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Abstract: In a hazy environment, visibility is reduced and objects are difficult to identify. For this
reason, many dehazing techniques have been proposed to remove the haze. Especially, in the case
of the atmospheric scattering model estimation-based method, there is a problem of distortion
when inaccurate models are estimated. We present a novel residual-based dehazing network
model to overcome the performance limitation in an atmospheric scattering model-based method.
More specifically, the proposed model adopted the gate fusion network that generates the dehazed
results using a residual operator. To further reduce the divergence between the clean and dehazed
images, the proposed discriminator distinguishes dehazed results and clean images, and then reduces
the statistical difference via adversarial learning. To verify each element of the proposed model,
we hierarchically performed the haze removal process in an ablation study. Experimental results show
that the proposed method outperformed state-of-the-art approaches in terms of peak signal-to-noise
ratio (PSNR), structural similarity index measure (SSIM), international commission on illumination
cie delta e 2000 (CIEDE2000), and mean squared error (MSE). It also gives subjectively high-quality
images without color distortion or undesired artifacts for both synthetic and real-world hazy images.

Keywords: haze removal; generative adversarial network; gated structure

1. Introduction

Outdoor images are degraded by various atmospheric particles such as haze and dust. Especially,
haze reduces the visibility of the image and disturbs the clarity of distant objects because of the effect
of light scattering by particles in the air. Early dehazing techniques were based on mathematical
optimization. Huang et al. proposed a visibility restoration (VR) technique using color correlation
based on the gray world assumption and transmission map based on depth estimation [1]. Tan et al.
proposed a Markov random field-based graph cut and belief propagation method to remove haze
without using geometrical information [2]. Ancuti et al. removed the haze by identifying the hazy
region through hue disparity between the original image and the ‘semi-inverse image’ created by
applying a single per pixel operation to the original image [3]. Shin et al. removed the haze using
a radiance and reflectance combined model and structure-guided l0 filter [4]. Qu et al. presented
a dehazing method based on a local consistent Markov random field framework [5]. Meng et al.
presented the l1 norm-based contextual regularization and boundary constraints-based dehazing
method [6]. Liang et al. proposed a generalized polarimetirc dehazing method via low-pass filtering [7].
Hajjami et al. improved the estimation of the transmission and the atmospheric light applying to
Laplacian and Gaussian pyramids to combine all the relevant information [8].

In spite of the mathematical beauty, a mathematical optimization-based method cannot fully use
the physical property of the haze. To solve that problem, various physical model-based dehazing
methods were proposed. He et al. estimated the transmission map by defining the dark channel
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prior(DCP), which analyzed the relationship between the clean and the hazy images [9]. Zhu et al.
proposed a method of modeling the scene depth of the hazy image using color attenuation prior
(CAP) [10]. Bui et al. calculated the transmission map through the color ellipsoid prior applicable in
the RGB space to maximize the contrast of the dehazed pixel without over-saturation [11]. Tang et al.
proposed a learning framework [12] by combining multi-scale DCP [9], multi-scale local contrast
maximization [2], local saturation maximization, and hue disparity between the original image and
the semi-inverse image [3]. Dong et al. used a clean-region flag to measure the degree of clean-region
in images based on DCP [13].

However, these methods can lead to undesired results when the estimated transmission map or
atmospheric light is inaccurate. Recently, deep learning-based transmission map estimation methods
were proposed in the literature. Cai et al. proposed a deep learning model to remove the haze by
estimating the medium transmission map through the end-to-end network, and applied it to the
atmosphere scattering model [14]. To estimate the transmission more accurately, Ren et al. provided
a multi-scale convolutional neural network (MSCNN) [15], and trained the MSCNN using the NYU
depth and image dataset [16]. Zhang et al. presented a densely connected pyramid dehazing network
(DCPDN), and reduced the statistical divergence between real-radiance and estimated result using
the adversarial networks [17]. If the weight parameters, which reflect the transmission map and
atmospheric light, are inaccurately learned, the DCPDN results in a degraded image. Figure 1b,c
show image dehazing results based on two different atmospheric scattering models [9,17], respectively.
As shown in the figures, inaccurate estimation results in over-saturation or color distortion since the
transmission map is related to the depth map of the image. On the other hand, the proposed method
shows an improved result without saturation or color distortion as shown in Figure 1d, which is very
close to the original clean image shown in Figure 1e.

