.; Rodomagoulakis, I.; Koutras, P.; Papageorgiou, X.; Maragos, P.;
Tzafestas, C.; Vartholomeos, P.; Hauer, K.; et al. I-Support: A robotic platform of an assistive bathing robot
for the elderly population. Robot. Auton. Syst. 2020, 126, 103451. [CrossRef]

6. Varrasi, S.; Di Nuovo, S.; Conti, D.; Di Nuovo, A. Social Robots as Psychometric Tools for Cognitive
Assessment: A Pilot Test. In Human Friendly Robotics; Ficuciello, F.,, Ruggiero, F,, Finzi, A., Eds.; Springer
International Publishing: Cham, Switzerland, 2019; pp. 99-112.

7. Fikes, R.; Nilsson, N.J. STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving.
Artif. Intell. 1971, 2, 189-208. [CrossRef]

8. Jénsson, A.K.; Morris, PH.; Muscettola, N.; Rajan, K.; Smith, B.D. Planning in Interplanetary Space: Theory
and Practice. In Proceedings of the Fifth International Conference on Artificial Intelligence Planning Systems,
Breckenridge, CO, USA, 14-17 April 2000; Chien, S.A., Kambhampati, S., Knoblock, C.A., Eds.; AAAI Press:
Palo Alto, CA, USA, 2000; pp. 177-186.

9. Barreiro, J.; Boyce, M.; Do, M.; Frank, J.; Iatauro, M.; Kichkaylo, T.; Morris, P.; Ong, J.; Remolina, E.;
Smith, T.; et al. EUROPA: A platform for Al planning, scheduling, constraint programming, and optimization.
In Proceedings of the 4th International Competition on Knowledge Engineering for Planning and Scheduling
(ICKEPS), Sao Paulo, Brazil, 25-29 June 2012; Technical report.

10. McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram, A.; Veloso, M.; Weld, D.; Wilkins, D. PDDL—The
Planning Domain Definition Language; Technical Report CVC TR-98-003/DCS TR-1165; Yale Center for
Computational Vision and Control: New Haven, CT, USA, 1998.

http://dx.doi.org/10.1007/s12369-013-0178-y
http://dx.doi.org/10.5898/JHRI.2.2.Fasola
http://dx.doi.org/10.1007/s10339-017-0850-5
http://dx.doi.org/10.1109/TCYB.2020.2974688
http://www.ncbi.nlm.nih.gov/pubmed/32149676
http://dx.doi.org/10.1016/j.robot.2020.103451
http://dx.doi.org/10.1016/0004-3702(71)90010-5

Sensors 2020, 20, 6520 18 of 19

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Ai-Chang, M.; Bresina, J.; Charest, L.; Chase, A.; Hsu, J.C.-]; Jonsson, A.; Kanefsky, B.; Morris, P; Rajan, K,;
Yglesias, J.; et al. MAPGEN: Mixed-initiative planning and scheduling for the Mars Exploration Rover
mission. IEEE Intell. Syst. 2004, 19, 8-12. [CrossRef]

Maza, I.; Kondak, K.; Bernard, M.; Ollero, A. Multi-UAV Cooperation and Control for Load Transportation
and Deployment. J. Intell. Robot. Syst. 2009, 57, 417-449. [CrossRef]

Rajan, K.; Py, E. T-REX: Partitioned inference for AUV mission control. Further Advances in Unmanned Marine
Vehicles; The Institution of Engineering and Technology: London, UK, 2012; pp. 171-199.

Umbrico, A.; Cesta, A.; Cortellessa, G.; Orlandini, A. A Holistic Approach to Behavior Adaptation for
Socially Assistive Robots. Int. . Soc. Robot. 2020, 1-21. [CrossRef]

Bernardini, S.; Fox, M.; Long, D. Combining temporal planning with probabilistic reasoning for autonomous
surveillance missions. Auton. Robot. 2017, 41, 181-203. [CrossRef]

Gonzélez,].C.; Pulido,].C; Ferndndez, F. A three-layer planning architecture for the autonomous control of
rehabilitation therapies based on social robots. Cogn. Syst. Res. 2017, 43, 232-249. [CrossRef]

Quintero, E.; Garcia-Olaya, A Borrajo, D.; Fernandez, F. Control of Autonomous Mobile Robots with
Automated Planning. J. Phys. Agents 2011, 5, 3-13. [CrossRef]

Rocco, M.D,; Sathyakeerthy, S.; Grosinger, J.; Pecora, F.; Saffiotti, A.; Bonaccorsi, M.; Cavallo, F; Limosani, R.;
Manzi, A.; Teti, G.; et al. A Planner for Ambient Assisted Living: From High-Level Reasoning to Low-Level
Robot Execution and Back. In AAAI Spring Symposium on Qualitative Representations for Robots, Palo Alto, CA,
24-26 March 2014; AAAI Press: Palo Alto, CA, USA; pp. 10-17.

