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Abstract: Digital-enabled manufacturing systems require a high level of automation for fast and
low-cost production but should also present flexibility and adaptiveness to varying and dynamic
conditions in their environment, including the presence of human beings; however, this presence
of workers in the shared workspace with robots decreases the productivity, as the robot is not
aware about the human position and intention, which leads to concerns about human safety.
This issue is addressed in this work by designing a reliable safety monitoring system for collaborative
robots (cobots). The main idea here is to significantly enhance safety using a combination of recognition
of human actions using visual perception and at the same time interpreting physical human–robot
contact by tactile perception. Two datasets containing contact and vision data are collected by using
different volunteers. The action recognition system classifies human actions using the skeleton
representation of the latter when entering the shared workspace and the contact detection system
distinguishes between intentional and incidental interactions if physical contact between human and
cobot takes place. Two different deep learning networks are used for human action recognition and
contact detection, which in combination, are expected to lead to the enhancement of human safety and
an increase in the level of cobot perception about human intentions. The results show a promising
path for future AI-driven solutions in safe and productive human–robot collaboration (HRC) in
industrial automation.

Keywords: safe physical human–robot collaboration; collision detection; human action recognition;
artificial intelligence; industrial automation

1. Introduction

As the manufacturing industry evolves from rigid conventional procedures of production to a
much more flexible and intelligent way of automation within the frame of the Industry 4.0 paradigm,
human–robot collaboration (HRC) has gained rising attention [1,2]. To increase manufacturing
flexibility, the present industrial need is to develop a new generation of robots that are able to interact
with humans and support operators by leveraging tasks in terms of cognitive skills requirements [1].
Consequently, the robot becomes a companion or so-called collaborative robot (cobot) for flexible task
accomplishment rather than a preprogrammed slave for repetitive, rigid automation. It is expected
that cobots actively assist operators in performing complex tasks, with highest priority on human
safety in cases humans and cobots need to physically cooperate and/or share their workspace [3].
This is problematic because the current settings of cobots do not provide an adequate perception of
human presence in the shared workspace. Although there are some safety monitoring systems [4–7],
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they can only provide a real or virtual fence for the cobot to stop or slow down when an object,
including a human being, enters the defined safety zone. However, this reduces productivity in two
ways as follows:

1. It is not possible to differentiate between people and other objects that enter the workspace of the
cobot. Therefore, the speed is always reduced regardless of the object.

2. It is also not possible to differentiate whether an interaction with the robot should really take
place or not; this also always forces a maximum reduction in speed.

This issue can only be tackled by implementing a cascaded, multi-objective safety system,
which primarily recognizes human actions and detects human–robot contact [8] to percept human
intention in order to avoid collisions. Therefore, the primary goal of this work is to conduct a
step-change in safety for HRC in enhancing the perception of cobots by providing visual and tactile
feedback to the robot from which it is able to interpret the human intention. The task is divided into
two parts, human action recognition (HAR) using visual perception and contact type detection using
tactile perception, which will be subsequently investigated. Finally, by combining these subsystems,
it is considered to attain a more reliable and intelligent safety system, which takes advantage of
considerably enhanced robot perceptional abilities.

1.1. Human Action Recognition (HAR)

Based on the existing safety regulation related to HRC applications and by inspiring from human
perception and cognition ability in different situations, adding the visual perception to the cobot can
enhance HRC performance. Nevertheless, the main challenge is how cobots are able to adapt to human
behavior. HAR as part of visual perception plays a crucial role in overcoming this challenge and
increasing productivity and safety. HAR can be used to allow the cobot keeping a safe distance with its
human counterpart or the environment, ensuring an essential requirement for fulfilling safety in shared
workspaces. Recent studies have been concentrated on visual and non-visual perception systems to
recognize human actions [9]. One method amongst non-visual approaches consists of using wearable
devices [10–15]. Nevertheless, applying this technology as a possible solution for an industrial situation
seems at present neither feasible nor comfortable in industrial environments because of restrictions that
it will impose on the operator’s movements. On the other hand, active vision-based systems are widely
used in such applications for recognizing human gestures and actions. In general, vision-based HAR
approaches consist of two main steps: proper human detection and action classification.

