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Abstract: Detritus geochemical information has been proven through research to be an effective
prospecting method in mineral exploration. However, the traditional detritus metal content monitoring
methods based on field sampling and laboratory chemical analysis are time-consuming and may not
meet the requirements of large-scale metal content monitoring. In this study, we obtained 95 detritus
samples and seven HySpex hyperspectral imagery scenes with a spatial resolution of 1 m from
Karatag Gobi area, Xinjiang, China, and used partial least squares and wavebands selection methods
to explore the usefulness of super-low-altitude HySpex hyperspectral images in estimating detritus
feasibility and effectiveness of Cu element content. The results show that: (1) among all the inversion
models of transformed spectra, power-logarithm transformation spectrum was the optimal prediction
model (coefficient of determination(R2) = 0.586, mean absolute error(MAE) = 21.405); (2) compared to
the genetic algorithm (GA) and continuous projection algorithm (SPA), the competitive weighted
resampling algorithm (CARS) was the optimal feature band-screening method. The R2 of the inversion
model was constructed based on the characteristic bands selected by CARS reaching 0.734, which was
higher than that of GA (0.519) and SPA (0.691), and the MAE (19.926) was the lowest. Only 20 bands
were used in the model construction, which is lower than that of GA (105) and SPA (42); (3) The
power-logarithm transforms, and CARS combined with the model of HySpex hyperspectral images
and the Cu content distribution in the study area were obtained, consistent with the actual survey
results on the ground. Our results prove that the method incorporating the HySpex hyperspectral
data to invert copper content in detritus is feasible and effective, and provides data and a reference
method for obtaining geochemical element distribution in a large area and for reducing key areas of
geological exploration in the future.

Keywords: HySpex; spectra transform; wavebands selection; partial least square (PLS); geochemistry

1. Introduction

Detritus are mainly derived from the differentiation of ore bodies and surrounding rocks [1].
Detritus geochemical measurement is a geochemical survey method used to study the enrichment and
dispersion of elements by collecting detritus for geochemical research and mineral resource exploration.
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The bedrock outcrops are scarce in the Gobi region of eastern Xinjiang, China, and the quaternary
cover is widely distributed. Studies showed that detritus are developed in the region, thus the use of
the detritus geochemical survey method for mineral exploration can produce better results than water
system sediment geochemical surveys [2–4]. Therefore, the rapid and effective acquisition of content
of various elements in detritus samples is important for detailed mineral exploration of potential
metallogenic areas.

The traditional detritus geochemical survey method usually involves collecting detritus samples
according to the grid method, and then obtaining the element contents of the samples in the laboratory
by chemical analysis or element detector. The final step is obtaining the spatial distribution of metal
elements using the interpolation method, such as kriging [5,6]. Although this method produces results,
it is both time-consuming and expensive and cannot quickly obtain a wide range of element content
distribution information. Human, material, and financial resources are needed in areas with harsh
geological conditions [7,8]. Conversely, remote sensing can cover large areas with high efficiency and
low cost, which is theoretically significant and has application value for discovering mineralization
anomalies and shrinking detailed investigation area, as well as improving exploration efficiency and
accelerating the process of mineral exploration [9].

Research results in the past few decades have shown that the spectrum in the visible-near-infrared
range is mainly affected by the electronic transition of metal cations, but the spectrum in the short-wave
infrared range is mainly affected by the oscillation of anionic groups [10,11]. The size and content of
cations reflect the spectral reflectance. The increase in aluminum content causes the absorption valley
to shift from right to left, whereas Cu, Zn, Ni, Cd, As, Cr, Ni, and Pb, etc., elements are correlated
with the physical and chemical properties of soil (organic matter, clay minerals, and soil pH) [12–14].
Theabove-mentioned theories proved the feasibility of the use the remote sensing technology to retrieve
geochemical element content.

To date, remote sensing has been successfully used to retrieve metal element contents using
methods such as linear analysis (partial least squares, ridge regression, stepwise regression, etc.) and
nonlinear mathematical analysis (random forest, extreme learning machine, support vector machine,
etc.) and to establish the quantitative relationship between metal element content and spectral
reflectance [15–19]. These are point models based on the spectral reflectance and element content of
samples obtainied from field sites or the laboratory. Although the model constructed by this method
has high prediction accuracy, it can only provide field information. The spatial distribution of element
content was obtained by spatial interpolation because the spatial heterogeneity is usually different to
the actual results [20].