Tran, T.T.; Vaquero, T.; Nejat, G.; Beck, J.C. Robots in retirement homes: Applying off-the-shelf planning and
scheduling to a team of assistive robots. J. Artif. Intell. Res. 2017, 58, 523-590. [CrossRef]

Perrault, C.R.; Allen, J.F. A plan-based analysis of indirect speech acts. Comput. Linguist. 1980, 6, 167-182.
Brenner, M.; Kruijff-Korbayova, I. A continual multiagent planning approach to situated dialogue.
In Proceedings of the 12th Workshop on Semantics and Pragmatics of Dialogue (LONDIAL), London,
UK, 2—4 June 2008. [CrossRef]

Steedman, M.; Petrick, R.P.A. Planning Dialog Actions. In Proceedings of the 8th Workshop on Discourse
and Dialogue (SIGDIAL), Antwerp, Belgium, 1-2 September 2007; pp. 265-272.

Petrick, R.P.A.; Foster, M.E. Planning for Social Interaction in a Robot Bartender Domain. In Proceedings
of the Twenty-Third International Conference on Automated Planning and Scheduling, Rome, Italy,
10-14 June 2013; pp. 389-397.

Garoulfi, K.; Koller, A. Automated planning for situated natural language generation. In Proceedings of the
48th Annual Meeting of the Association for Computational Linguistics, Uppsala, Sweden, 11-16 July 2010;
pp. 1573-1582.

Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder, B.; Carreraa, A.; Palomeras, N.; Hurtés, N.;
Carrerasa, M. ROSPlan: Planning in the Robot Operating System. In Proceedings of the Twenty-Fifth
International Conference on International Conference on Automated Planning and Scheduling, Jerusalem,
Israel, 7-11 June 2015; pp. 333-341.

Fox, M.; Long, D. PDDL2.1: An Extension to PDDL for Expressing Temporal Planning Domains. . Artif.
Intell. Res. 2003, 20, 61-124. [CrossRef]

Garcia-Olaya, A.; Fuentetaja, R.; Garcia-Polo, J.; Gonzalez,].C.; Ferndndez, F. Challenges on the Application
of Automated Planning for Comprehensive Geriatric Assessment Using an Autonomous Social Robot.
In Advances in Intelligent Systems and Computing; Springer International Publishing: New York, NY, USA,
2019; Volume 855, pp. 179-194. [CrossRef]

Bandera, A.; Bandera,].P.; Bustos, P.; Calderita, L.V, Duenas, A.; Fernandez, F; Fuentetaja, R.;
Garcia-Olaya, A.; Garcia-Polo, EJ.; Gonzalez,].C.; et al. CLARC: A Robotic Architecture for Comprehensive
Geriatric Assessment. In Proceedings of the 17th Workshop of Physical Agents (WAF), Malaga, Spain,
16-17 June 2016; pp. 1-8.

Voilmy, D.; Suarez, C.; Romero-Garcés, A.; Reuther, C.; Pulido, J.; Marfil, R.; Manso, L.; Lan Hing Ting, K.;
Iglesias, A.; Gonzélez, J.; et al. CLARC: A Cognitive Robot for Helping Geriatric Doctors in Real Scenarios.
ROBOT (1). In Advances in Intelligent Systems and Computing; Springer International Publishing: New York,
NY, USA, 2017; Volume 693, pp. 403-414.

Matari¢, M.].; Scassellati, B. Socially Assistive Robotics. In Springer Handbook of Robotics; Siciliano, B.,
Khatib, O., Eds.; Springer International Publishing: New York, NY, USA, 2016; pp. 1973-1994. [CrossRef]

http://dx.doi.org/10.1109/MIS.2004.1265878
http://dx.doi.org/10.1007/s10846-009-9352-8
http://dx.doi.org/10.1007/s12369-019-00617-9
http://dx.doi.org/10.1007/s10514-015-9534-0
http://dx.doi.org/10.1016/j.cogsys.2016.09.003
http://dx.doi.org/10.14198/JoPha.2011.5.1.02
http://dx.doi.org/10.1613/jair.5306
http://dx.doi.org/10.1007/s10458-009-9081-1
http://dx.doi.org/10.1613/jair.1129
http://dx.doi.org/10.1007/978-3-319-99885-5_13
http://dx.doi.org/10.1007/978-3-319-32552-1_73

Sensors 2020, 20, 6520 19 of 19

31.

32.

33.

34.
35.