As alluded by recent researches, machine learning methods are essential in recognizing human
actions and interpreting them. Some traditional machine learning methods such as support vector
machine (SVM) [16–19], hidden Markov model (HMM) [20,21], neural networks [22], and Gaussian
mixture models (GMM) [23,24] have been used for human action detection with a reported accuracy of
about 70 to 90 percent. On the other hand, deep learning (DL) algorithms prevail as a new generation
of machine learning algorithms with significant capabilities in discovering and learning complex
underlying patterns from a large amount of data [25]. This algorithm provides a new approach to
improve the recognition accuracy of human actions by using depth data provided by time-of-flight,
depth, or stereo cameras, extracting human location and skeleton pose. DL researchers either use
video stream data [26–28], RGB-D images [29–31], or 3D skeleton tracking and joints extraction [32–35]
for classification of arbitrary actions. Among different types of deep networks, convolutional neural
networks (CNN) stand for a popular approach, which can be represented as 2D or 3D network in
action recognition but still needs a large set of labeled data for training and contains many layers.
The first 3D-CNN for HAR has been introduced by [36–38] providing an average accuracy of 91 percent.
Recent researches based on 3D-CNN techniques [39–42] have obtained a high performance on the KTH
dataset [43] in comparison to 2D-CNN networks [44–47]. Yet, the maximum accuracy of this research
is reported to be at 98.5 percent but is not capable of classifying in real-time. In addition, most of these
articles mainly focus on action classification based on domestic scenarios, only few have an approach
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for industrial scenarios [19,48,49] and a restricted number works on unsupervised human activities
in the presence of mobile robots [50,51]. Thus, there is a need to introduce a fast and more precise
network for HAR in industrial applications, which can be presented as a new 3D network architecture
by considering an outperforming result in action classification.

In this work, we use a deep learning approach for real-time human action recognition in
an industrial automation scenario. A convolutional analysis is applied on RGB images of the
scene in order to model the human motion over the frames by skeleton-based action recognition.
The artificial-intelligence-based human action recognition algorithm provides the core part for
distinguishing between collision and intentional contact.

1.2. Contact Type Detection

In more and more HRC applications, there is a need of having direct, physical collaboration
between human and cobot, physical human–robot collaboration (pHRC) due to an unmatched degree
of flexibility in the execution of various tasks. Indeed, when a cobot is performing its task, it should
be aware of its contact with the human. In addition, from a cobot’s point of view, the type of
this contact is not immediately obvious, due to the fact that the cobot cannot distinguish whether
a human gets in contact with the robot incidentally or intentionally, when a collaborative task is
executed. Therefore, it is important that the cobot needs to percept human contact with deeper
understanding. Towards this goal, it is imperative firstly, to detect the human–robot contact and
secondly, distinguish between intentional and incidental contacts, a process called collision detection.
Some researchers propose sensor-less procedures for detecting a collision based on the robot dynamics
model [52,53], but through momentum observers [52,54–57], using extended state observers [58],
vibration analysis models [59], finite-time disturbance observers [56], energy observers [57], or joint
velocity observers [60]. Among these methods, the momentum observer is the most common
method of collision detection, because it provides better performance compared to the other methods,
although the disadvantage is that it requires precise dynamic parameters of the robot [61]. For this
reason, machine learning approaches such as artificial neural networks [62–64] and deep learning [65,66]
have recently been applied for collision detection based on robot sensors’ stream data due to their
performance in modeling the uncertain systems with lower analytics effort.

Deep neural networks are extremely effective in feature extraction and learning complex
patterns [67]. Recurrent neural networks (RNN) such as long short-term memory network approaches
(LSTM) are frequently used in research for processing time series and sequential data [68–71]. However,
the main drawback of this network is the difficulty and time consumption for training in comparison
to convolutional neural networks (CNN) [65]. Additionally, current researches showed that CNN
has a great performance for image processing in real time situations [26,65,72–74], where the input
data are much more complicated than 1D time series signals. As proposed in [65], a 1D-CNN,
named CollisionNet, has a proper potential in detecting collision, although only incidental contacts
have been considered. Moreover, depending on whether the contact is intentional or incidental,
the cobot should provide an adequate response, which in every case, ensures the safety of the human
operator. At this step, identifying the cobot link where the collision occurred is important information
for anticipating proper robot reaction, which needs to be considered in contact perception [61].