In recent years, with the development of imaging spectroscopy technology, the spectral and spatial
resolutions of sensors have been greatly improved; scholars began to adopt the hyperspectral images
to directly capture surface metal content inversion. The imaging spectrum not only acquires traditional
point spectrum information in space, but also spatially continuous image information. Many previous
studies directly applied the laboratory established point model to the pixel spectrum [21–23]. Due to
the physicochemical properties (moisture, surface roughness, organic matter content, etc.) and the
limited spatial resolution of aerospace remote sensing images, the direct application of the point model
established on the ground may lead to uncertainty in the results [24–27]. With the development of
simple and stable airborne platform technology, low-altitude imaging hyperspectral remote sensing
has received wide attention [28,29]. Influential factors such as atmospheric interference, a large amount
of data, and spectral noise may reduce the accuracy of the model and weaken the robustness of the
model [30,31]. It is necessary to study the applicable spectral pretreatment technology and characteristic
band selection methods to improve the performance of the models based on aerial hyperspectral
images [32,33].

To solve the above problems, we discussed whether a correspondence exists between the spectral
reflectance of image pixels and the measured Cu content on the ground. We determined the validity
of Cu element content estimation using the image pixel spectrum obtained by an ultra-low-altitude
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detection platform. This study was based on the power delta wing and HySpex imaging spectrometer to
form an “ultra-low altitude hyperspectral detection platform”. According to the research requirements,
visible-near-infrared hyperspectral images with a spatial resolution of 1 m and 216 bands were obtained
in the study area. We simultaneously collected 95 detritus samples (1 × 1 m). We established a
quantitative model between the pixel spectrum and element content by combining spectral transform
technology and a characteristic band selection algorithm, then we verified the accuracy and practicability
of the proposed method based on field works. This method can be used to improve prospecting
efficiency and expand the prospecting space in the prediction of element content.

2. Materials and Methods

2.1. Study Area

The Karatagh ore-centralization area is located in the southern margin of the Turpan-Hami basin
of the East Tianshan metallogenic belt. Hongshan, Hongshi, and Meiling volcanic hydrothermal vein
copper and gold deposits have been discovered in this area [34]. The study area is located in the
northwest section of Karatagh uplift. The exposed strata in the south includes a set of basic-acid
volcanic-pyroclastic rocks, and detrital sedimentary rocks of the Dananhu Formation in the north and
east. The detrital sedimentary rocks unconformably overlaid on a set of pyroclastic rocks, in which
lenticular hematite manganese ore and siderite bodies developed (Figure 1) [35]. Previous studies
showed that there are more metallic elements anomalies in the region (Cu, Au, Ag, etc.) [36]. The surface
is mainly composed of volcanic clastic rocks and andesite, with occasional copper mineralized rock
outcrops which has the ore-forming geological conditions for the formation of porphyry copper gold
deposits [35]. The region belongs to a typical continental semi-arid climate, with annual average
precipitation and temperature of 34.9 mm and 38 ◦C, respectively, and an average altitude of about
500–600 m [37]. There is no vegetation cover on the surface, and the surface rocks are severely
weathered. The hills, which have a relative height difference of about several tens of meters are widely
distributed. The whole landscape belongs to the hilly-quasi-plain desert-Gobi landform category
(Figure 2). The geological outcrops are generally located in a relatively high terrain. Due to the low
efficiency and the time-consuming and laborious exploration of mineral resources through traditional
geochemical methods, coupled with the study area not being covered by vegetation, water bodies
and buildings, remote-sensing technology in this research area is suitable for geochemical anomaly
inversion research.

Figure 1. Geological map of the study area (after Mao et al., 2017) [34], 1. Clastic sedimentary rock;
2. biogenic carbonates; 3. volcainc breccia; 4. dacitic volcanic and volcaniclastic rocks; 5. basalt;
6. pyrite felsite; 7. mineralized quartz diorite porphyry; 8. diorite porphyry; 9. Gabbro intrusion;
10. siderite ore bodies; 11. faults; 12. potassic + silication zone; 13. silication + sericitization zone;
14. propylitization zone.
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Figure 2. Local topography of the study area.

2.2. Data Acquisition and Preprocessing

The data used in this study included HySpex hyperspectral images and detritus sample analysis
data. The HySpex VNIR-1024 sensor is manufactured by Norsk Elektro Optikk A/S (NEO, Oslo,
Norway), and its performance parameters are shown in Table 1. We obtained the hyperspectral images
using the detection platform in September 2017, during clear weather and few thin clouds in the sky
(Figure 3b). The HySpex hyperspectral image has a spatial resolution of 1 m, a spectral resolution
of 2.7 nm, and a coverage area of 18 km2. Samples and image data were collected synchronously,
and the sampling method was used to collect 3–5 detritus samples (the sample diameter was about
5 cm) in a range of 1 × 1 m on the ground. We then placed them into a sample bag as a quadrate
sample (Figure 3a). A portable handheld global positioning system (GPS) was used to record the
coordinates of sampling points. All samples in this study were collected from 95 sampling points.
After the samples were returned to the laboratory, a portable X-ray fluorescence spectrometer (pXRF);
Niton XL3t 950, ThermoFisher Scientific (Niton), Boston, MA, USA) was used for analysis. In this
study, the working mode of the instrument for sample analysis was set to the mineral (Cu/Zn) mode,
and the measurement time of each sample was set to 120 s. We repeated the measurement three times,
and the average value was taken as the sample content to ensure the accuracy and representativeness
of element content analysis results.