36.

37.

38.

39.
40.

41.

42.

43.

44.

Ingrand, F; Ghallab, M. Deliberation for autonomous robots: A survey. Artif. Intell. 2017, 247, 10-44.
[CrossRef]

Alcézar, V.; Guzman, C.; Prior, D.; Borrajo, D.; Castillo, L.; Onaindia, E. PELEA: Planning, Learning and
Execution Architecture. In Proceedings of the 28th Workshop of the UK Planning and Scheduling Special
Interest Group (PlanSIG), Brescia, Italy, 1-3 December 2010; pp. 1-8.

Ellis, G.; Langhorne, P. Comprehensive geriatric assessment for older hospital patients. Br. Med. Bull. 2005,
71,45-59. [CrossRef] [PubMed]

Mabhoney, E; Barthel, D. Functional evaluation: The Barthel index. Md. State Med. . 1965, 14, 56-61.
Folstein, S.EM.; McHugh, P. Mini-mental state: A practical method for grading the cognitive state of patients
for the clinician. J. Psychiatr. Res. 1975, 12, 189-198. [CrossRef]

Mathias, S.; Nayak, U.S.; Isaacs, B. Balance in elderly patients: The get-up and go. Arch. Phys. Med. Rehabil.
1986, 67, 387-389.

Pulido,]J.C.; Suarez-Mejias, C.; Gonzdlez,].C.; Duefias-Ruiz, A.; Ferri, PF; Sahuquillo, M.EM,;
Vargas, C.E.R.D.; Infante-Cossio, P.; Calderén, C.L.P; Fernandez, F. A Socially Assistive Robotic Platform for
Upper-Limb Rehabilitation: A Longitudinal Study With Pediatric Patients. IEEE Robot. Automat. Mag. 2019,
26, 24-39. [CrossRef]

Searle, J.R. Speech Acts: An Essay in the Philosophy of Language; Cambridge University Press: Cambridge, UK,
1969; Volume 626.

Austin, J.L. How to Do Things with Words; Oxford University Press: Oxford, UK, 1975; Volume 88.

Searle, J.R. A taxonomy of illocutionary acts. In Language, Mind and Knowledge, Minnesota Studies in the
Philosophy of Science; University of Minnesota Press: Minneapolis, MN, USA, 1975; Volume 7, pp. 344-369.
Hoffmann, J. The Metric-FF Planning System: Translating “Ignoring Delete Lists” to Numeric State Variables.
J. Artif. Intell. Res. 2003, 20, 291-341. [CrossRef]

Canal, G.; Cashmore, M,; Krivi¢, S.; Alenya, G.; Magazzeni, D.; Torras, C. Probabilistic Planning for Robotics
with ROSPlan. In Towards Autonomous Robotic Systems; Althoefer, K., Konstantinova, J., Zhang, K., Eds.;
Springer International Publishing: Cham, Switzerland, 2019; pp. 236-250._20. [CrossRef]

Gragera, A.; Garcia, A.M.; Ferndndez, F. A Modelling and Formalisation Tool for Use Case Design in Social
Autonomous Robotics. In Proceedings of the Fourth Iberian Robotics Conference (Robot 2019) —Aduvances in
Robotics, Volume 2, Porto, Portugal, 20-22 November 2019; Silva, M.E,, Lima, J.L., Reis, L.P, Sanfeliu, A., Tardioli,
D., Eds.; Springer International Publishing: New York, NY, USA, 2019, Volume 1093, pp. 656-667. [CrossRef]
Konidaris, G.; Kaelbling, L.P.; Lozano-Pérez, T. Constructing Symbolic Representations for High-Level
Planning. AAAI Conf. Artif. Intell. 2014, 1932-1940. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

@ (© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.artint.2014.11.003
http://dx.doi.org/10.1093/bmb/ldh033
http://www.ncbi.nlm.nih.gov/pubmed/15684245
http://dx.doi.org/10.1016/0022-3956(75)90026-6
http://dx.doi.org/10.1109/MRA.2019.2905231
http://dx.doi.org/10.1613/jair.1144
http://dx.doi.org/10.1007/978-3-030-23807-0_20
http://dx.doi.org/10.1007/978-3-030-36150-1_54
http://dx.doi.org/10.1002/mds.25605
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Automated Planning
	Using Automated Planning for HRI
	Comprehensive Geriatric Assessment Tests
	Robotic Rehabilitation

	Design of a General Domain Model
	Conceptual High Level Knowledge Model
	Formalization of the Conceptual Model Using Classical Automated Planning
	Formalization of the Different Tasks in PDDL Problems

	Evaluation
	Experimental Settings and Scope
	Results

	Conclusions
	References