With this background and considering the fact that contact properties´ patterns of incidental and
intentional states are different according to the contacted link, we aim to use supervised learning,
convolutional neural network, to have a model-free contact detection. Indeed, not only does the
proposed system detect the contact, which in other papers [61,65,75,76] is named collision detection,
it can also recognize the types of contact, incidental or intentional, provide information about a
contacted link and consequently increase the robot awareness and perception about human intention
during physical contact.
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2. Material and Methods

2.1. Mixed Perception Terminology and Design

We hypothesize that combining two types of perception, visual and tactile, in a mixed perception
approach can enhance the safety of human during collaborating with a robot by additional information
to the robot’s perception spectrum. It is easy to imagine that a robot then would be able to see and feel
a human in its immediate vicinity at the same time. Using visual perception, a robot can notice:

1. A human entering the shared workspace (Passing)
2. A human observing its tasks when he/she is near to the robot and wants to supervise the robot

task (Observation)
3. A dangerous situation when the human is not in a proper situation to do collaboration or

observation, which can threaten human safety (Dangerous Observation)
4. A human interaction when the human is close to robot and doing the collaboration (Interaction).

However, it is difficult using a pure vision-based approach to distinguish between dangerous
observation and interaction and to differentiate between incidental and intended contact types not
only for a machine but also for a human. Therefore, at this stage, considering both types of perception,
vision and haptics, is of significance. As indicated above, this approach is able to increase the safety
and can be like a supervisory unit to the vision part as the latter can fail due to occlusion effects.

To support our hypothesis, we first choose the approach of developing two separate networks for
human action and contact recognition, which meet the requirements for human–robot collaboration
and real-time capability. These networks will be examined and discussed with regard to their
appropriateness and their results. As a first step, we want to determine in this paper whether a logical
correlation of the outputs of the two networks is theoretically able to provide a reasonable expansion
of the perception spectrum of a robot for human–robot collaboration. We want to find out what the
additional information content is and how it can specifically be used to further increase the safety and
with that possibly also additional performance parameters of HRC solutions such as short cycle time,
low downtime, high efficiency, and high productivity. The concrete merging of the two networks in a
common application represents an additional stage of our investigations, which is not a subject of this
work. The results of the present investigation, however, shall provide evidence that the use of AI in
robotics is able to open up significant new possibilities and enables robots to achieve their operational
objectives in close cooperation with humans. Enhanced perceptional abilities of robots are future key
features to shift the existing technological limits and open up new fields of application in industry
and beyond.

2.2. Robotic Platform

The accessible platform used throughout this project is a Franka Emika robot (Panda), recognized as
a suitable collaborative robot in terms of agility and contact sensitivity. The key features of this robot
will be summarized hereafter; it consists of two main parts, arm and hand. The arm has 7 revolute
joints and precise torque sensors (13 bits resolution) at every joint, is driven by high efficiency brushless
dc motors, and has the possibility to be controlled by external or internal torque controllers at a
1 kHz frequency. The hand is equipped with a gripper, which can securely grasp objects due to a force
controller. Generally, the robot has a total weight of approximately 18 kg and can handle payloads up
to 3 kg.

2.3. Camera Systems

The vision system is based on a multi-sensor approach using two Kinect V2 cameras for monitoring
the environment to tackle the risk of occlusion. The Kinect V2 has a depth camera with resolution
of 512 × 424 pixels with a field of view (FoV) of 70.6◦ × 60◦, and the color camera has a resolution of
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1920 × 1080 px with a FoV of 84.1◦ × 53.8◦. Therefore, this sensor as one of the RGB-D cameras can be
used for human body and skeleton detection.

2.4. Standard Robot Collision Detection

A common collision detection approach is defined as Equation (1) [61].

cd(µ(t)) =
{

TRUE, i f
∣∣∣µ(t)∣∣∣ > εµ

FALSE, i f
∣∣∣µ(t)∣∣∣ ≤ εµ (1)

where cd is the collision detection output function, which maps the selected monitoring signal µ(t)
such as external torque into a collision state, true or false. εµ indicates a threshold parameter,
which determines the sensitivity for detecting a collision.

2.5. Deep Learning Approach

A convolutional neural network (CNN) model performs classification in an end-to-end manner
and learns data patterns automatically, which is different to the traditional approaches where the
classification is done after feature extraction and selection [77]. In this paper, a combination of 3D-CNN
for HAR and 1D-CNN for contact type detection has been utilized. The following subsections describe
each network separately.