Table 1. Main parameters of HySpex imaging spectrometer.

Sensor Name VNIR-1024 Sensor Image

Detector SiCCD 2048 × 2048
Spectral range 400–1000 nm
Spatial pixels 1024

Field of view angle 17◦

Extension lens 34◦

Instantaneous field of view 0.18 mrad/0.36 mrad
Spectral sampling 2.8 nm
Spectral number 216
Camera weight 4.6 kg

Camera size(cm) 31.5 × 8.4 × 13.8
Power consumption ~6 W
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Figure 3. Sampling methods and hyperspectral image acquisition method: (a) schematic diagram of
sampling quadrat; (b) aerial detection platform.

The image data collected in this paper can be used for further analysis after radiation calibration,
atmospheric correction, and geometric correction [38]. HySpex RAD and HySpex NAV software
(Norsk Elektro Optikk A/S (NEO), Oslo, Norway) were first used to convert the original image
digital number (DN) value into a radiation brightness value and extract the attitude data of the flight
platform synchronized with the images. Secondly, professional hyperspectral data-processing software
(PARGE, ReSe Applications LLC, Swiss) was used for geometric correction, and the geometric precision
was corrected in combination with actual ground control points. Thirdly, professional hyperspectral
data-processing software (ATCOR4, ReSe Applications LLC, Swiss) was used for atmospheric correction.
In the end, Exelis Visual Information Solutions Inc. (ENVI) Colorado, US, software was used for image
registration, and mosaic and mask were used for obtaining HySpex imaging hyperspectral data in the
study area (Figure 4).

Figure 4. Map of the study region: Remote sensing image acquired using HySpex VNIR-1024 imaging
sensors (Red: 641 nm; Green: 550 nm; Blue: 471 nm; spatial resolution: 1 m).

The method for obtaining the reflectance spectra of samples in this study is different from the
traditional ground measurement method. The spectral information of a single sample is mixed
from several rock samples. The obtained 95 position coordinates were applied to HySpex imaging
hyperspectral images to obtain the reflectance spectra of the corresponding pixels, which represents
the spectral reflectance of the sample.

2.3. Spectral Transform

The acquisition process of spectral data was affected by many factors such as instrument parameter
setting and environment, which may reduce valuable information in the spectrum and increase spectral
noise. Spectral transformation refers to a series of spectral transformations based on the original
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spectrum that is used to reduce the influencing factors, such as background environment, illumination,
and atmospheric scattering on the spectrum, to highlight the characteristic spectrum of the target [39].
In the present study, the original spectrum was transformed using derivative, power, logarithm,
envelope removal, and combination methods. By comparing the correlation between different
transformation spectra and Cu content in the visible-near-infrared band, the optimal transformation
method was selected.

Envelope removal can effectively highlight the valley and peak characteristics of the spectral
curve and normalize them to the uniform spectral background, which is beneficial for extracting the
characteristic bands between similar spectra [40,41]. Logarithmic transformation compresses the data
without changing the nature and correlation of the data, which increases data stability but weakens
the collinearity and heteroscedasticity of the model, which is conducive to reducing the influence of
multiplicative factors caused by illumination changes [15,42]. Power transformation is also called
gamma correction, which can expand the differences in spectrum characteristics. When gamma is
greater than 1, the high-value part is generally enhanced; when the gamma is less than 1, the low-value
part is enhanced [43,44]. Combinational transformation refers to the combination of two or more
transformation methods that have different enhancement effects. For example, the logarithm of the
reciprocal of reflectivity and the first derivative of the reciprocal of reflectivity can accurately reflect the
absorption characteristics of different material components [45]. Derivative transformation can identify
the minor differences between the spectral characteristics of different ground objects. The first and
second-order derivatives can eliminate background noise and overlapping spectra of the resolution.
The removed parts are linear or have acceptable background, terrain shadows, and noise effects on the
target spectrum [45]. Higher derivatives such as fourth-order derivatives can eliminate the influence
of atmospheric Rayleigh scattering [46]. For discrete spectral reflectance, the differential technique was
used to calculate the spectral derivative. The formula is shown in Table 2.

Table 2. Spectral transformation formulas.

Spectral Transformation Formula

Reciprocal 1R(λi)
Logarithmic lg(R(λi))

Power
√

R(λi)
Envelope removal 1− E(Ri)

First-order derivatives R(λi)−R(λi−1)
∆λ

Second-order derivatives R(λi+1)−2R(λi)+R(λi−1)
∆λ2

Power-logarithmic lg
(√

R(λi)
)

Logarithmic-power
√

lg(R(λi))

Note: λi is the wavelength of band i; R′(λi) and R′′ (λi) are the first and second-order derivatives of the wavelength
λi, respectively; and ∆λ is the interval between two adjacent wavelengths.

2.4. Spectral Variable Selection

Hyperspectral data have hundreds of bands, that can detect the characteristic absorption
information of detritus caused by metal elements. Due to the strong correlation between bands,
information redundancy is high, which requires a long data-processing time. Bands are selected to
represent the target subset of characteristic bands that retain the relatively complete useful spectral
information but reduce the hyperspectral data dimension to improve the processing efficiency.
In this study, three variable selection methods (continuous projection algorithm, genetic algorithm,
and competitive adaptive reweighting algorithm) were used to select effective bands. The continuous
projection algorithm used was a vector space collinear minimization forward variable selection
algorithm, which selected a few characteristic bands that can effectively represent all bands and
eliminate redundant information between the original bands. It is often used in the screening of
spectral characteristic wavelengths [47]. The successive projection algorithm (SPA) method was
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implemented in MATLAB2014a (MathWorks.Inc, MA, Natick, USA), and the GUI_SPA toolkit was
obtained from http://www.ele.ita.br/~kawakami/spa/.

The genetic algorithm was first proposed by Holland in the 1970s [48]. The algorithm is a
computational model of the biological evolution process, simulating natural selection and the genetic
mechanism of Darwinian biological evolution, which search for the optimal solution by simulating
the natural evolution process [49]. It primarily includes the following five basic steps: (1) Generate
a subset of a random variable; (2) Evaluate the fitness of individual subsets; (3) Remove the subset
with low fitness; (4) Reproduce the next generation of individual subsets according to the subset with
high fitness; (5) Allow mutations to form new individuals. The cycle is repeated to the second step
until the condition is satisfied, at which point the optimal subset found. We used the PLS toolbox to
implement the GA algorithm in MATLAB R2014a (MathWorks.Inc). The specific parameters were as
follows: population size = 30, penalty slope = 0.5, window size = 1, mutation rate = 0.01, maximum
iterations = 100, and replication runs = 10.

The competitive adaptive reweighting algorithm is a variable selection method with high
computational efficiency based on the imitation of Darwin’s survival of the fittest. N variables’
subsets are obtained by iteration and competition from n-order Monte Carlo sampling operations.
exponentially decreasing function (EDF) and adaptive reweighting sampling (ARS) methods were
used in the PLS model to select variables with a large absolute regression coefficient and to remove
lower-weight variables, which were then combined with 10-fold cross-validation to select the optimal
subset of variables [50]. The specific steps included: (1) using Monte Carlo (MC) sampling method to
randomly select 80–90% of the sample subsets in the sample set; (2) establishing the partial least squares
regression (PLSR) model and calculating the weight coefficient wi of each wavelength; (3) using the EDF
and ARS methods to remove the bands with a low-weight coefficient; (4) repeating the above steps until
the conditions are satisfied. CARS was completed based on the libPLS toolbox in MATLAB R200014a.

2.5. Model Establishment and Accuracy Evaluation

To effectively analyze the relationship between visible-near-infrared spectroscopy and the copper
content of detritus, we randomly divided the 95 detritus samples into training datasets (63 detritus
samples in total) and validation datasets (32 detritus samples in total). The partial least squares
regression (PLSR) model was established using spectral reflectance (independent variable) and copper
content (dependent variable). PLSR has been proven to be effective and to quantify vegetation
characteristics and soil element contents from remote sensing data [51]. In this study, the number of
principal components was determined using the determination coefficient (R2) between the measured
value and the predicted value obtained through leave one cross-validation; thus, the number of principal
components corresponding to the maximum R2 was the optimal number of principal components.

We estimated the copper content by pixel spectral reflectance and discussed the feasibility and
accuracy of estimating copper based on the hyperspectral image spectrum. Three statistical parameters
were used to evaluate the performance of the model: R2, mean absolute error (MAE), and relative root
mean squared Error (RRMSEP). The optimal model should have the highest R2 and RRMSEP, and the
lowest MAE. When the value of RRMSEP is greater than 2, the model is better; the smaller the value,
the worse the model performance. For the proportion of all variations of dependent variables that can
be explained by independent variables through the regression relationship, the closer the value of R2

to 1, the better the model, and vice versa. The parameters are calculated as follows

R2 = 1−

∑n
i

(
Yi −Ypre

i

)2

∑n
i

(
Yi −Yavg

i

)2 (1)

MAE =

∑n
i1

∣∣∣Yi −Ypre
i

∣∣∣
n

, (2)

http://www.ele.ita.br/~kawakami/spa/
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RRMSEP =

∑n
i Yi/n√∑n

i (Yi −Ypre
i )

2
/n

, (3)

where Yi, Ypre
i , and Yavg

i are the true value, predicted value and average value of sample i, respectively;
n is the number of samples.