2.5.1. Human Action Recognition Network

Since human actions can be interpreted by analyzing the sequence of human body movements
involving arms and legs and placing them in a situational context, the consecutive skeleton images
are used as inputs for our 3D-CNN network, which was successfully applied for real-time action
recognition. In this section, the 3D-CNN, which is shown in Figure 1, classifies HAR to five states,
namely: Passing, Observation, Dangerous Observation, Interaction, and Fail. These categories are
based on the most feasible situations which may occur during human–robot collaboration:

1. Passing: a human operator occasionally needs to enter the robot’s workspace, which is specified
due to the fix position of the robot but without any intention to actively intervene the task
execution of the robot.

2. Interaction: a human operator wants to actively intervene the robot’s task execution, which can
be the case due to correct a Tool Center Point (TCP) path or to help the robot if it gets stuck.

3. Observation: the robot is working on its own and a human operator is about to observe and check
the working process from within the robot’s workspace.

4. Dangerous Observation: the robot is working on its own and a human operator is about to
observe the working process. Due to the proximity of exposed body parts (head and upper
extremities) to the robot in the shared workspace, there is a high potential of life-threatening
injury in case of a collision.

5. Fail: one or all system cameras are not able to detect the human operator in the workspace due to
occlusion by the robot itself or other artefacts in the working area.

The input layer has 4 dimensions, Nchannel ×Nimage-height ×Nimage-width ×Nframe. The RGB image
of Kinect V2 has a resolution of 1980 × 1080 pixels which is decreased to 320×180 for reducing the
trainable parameters and network complexity. Therefore, Nchannel, Nimage-height, and Nimage-width are 3,
180, and 320, respectively. Nframe indicates the total number of frames in the image sequence, which is
3 in this research.

As shown in Figure 1, the proposed CNN is composed of fifteen layers, consisting of four
convolutional layers, four pooling layers, three fully connected layers followed by three dropout
layers and a SoftMax layer for predicting actions. Convolutional layers utilized for feature extraction
by applying filters and pooling layers are specifically used to reduce the dimensionality of the
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input. This layer performs based on the specific function, such as max pooling or average pooling,
which extracts the maximum or medium value in a particular region. Fully connected layers are
like a neural network for learning non-linear features as represented by the output of convolutional
layers. In addition, dropout layers as a regularization layer try to remove overfitting in the network.
Over 10 million parameters have to be trained for establishing a map to action recognition.Sensors 2020, 20, x FOR PEER REVIEW 6 of 20 
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Figure 1. Three-dimensional convolutional neural networks (CNN) for human action recognition.

The input layer is followed by a convolution layer with 96 feature maps of size 73. Subsequently,
the output is fed to the rectified linear unit (ReLU) activation function. ReLU is the most suitable
activation function for this work, as it is specifically designed for image processing, and it can keep
the most important features of the input. In addition, it is easier to train and usually achieves better
performance, which is significant for real-time applications. The next layer is a max-pooling layer with
size and stride of 3. The filter size of the next convolutional layers decreases to 53 and 33, respectively,
with stride 1 and zero padding. Then, max-pooling windows decline to 23 with stride of 2. The output
of the last pooling layer is flattened out for the fully connected layer input. The fully connected
layers consist of 2024, 1024, 512 neurons, respectively. The last step is to use a SoftMax level for
activity recognition.

2.5.2. Contact Detection Network

For contact detection, a deep network, which is shown in Figure 2, is proposed. In this scheme,
a 1D-CNN, which is a multi-layered architecture with each layer consisting of few one-dimensional
convolution filters, is used. In this research, just two links of the robot which are more likely to be
used as contact points during physical human–robot collaboration, considered which indeed does not
influence the general approach used in this paper. Therefore, it includes one network for classification
of 5 states, which were defined as:
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1. No-Contact: no contact is detected within the specified sensitivity.
2. Intentional_Link5: an intentional contact at robot link 5 is detected.
3. Incidental_Link5: a collision at robot link 5 is detected.
4. Intentional_Link6: an intentional contact at robot link 6 is detected.
5. Incidental_Link6: a collision at robot link 6 is detected.
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where τJ, τext, q, and
.
q indicate joint torque, external torque, joint position, and joint velocity,

respectively. W is the size of a window over the collected signals, which stores time-domain samples as
an independent instance for training the proposed models. Hence, the input vector is W × 28, and in
this research, by selecting 100, 200, and 300 samples for W, three different networks were trained to
compare the influence of this parameter.

As shown in Figure 2, the designed CNN is composed of eleven layers. In the first layer of this
model, the convolution process maps the data with 160 filters. The kernel size of this layer is optimally
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considered 5 to obtain a faster and sensitive enough human contact status; a parameter higher than
5 led to an insufficient network’s response, as it is more influenced by past data rather than near to
present data. To normalize the data and avoid overfitting, especially due to the different maximum
force patterns of every human, a batch normalization is used in the second layer. Furthermore, the size
of all max pooling layers is chosen as 2, and ReLU function is considered as the activation function,
due to reasons already mentioned before.

2.6. Data Collection

2.6.1. Human Action Recognition

The HAR data are collected simultaneously from different views by two Kinect V2 cameras
recording the scene of an operator moving next to a robot performing repetitive motions. The human
skeleton is detected using the Kinect library based on the random forest decision method [78]. As the
Kinect V2 library in Linux is not precise and does not project human skeleton in RGB images, the 3D
joint position in depth coordination was extracted and converted to RGB coordinates as follows:

xrgb = xd ×
PDxrgb

PDxd
+

Cxrgb × PDxd −Cxd × PDxrgb

PDxrgb × PDxd
(7)

yrgb = yd ×
PDyrgb

PDyd
+

Cyrgb × PDyd −Cyd × PDyrgb

PDyrgb × PDyd
(8)

where (Cxrgb, Cyrgb) and (Cxd, Cyd) are RGB and depth image centers, respectively. PD shows the
number of pixels per degree for depth and RGB images, respectively equal to 7 × 7 and 22 × 20 [79,80].
Then, the RGB images, which are supplemented with the skeleton representation in each frame,
are collected as a dataset. The sample rate by considering the required time for saving the images was
22 frames/second. Both cameras start collecting data once the human operator enters the environment,
while it is assumed that the robot is stationary in a structured environment. The collected images
are then sorted into 5 different categories and labeled accordingly based on the skeleton position and
configuration and with respect to the fixed base position of the robot.

2.6.2. Contact Detection

The data acquired at the robot joints during a predefined motion with a speed of 0.5 m/s were
collected in three states, contact-free, during interaction with the operator, and collision-like contacts,
at a sampling rate of 200 Hz (one sample per 5 ms). In this part, collecting collision-like contact
data is challenging, as the dedicated operator induces the collision intentionally [65]. However,
the collision can be considered to happen in a normal situation where the human is standing with
no motion and the robot is performing its task, while the impact happens. Indeed, a data analysis
shows that it can be clearly distinguished from object and intentional contacts and therefore can
be used at least as similar samples of real collision data. Then, a frame of W-window with 200 ms
latency passed through the entire data gathered, preparing it to be used as training data for the
input layer of the designed network. Thanks to the default cartesian contact detection ability of the
Panda robot, those contact data are used as a trigger to stop recording data after contact occurrence.
Consequently, the last W-samples of each collision trial data is considered as input for training the
network. For assuring comprehensiveness of the gathered data, each trial is repeated 10 times with
different scenes, including touched links, direction of motion, line of collision with the human operator,
and contact type (intentional or incidental). Additionally, each sample is labeled according to the
mentioned sequence.
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2.7. Training Hardware and API Setup

In the training of a network by using Graphic Processor Units (GPU), memory plays an important
role in reducing the training time. In this research, a powerful computer with NVIDIA Quadro P5000
GPU, Intel Xeon W-2155 CPUs, and 64 GB of RAM is employed for modeling and training the CNN
networks using the Keras library of TensorFlow. To enable CUDA and GPU-acceleration computing,
a GPU version of TensorFlow is used, and in consequence, the training process is speeded up. The total
runtime of the vision network trained with 30,000 image sequences was about 12 h for 150 epochs,
while it was less than 5 min for training contact networks.

2.8. Real Time Interface

The real-time interface for collecting the dataset and implementing the trained network on the
system was provided by Robotics Operating System (ROS) on Ubuntu 18.04 LTS. Figure 3 shows
the hardware and software structure used in this work. Two computers execute the vision networks
for each camera separately and publish the action states at the rate of 200 Hz on ROS. Furthermore,
CDN and CDM are executed on another PC at the same rate, connected to the robot controller for
receiving the robot torque, velocity, and position data of joints 5 and 6.
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3. Results

In order to evaluate the performance of the proposed system, the following metrics are used.
A first evaluation consists of an offline testing, for which the results are compared based on the key
figures precision, recall, and accuracy, defined as follows:

Precision =
tp

tp + f p
(9)

Recall =
tp

tp + f n
(10)

Accuracy =
tp + tn

tp + fn + tn + fp
(11)
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where tp is the amount of the predicted true positive samples, tn is the number of data points labeled
as negative correctly, fp represents the amount of the predicted false positive samples, and fn is the
count of predicted false positive classes.