2.6. Flowchart

The flow chart of detritus Cu content prediction is shown in Figure 5, which mainly includes
the following five parts: (1) collecting HySpex hyperspectral images and detritus samples; (2) image
preprocessing and Cu content measurement; (3) spectral transformation and characteristic band
selection; (4) inversion model establishment and accuracy evaluation; (5) obtaining the spatial
distribution map of Cu content.

Figure 5. Flowchart of HySpex hyperspectral imagery inversion of Cu content: (a) data acquisition;
(b) data preprocessing; (c) data analysis; (d) modeling and verification; (e) spatial distribution of
Cu content.

3. Results

3.1. Element Content and Visible-Near-Infrared Spectral Reflectance

To evaluate the precision and generalization ability of the constructed inversion model, we divided
the data into a training set and verification set, and analyzed whether they were properly partitioned.
The statistical histogram of the copper content in each sample data set is shown in Figure 6. In Figure 6a,
the Cu content has a large variation in the overall sample, where the standard deviation, coefficient of
variation, and the range are 31.51, 1.64 and 116.5, respectively. The data showed that the gradient of
the Cu content in the samples significant changed. According to Figure 6b,c, the average, standard
deviation, and coefficient of variation of the Cu content of the training sample and the verification
sample were consistent with the overall samples, showing that the method of dividing the training
sample and verification sample was reasonable and representative. Briefly, the analysis and modeling
are representative and applicable.
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Figure 6. Cu element content statistical description and histograms, (a) all of the samples; (b) training
samples; (c) verification samples; Min: minimum; Max: maximum; SD: standard deviation, CV:
coefficient of variation.

Figure 7, presents examples of the reflectance spectra and envelope removal spectra. Figure 7a
shows that the reflectance of the visible-near-infrared spectrum of the sample was relatively low.
The spectral reflectance increased from 0.4 to 0.58 µm, then gradually decreased from 0.9 to 0.58 µm,
with the reflection peak at 0.57 µm. The spectral reflectance showed two different trends in the range
of 0.9 to 1.0 µm; most of the samples showed a slight uptrend within 0.02 µm, and few samples had a
remarkable absorption valley at 0.94 µm.

Figure 7. Visible-near-infrared spectral curves, (a) original and (b) envelope removal spectral curves.

To highlight the fine features in the visible-near-infrared spectrum, envelope removal was carried
out for the original spectrum (Figure 6b). The sample spectrum showed typical absorption valleys at
0.48, 0.668, 0.752, 0.85, and 0.9 µm.

3.2. Correlation between Different Transform Spectra and Cu Content

When the correlation between the original spectrum and the content is not significant, the model
between the original spectrum and the content cannot be established. Appropriate spectral
transformation can improve the correlation between the spectrum and content. To retrieve the
Cu content of the detritus using spectral data, we compared and analyzed the effects of nine spectral
transformation methods.

In the visible-near-infrared band range, the correlation between the original spectrum and copper
content is negative, and the absolute value of the correlation coefficient is greater than 0.545 (Figure 8a).
The reciprocal spectrum is also positively correlated with copper content, with the correlation coefficient
gradually decreasing to 0.267 and the correlation between Cu content and each band being lower than
with the original spectrum. The correlation between derivative spectrum (first- and second-order) and
envelope removal spectrum and Cu content decreased, and the correlation between each band and
Cu content showed no obvious rule. The logarithmic spectrum, power spectrum, and combination
transformation spectrum (log-power transformation and power-logarithm transformation) were
negatively correlated with copper content, and the maximum absolute values of the correlation
coefficient were 0.637, 638, 0.549, and 0.642, respectively (Figure 8b), which were all higher than the
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original (r = 0.55). The combined transform spectrum significantly increased the correlation between
the bands and Cu content in the range of 420–450, 750–800, and 880–1000 nm, but also reduced the
correlation between the bands and Cu content in the range of 451–700 nm.

Figure 8. Correlation between different transform spectra and copper content: (a) five transformed
spectra; (b) combined transformed spectra; R: original spectra; (R)’: first-order derivative spectra;
(R)”: second-order derivative spectra. 1/R: reciprocal spectra; CR(R): envelope removal spectra; lg(R):
logarithmic spectra;

√
R: power spectra;

√
lg(R): log-power spectra; lg(

√
R): power-log spectra.