The second evaluation is based on real-time testing; the tests have shown promising results in early
trials. The YouTube video (https://www.youtube.com/watch?v=ED_wH9BFJck) gives an impression of
the performance (due to safety reasons, the velocity of the robot is reduced to an amount, which is
considered to be safe according to ISO 10218).

3.1. Dataset

Regarding the vision category, the dataset consisting of 33,050 images is divided into five
classes, including Interaction, Observation, Passing, Fail, and Dangerous Observation, with Figure 4
representing the different possible actions of a human operator during robot operation. The contact
detection dataset [81] with 1114 samples is subdivided into five classes, namely No-Contact,
Intentional_Link5, Intentional_Link6, Incidental_Link5, Incidental_Link6, which determine the contact
state on the last two links including their respective type, incidental or intentional.
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Figure 4. Type of human actions: (a) Passing: operator is just passing by, without paying attention to
the robot. (b) Fail: blind spots or occlusion of the visual field may happen for a camera, in this situation
the second camera takes over detection. (c) Observation: operator enters the working zone, without any
interaction intention and stands next to the robot. (d) Dangerous Observation: operator proximity is
too close, especially his head is at danger of collision with the robot. (e) Interaction: operator enters the
working zone and prepares to work with the robot.
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3.2. Comparison between Networks

3.2.1. Human Action Recognition

For optimizing efficiency in HAR, two different networks, 2D and 3D, were tested, the latter
indicating a significant outcome in both real-time and off-line testing cases. These two networks
are compared with respect to the results of 150 training epochs, in Table 1. The confusion matrix
can be considered as a good measurement to deliver the overall performance in the multi-category
classification systems. As it is shown in Table 2, each row of the table represents the actual label,
and each column indicates the predicted labels, which can also show the number of failed predictions
in every class. As shown in Table 1, both networks have promising result in classifying “Interaction”,
“Passing”, and “Fail” states. However, these networks have lower, but sufficient, accuracy in classifying
the “Dangerous Observation” category due to the lack of third dimensional (depth) information in the
network input. By considering the confusion matrix shown in Table 2, it is obvious that the networks
did not precisely distinguish between “Interaction”, “Observation”, and “Dangerous Observation”
caused by the similarity of these three classes. With regard to the condition of the experimental setup
where the location of cameras and robot base are fixed, the current approach has enough accuracy,
but for a real industry case, we need to add a true 3D representation of the human skeleton and the
robot arm in our network input.

Table 1. Precision and recall of two trained networks for human action recognition.

Network 2D 3D

Precision Recall Precision Recall

Observation 0.99 0.99 1.00 1.00
Interaction 1.00 1.00 1.00 1.00

Passing 1.00 1.00 1.00 1.00
Fail 1.00 1.00 1.00 1.00

Dangerous Observation 0.98 0.96 0.98 0.99
Accuracy 0.9956 0.9972

Table 2. Confusion Matrix for different classes in HRC.

Network 2D 3D

O
bservation

Interaction

Passing

Fail

D
angerous

O
bservation

O
bservation

Interaction

Passing

Fail

D
angerous

O
bservation

Tr
ue

La
be

ls Observation 3696 7 2 0 5 3751 6 2 1 7
Interaction 13 4130 0 0 1 8 4030 0 0 0

Passing 2 0 1145 0 0 1 0 1160 0 0
Fail 0 0 0 593 0 0 0 0 588 0

Dangerous Observation 12 1 0 0 313 2 0 0 0 359

3.2.2. Contact Detection

To evaluate the influence of the size of the sampling window (w) on the precision of the trained
networks, three different size dimensions of 100, 200, and 300 unity are selected, corresponding to
0.5, 1, 1.5 s of sampling period duration. Seventy percent of the dataset is selected for training and
30% for testing. Each network is trained with 300 epochs, and the results are shown in Tables 3
and 4. Window size of 200 and 300 unities provide a good precision for identifying the contact
status, in contrast to w = 100, which is not satisfactory. Furthermore, by comparing the result of
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the 200-window and 300-window networks, the 200-window network provides a better precision
and recall.

Table 3. Precision and recall of trained networks for contact detection with different window size.

w 100 200 300 100 200 300

Precision Recall

No-Contact 0.94 0.99 0.98 0.94 1.00 1.00
Intentional_Link5 0.74 0.91 0.89 0.84 0.91 0.84
Intentional_Link6 0.68 0.97 0.91 0.64 0.90 0.91
Incidental_Link5 0.61 0.89 0.83 0.61 0.93 0.89
Incidental_Link6 0.69 0.96 0.96 0.57 0.96 0.93

Accuracy 0.78 0.96 0.93

Table 4. Confusion matrix of trained networks for contact detection with different window size.

Window Size 100 200 300

N
o-C

ontact

Intentional_Link5

Intentional_Link6

Incidental_Link5

Incidental_Link6on

N
o-C

ontact

Intentional_Link5

Intentional_Link6

Incidental_Link5

Incidental_Link6

N
o-C

ontact

Intentional_Link5

Intentional_Link6

Incidental_Link5

Incidental_Link6
Tr

ue
La

be
ls

No-Contact 166 0 9 0 1 242 0 3 0 1 167 0 3 0 0

Intentional_Link5 0 86 12 19 0 0 93 4 4 1 0 86 5 5 1

Intentional_Link6 8 1 59 2 17 0 3 83 0 0 0 5 84 0 3

Incidental_Link5 0 15 1 33 5 0 6 0 50 0 0 10 0 48 0

Incidental_Link6 3 0 11 0 31 0 0 2 0 52 0 1 0 1 50

3.2.3. Mixed Perception Safety Monitoring

Every perception system designed separately to detect human intention according to Figure 5a,b is
regarded as a preliminary condition for the mixed perception system shown in Figure 5c. As shown
in Figure 5, for proper safety monitoring, the robot is programmed to categorize human safety into
three levels—Safe, Caution, and Danger—with its respective color codes green/yellow, orange, and red.
Safe level consist of two states, indicating whether the cobot has physical contact with human (yellow)
or not (green). Considering only visual perception or only tactile perception in determining the safety
level does not provide sufficient information compared to the mixed perception system. For instance,
in green Safe state of mixed perception, the robot can have a higher speed and in consequence,
increased productivity, while in the other perception systems, green Safe does not give this confidence
to the robot to be faster; consequently, it should be more conservative about possible collisions.
Thus, this higher information content can increase human safety and the robot’s productivity of
pHRC systems. Already a simple logical composition of the results (Figure 5c) shows a significantly
higher information content and thus a possible increase in safety and productivity in human–robot
collaboration. However, it might be that the mixed perception approach will have multiple effects on
the safety of HRC. Therefore, we will examine in detail the influence of the two subsystems on the
overall performance and quality of the entire system at a later stage.
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4. Discussion

Human–robot collaboration has recently gained a lot of interest and received many contributions on
both theoretical and practical aspects, including sensor development [82], design of robust and adaptive
controllers [83,84], learning robots force-sensitive manipulation skills [85], human interfaces [86,87],
and similar. Besides, some companies attempt to introduce collaborative robots in order for
HRC to become more suited to enter manufacturing applications and production lines. However,
cobots available on the market have limited payload/speed capacities because of safety concerns,
which limits HRC application to some light tasks with very limited productivity. On the other
hand, according to the norms for HRC operations [88], it is not essential to observe a strict design
or to limit the power of operations if human safety can be ensured in all its aspects. In this regard,
an intelligent safety system as the mixed perception approach has been proposed in this research
to detect hazardous situations to take care of the human safety from entering the shared workspace
to physical interaction in order to jointly accomplish a task by taking advantage of visual and
tactile perceptions. Visual perception detects human actions in the shared workspace. Meanwhile,
tactile perception identifies human–robot contacts. One relevant piece of research in human action
recognition focusing on industrial assembly application is mentioned in [88]. By taking advantage of
RGB image and 3D-CNN network, the authors of the mentioned paper classified human action during
assembly and achieved 82% accuracy [89], while our visual perception system shows higher accuracy
of 99.7% by adding a human skeleton to the RGB series as the network input. Although our skeleton
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detection using Kinect library can be slightly affected by lighting conditions, it detects the human
skeleton in near 30 FPS, which is essential for fast human detection in real-time HRC applications [90].
Indeed, using deep learning approaches such as OpenPose [91] and AlphaPose [92] can omit lightening
problems [93]. However, their respective detection rates are 22 [91] and 23 FPS [92], which needs more
researches to be faster and applicable in safety monitoring systems. Besides, among contact detection
approaches in the state of the art, there are two similar works investigating collision detection using
1D-CNN. The authors of [94] compared both approaches, CollisionNet [65] and FMA [94], where the
accuracy was 88% and 90%, respectively, featuring a detection delay of 200ms [94]. While our procedure
in tactile perception (what is called collision detection in the state-of-the-art literature [61,65,75,76])
reached 99% with 80ms detection delay. For detecting contact type and robot joint, the accuracy was
higher than 89% up to 96%, which in turn, needs more research to achieve a higher accuracy.