3.3. PLS Model of Different Transform Spectra

In the process of constructing an inversion model using the partial least squares method, useful
information is mainly concentrated in the previous principal components. Choosing an appropriate
number of principal components not only enables building a model with better performance, but also
simplifies the complexity of the model, thereby considerably improving modeling efficiency. The PLS
model was constructed using the original spectrum, which showed the changing trend in the R2 of
cross-validation with the change in the number of principal components in the model (Figure 9). Firstly,
the model of R2 increased with the increasing number of principal components when the number of
principal components was 17, and R2 reached the highest value of 0.5048. Then, it decreased with an
increasing number of principal components when the number was greater than 60. The precision curve
of the model demonstrated unstable oscillation. The model becames unstable with an increasing number
of principal components. The main information in the spectrum was concentrated in the previous
principal component, which can improve the accuracy of the model. The noise was concentrated in the
later principal components, and their introduction would reduce the accuracy of the model.

Figure 9. Model determination coefficient changes with the number of principal components.

From Figure 9, the best performance of the model occurred within 20 principal components.
Table 3 indicates the performance of the PLS models with different transformation spectra. Based on the
original spectral reflectance, the R2 of the model in the training samples and the verification samples
are 0.505 and 0.486, respectively. Compared with the original reflectance spectrum, the accuracy of the
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model established by the reciprocal spectrum, envelope removal spectrum, first derivative spectrum
and second derivative spectrum decreased, and the prediction accuracy R2 was less than 0.4. However,
the accuracy of the model established by exponential and logarithmic spectra improved, in which the
training accuracy R2 was 0.520 and 0.531, respectively, and the prediction accuracy R2 was around
0.490. The RRMSE and R2 of the derivative spectrum (first- and second-order), envelope removal
spectrum, and derivative spectrum were all less than 2 and 0.4, respectively. The second derivative
spectrum had the worst effect: RRMSEP and MAE were 0.804 and 29.705, respectively. Therefore,
these transformation methods were excluded from the combined transformation process. Here,
the power transformation method and logarithmic transformation method improved the performance
of the model; therefore, we only combined exponential transformation and logarithmic transformation
to obtain a new transformation spectrum. The combined transformation spectrum can significantly
improve the prediction accuracy of the model (Table 3). The power-logarithmic transformation
spectrum produced the best performance in the training and prediction sets, where the model accuracy
R2 values were 0.591 and 0.586, respectively.

Table 3. Partial least square (PLS) model accuracy of different transform spectra.

Spectral
Transformations

Number of
Principal Components

Determination Coefficient
of Training set R2

Validation Set

R2 RRMSEP MAE

R 17 0.5048 0.4860 2.133 22.774
(R)′ 11 0.3474 0.3167 1.906 25.949
(R)” 5 0.2695 0.2612 1.761 27.755

lg(R) 15 0.5307 0.4905 2.137 22.712
1/R 4 0.2725 0.2714 0.804 29.705

CR(R) 13 0.3834 0.3634 1.638 22.829
√

R 17 0.5201 0.4901 2.127 22.690
lg

(√
R
)

17 0.5913 0.5863 2.064 21.405√
Lg(R) 17 0.5869 0.5628 2.079 23.035

RRMSE is Relative Root Mean Squared Error; MAE is Mean Absolute Error.

3.4. PLS Models of Different Band Selection Methods

For hyperspectral remote-sensing technology, its features, such as high spectral resolution and a
large number of bands, lead to a strong correlation between bands, high data redundancy, and some
wavebands that are irrelevant to the element content. The map in Figure 10 shows that the correlation
between the original spectrum and the combined transform spectral bands was strong, with minimum
values of 0.8284 and 0.8479, respectively. When the correlation between bands was strong, using all
bands to build a model will lead to overfitting.

Figure 10. Visible-near-infrared band correlation thermal map: (a) original spectra; (b) power-
logarithmic transformation spectra.
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To prove the advantages of using variable selection in hyperspectral data, we used the
power-logarithmic transformation spectrum with the best model performance to discuss the influence
of variable selection methods in the model. GA, SPA, and SARS were used to extract the characteristic
bands of the power-logarithm spectrum, and the partial least squares model was established (Table 4).
The CARS was the best-performing model in terms of spectral transformations when 20 bands were
selected. The prediction determination coefficient was 0.7342; the training determination coefficient
was 0.7507, which is 0.15 higher than the model prediction determination coefficient established using
the full band spectrum. RRMSEP (2.21) was the largest and MAE (19.926) was the lowest among all the
models of the training set. The performance of the SPA model was second best, with 42 bands, and the
model’s prediction R2, RRMSEP and MAE were 0.6814, 2.175 and 21.764, respectively. The GA method
was unsatisfactory, with 105 selected bands and R2, RRMSEP and MAE were 0.519, 2.102 and 23.171,
respectively. The performance was close to that of the full-band model using the original spectrum.

Table 4. PLS model accuracy of different band selection methods.