In this study, combining the result of both abovementioned intelligent systems is presented using
a safety perception spectrum to examine the potential of the mixed perception approach in safety
monitoring of collaborative workspaces. The result shows that even with a simple combination of
both systems, the performance of safety monitoring can be improved as each system separately does
not have enough perception of the collaborative workspace. Furthermore, this research suggests that
the different forms of collaboration, such as coexistence, cooperation, etc., with their different safety
requirements can be reduced to a single scenario using mixed perception as the robot would be able to
“see” humans and “percept” external contacts.

As a result of this safety scenario, the robot reacts by being able to detect human intention,
determining human safety level, and thus ensuring safety in all work situations. Another advantage
of the proposed system is that the robot would be smart enough to take care about safety norms
depending on the conditions and, consequently, could operate at an optimum speed during HRC
applications. In other words, current safety requirements in most cases stop or drastically slow down
the robot when a human enters a shared workspace. However, with the proposed safety system,
based on the robots’ awareness using the presented mixed perception approach, it is possible to
implement a reasonable trade-off between safety and productivity, which will be discussed in more
detail in our future research.

In this research, there are two limitations concerning data collection: the collision occurred
intentionally, and we did not gather data when the human and/or the robot move at high speed,
which can be extremely dangerous for the human operator. As can be proved, the speed of the robot
has an insignificant influence on the result, since the model has learned the dynamics of the robot
in the presence or absence of human contact with normalized input data. On the other hand, if the
human operator wants to grab the robot at high speed with the intention of working with it, this could
be classified as a collision by the model due to its clear difference between contactless and intentional
data patterns. However, this only increases the false positive error of the collision class (i.e., this would
then be mistakenly perceived as a collision by the robot), which does not represent a safety problem in
this case.

In addition, the current work focuses on a structured environment with fixed cameras and a
stationary robot base position, which has yet to be generalized for an unstructured environment.
In principle; however, this does not restrict the generality of this approach, since for cobots, only the
corresponding position of the robot base has to be determined for the proximity detection to a human
operator. In our ongoing work, we are trying to use some methods to tackle these problems. Moreover,
with the current software and hardware, a sampling rate of HAR and contact detection networks are 30
Hz and 200Hz, respectively, while for the mixed perception system, there is a need for synchronization
of the result of both systems.

5. Conclusions

The efficiency of safety and productivity of cobots in HRC can be improved if cobots are able to
easily recognize complex human actions and can differentiate between multitude contact types. In this
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paper, a safety system using a mixed perception is proposed to improve the productivity and safety in
HRC applications by making the cobot aware of human actions (visual perception), with the ability
to distinguish between intentional and incidental contact (tactile perception). The vision perception
system is based on a 3D-CNN algorithm for human action recognition, which unlike the latest HAR
methods, was able to achieve 99.7% accuracy in an HRC scenario. The HAR system is intended to
detect human action once the latter enters the workspace and only in case of hazardous situations,
the robot would adapt its speed or stop accordingly, which can lead to higher productivity. On the
other hand, the tactile perception, by focusing on the contact between robot and human, can decide
about the final situation during pHRC. The contact detection system, by taking advantage of the
contact signal patterns and 1D-CNN network, was able to distinguish between the incidental and
intentional contact and recognize the impacted cobot’s link. According to the experimental result,
with respect to traditional and new methods, our proposed model is obtained the highest accuracy of
96% in tactile perception.

Yet, based on our experimental results, visual and tactile perceptions are not sufficient enough
separately for intrinsically safe robotic applications, since each system exhibits some lack of information,
which may cause less productivity and safety. By considering this fact, the mixed perception, by taking
advantage of both visual and tactile perception, can enhance productivity and safety. Although a
simple safety perception spectrum of the mixed perception is proposed, which needs more research to
enhance its intelligence, it shows higher resolution in compared to each single perception system.

As future work for our system, we will extend our research regarding to multi-contact and
multi-person detection, which is highly beneficial for the latest Industry 4.0 safety considerations.
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