Spectral
Transformations

Number of Bands
Number of

Principal Components
Determination Coefficient

of Training Set (R2)
Validation Set

R2 RRMSEP MAE

GA 105 18 0.536 0.519 2.102 23.171
CARS 20 12 0.751 0.734 2.21 19.926
SPA 42 18 0.709 0.691 2.175 21.764

Different band selection methods have different sensitivities to characteristic bands. Figure 11
shows the wavebands selected by GA, SPA, and CARS. The positions of the bands selected by CARS
and SPA are relatively close. Figure 7 shows the selected wavebands have a typical correlation with
the content of Cu elements, and the wavelengths including 446.7, 489.9, 516.9, 552.1, 679.1, 749.3, 798,
and 903.4 nm were selected. The wavebands selected by GA were different from those selected by
CARS and SPA. The poor accuracy of the model constructed based on the bands selected by the GA
method was due to the significant correlation of the bands, with Cu content not being selected from
wavebands with good correlation.

Figure 11. Waveband selection distribution.

SAP and CARS are better than GA in selecting the optimal bands, and the modeling accuracy of
the selected band can be significantly improved. The scatter plots depict the combination of partial least
squares and the observation and prediction values of Cu content in GA, SPA, and CARS (Figure 12a–c,
respectively). In combination with Table 3, the data indicate that R2 of the models using SPA and CARS
band selection by 0.2054 and 0.2482, respectively, and MAE decreased by 1.01 and 1.85, respectively,
compared with the model established using the original full-band spectrum.
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Figure 12. Scatter plots of observed Cu content and predicted Cu content for different band selection
algorithms, (a) genetic algorithm (GA), (b) continuous protection algorithm (SPA), and (c) competitive
weighting resampling algorithm (CARS).

3.5. HySpex Imaging Hyperspectral Cu Content Extraction

The spatial distribution of Cu content in the study area was obtained using the proposed method
and the spatial interpolation method separately, and the inversion results of the two methods were
compared and analyzed. Power-logarithm transform and band selection method were used to process
HySpex hyperspectral images to obtain characteristic band hyperspectral images. The optimal model
was applied to the images of the characteristic bands to obtain the Cu content distribution diagram
of the study area (Figure 13b). The spatial distribution map of Cu content in the study area was
obtained by kriging interpolation in the ArcGIS toolbox (Environmental Systems Research Institute,
Inc, RedLands, CA, USA) (Figure 13a). Figure 12 shows that the region with higher Cu content is
mainly distributed in the middle of the study area, and local high values in the upper left part. The Cu
content in the study area increases first and then decreases from north to south and from west to east,
and there is a high abnormal value in the middle of the study area. Both methods produced roughly
the same results.

Figure 13. Cu content distribution map in the study area: (a) kriging interpolation;
(b) hyperspectral inversion.

Figure 14 depicts a partial view of the high Cu content in Figure 13a, which shows that the high
Cu content is concentrated near the exploratory trench. The distribution of high abnormal Cu content
in this region is consistent with the research results of the geological team, which explains the porphyry
copper concealed ore bodies in this region [34]. Traditional spatial interpolation methods only obtain
regional anomalies; it does not include continuous variations. Therefore, a method of estimating the
content of metal elements in detritus based on the hyperspectral remote sensing pixel spectrum is
proposed in this paper. The proposed method feasible and accurate, and can reduce the humanr and
material resources required for geological exploration to improve the exploration efficiency.



Sensors 2020, 20, 6325 14 of 19

Figure 14. Cu content distribution map in local region.

4. Discussion

The use of visible-near-infrared spectroscopy to estimate element content in laboratory or field
measurements has been relatively well established [52–54], but few studies have directly used image
spectra to estimate element content. The accuracy of models directly using image pixel spectra and
metal content of ground samples is not only limited by the image spatial resolution but also by the
collection standards of field samples. The spatial resolution is mostly influenced by the pixel spectrum
being a mixed pixel, whose spectrum represents the mixed results of various ground objects. The use of
mixed-pixel spectra and single-target feature element content for modeling are not representative and
applicable. Most of the previous studies used ground point spectra and point content for modeling,
which were then applied the model to images. Due to the presence of mixed pixels, when the model is
applied to images, the inversion accuracy is often reduced [55,56]. The HySpex image used in this
article has a spatial resolution of 1m, and the corresponding ground sample is a mixed sample of
1 × 1 m (Figure 3a). The sample size was collected in a way that corresponded to the image pixel size,
thus effectively reducing the influence of mixed pixels or unrepresentative objects on the model. Table 2
shows that the accuracy of Cu content estimation based on the iso-scale pixel spectrum proposed in
this paper is relatively high, but its accuracy is lower than a model established in the laboratory [57].

Many previous studies have shown that the accuracy of prediction models based on the original
spectral reflectance is low, encouraging researchers to use spectral processing technology to transform
the original spectrum into different forms [58]. The derivative spectrum can eliminate background
noise, enhance spectral features, and highlight important spectral information. The first derivative
represents the slope of the reflectance spectrum, and the second derivative represents the curvature of
the reflectance spectrum [59]. We found that the accuracy of the model based on the second derivative
spectrum is significantly lower than that of the first derivative, which is consistent with previous
research results [60,61]. The reason for this finding may be the second derivative included more
prominent spectral characteristics. It is also more sensitive to noise, which reduces the quality of
spectral data. In this study, although the accuracy of the derivative spectrum model enhanced the
difference between the spectra, it was significantly lower than the original spectrum because the useful
data or information may have been lost or the lower efficiency of the model [62].

Logarithmic and power transformations can remove the noise. The use of powers less than one
enhances the reflectance spectrum and expands the characteristic spectrum. Logarithmic transformation
can compress the data without changing the spectral properties and the low-frequency noises. Therefore,
two methods were found to improve the accuracy of the model (Table 3). The logarithmic transformation
can compress the data to a certain extent, reducing the influence of spectral noise in the model,
so the effect is slightly stronger than that of the power transformation. Combining Figure 15 and
Table 3, the accuracy of the power-logarithmic transformation model is higher than that of the single
transformation method because the combined transformation may not only expand the characteristic
spectrum but also eliminate the influence of noise. While producing a smoothing effect, it can improve
the accuracy of the model [63].
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Figure 15. The reflectance of different spectral transforms.

The three waveband selection methods used in this study produced better results than the full-band
spectral model in the combined transform spectrum. The best predictive performance was produced by
CARS, followed by SPA and then GA. The CARS algorithm simulates the survival of the fittest principle
in Darwin’s theory. In multiple iterations, the wavebands with a low weight coefficient are eliminated,
leaving the characteristic bands that can represent the metal content. The spectral bands that contribute
to the inversion of metal element content can also be selected when the number of selected bands is
limited [64]. The GA conducts an exhaustive search for all possible band combinations, so selecting
bands with typical characteristics from data with strong correlations is difficult [65]. Although the
SPA algorithm selects fewer bands and simplifies the model results, the data of the SPA algorithm are
somehow inaccurate. The possible explanation is the SPA algorithm mainly reduces the redundant
information between bands under the condition of collinear minimization of space, which leads to
the selected spectral variables only reflecting the weak correlations between spectra and the optimal
subset with high information cannot be selected, thus affecting the performance of the model. In brief,
it is important to select the appropriate spectral transformation and feature band-screening methods in
the process of modeling.

The ranges of spectral variables selected by the three screening methods were different, but within
3 nm, the spectral bands of 446.7, 489.9, 516.9, 552.1, 679.1, 749.3, 798, 870, and 903.4 nm were selected
by all three methods. Due to the presence of Fe2+, Fe3+, Cu2+, OH, and Al-OH in iron oxides, silicates,
carbonates, and chlorides, the spectral curves display relatively obvious absorption characteristics [62].
This also explains the rationality of the proposedmethod from the perspective of a physical mechanism.
Notably, the SPA and CARS algorithms selected the bands of 852 and 849.3 nm, respectively, and SPA
did not select the corresponding bands in this range. Previous research results indicated that the
Cu characteristic response band is located at 850 nm [66]. The technical superiority of the model
based on the spectral variables selected by the SPA and CARS algorithms over GA is well established.
This further proves that the model proposed in this paper based on the CARS variable selection
algorithm and power-logarithm transformation spectrum is more practical and has more accurate
prediction ability.

5. Conclusions

In this study, we explored the validity of ultra-low altitude HySpex hyperspectral images for
estimating the Cu content of detritus. The purpose of this method is to quickly obtain the spatial
distribution of Cu content through hyperspectral images and provide technical support for the
exploration of hidden minerals. The principal results indicated that:

(1) Spectral transformation technology can highlight the band that is characteristically reflected by
the element content, thereby improving the predictive ability of the model;

(2) The 20 characteristic bands selected from the transform spectrum by the CARS method were
input as independent variables into the PLS method to construct the detritus copper content
inversion model with the highest accuracy. R2 (0.7342) was highest and MAE (19.926) was lowest
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in the verification set, indicating that the HySpex pixel spectrum could be used to quickly and
accurately estimate the copper content in detritus;

(3) GA, CARS, and SPA can be used for quickly selecting feature bands, and the use of these feature
bands for modeling can simplify the model complexity and improve prediction accuracy. CARS is
the optimal feature band screening method; it reduced the complexity of the model to the greatest
extent and improved the stability of the model while ensuring the accuracy of the inversion,
and has a wider application prospect;

(4) Ultra-low HySpex imaging hyperspectral data have high spatial and spectral resolutions, but there
were problems with information redundancy. Adopting appropriate spectral transformation
technology and band selection methods to improve the prediction accuracy and data-processing
efficiency can provide a low-cost and efficient method for the delineation and reduction of key
mining research areas in the future.
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