(a) (b) (c) (d) (e)

Figure 1. Comparison between the proposed method and the atmospheric scattering model-based
methods: (a) input image, (b) DCP [9], (c) DCPDN [17], (d) the proposed method, and (e) the
clean image.

As previously discussed, atmospheric scattering model-based dehazing methods result in
undesired artifacts when the transmission map or atmospheric light is inaccurately estimated. To solve
this problem, Ren et al. proposed a dehazing method that fuses multiple images derived from
hazy input [18]. Qu et al. proposed a pixel-to-pixel dehazing network that avoids the image to
image translation by adding multiple-scale pyramid pooling blocks [19]. Liu et al. observed that
the atmosphere scattering model is not necessary for haze removal by comparing direct and indirect
estimation results [20]. Inspired by these approaches, we present a novel residual-based dehazing
network without estimating the transmission map or atmospheric light. The proposed dehazing
generator has an encoder–decoder structure. More specially, in the proposed encoder–decoder network,
the local residual operation and gated block can maximize the receptive field without the bottleneck
problem [18]. In addition, to reduce the statistical difference between the clean and dehazing result,
the proposed discriminator decides if the generator’s result is real or fake by comparing with the
ground truth. The proposed network is trained by minimizing the l1-based total variation and Pearson
X2 divergence [21,22]. This paper is organized as follows. In Section 2, the related works are presented.
The proposed gated dehazing network is described in Section 3 followed by experimental results in
Section 4, and Section 5 concludes this paper with some discussion.
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2. Related Works

This section briefly surveys existing dehazing methods that partly inspired the proposed method.
In particular, we describe: (i) the formal definition of the atmosphere scattering model, (ii) how the
gated operation is used not only in the deep learning model but also in dehazing, and (iii) how the
generative adversarial network (GAN) is used in a dehazing method.

2.1. Atmosphere Scattering Model

A haze image I (x) acquired by a digital image sensor includes ambiguous color information due
to the scattered atmospheric light A whose effect is proportional to the distance from the sensor d (x).
To estimate the scene radiance of the haze image, the atmospheric scattering model is defined as [23]

I (x) = J (x) e−βd(x) + A
(

1− e−βd(x)
)

, (1)

where x represents the pixel coordinates, I (x) the observed hazy image, J (x) the clean haze-free
image, A the atmospheric light, e−βd(x) = t (x) the light transmission, d (x) the depths map of the
image, and β the scattering coefficient.

2.2. Gated Network

Ren et al. proposed a gated fusion network (GFN) that learns a weight map to combine multiple
input images into one by keeping the most significant features of them [18]. In their original work,
they referred to the weight map as the confidence map. The weight map in a GFN can be represented
as [18,24,25]

w1, w2, . . . , wn = Gate (F1, F2, . . . , Fn) , (2)

where Fi for i = 1, . . . , n represents the feature map of the i-th layer and wi for i = 1, . . . , n, the weight
or confidence map through the gate. Using Fi and wi, the final feature is computed as

Ft = w1 � F1 + w2 � F2 + . . . + wn � Fn, (3)

where� represents the element-wise multiplication. Chen et al. showed that the gated operation-based
haze removal method is effective through the smooth dilated convolution with a wide receptive field
and the gated fusion method using elemental-wise operation [24].

2.3. Generative Adversarial Network

The GAN is learned by repeating the process of generating a realistic image in which the generator
tries to confuse the discriminator. GAN is formulated as [22]

arg min
G

min
D

V(D, G) = Ex∼pdata(x)
[

log D(x)
]
+ Ez∼pz(z)

[
log

(
1− D (G(z))

)]
, (4)

where x and z respectively represent the real image and random noise, and D and G respectively the
discriminator and generator [22]. When the random noise z is replaced to haze image I, this adversarial
learning can be effectively applied to dehazing approach [17].

3. Proposed Method

Since it is hard to estimate the accurate transmission in Equation (1), we propose a novel
residual-based dehazing method that does not use the transmission map. Figure 2 shows the effect
of structures to the network. This section describes details of the proposed method including gate
network, global residual, and adversarial learning.
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Figure 2. Effects of network structure: (a) hazy input image, (b) without residual blocks, (c) without
gate block, (d) the proposed method, (e) the clean image.

3.1. The Gated Dehazing Network

To remove the haze, the proposed generator takes a single haze image as an input as shown
in Figure 3a. The generator goes through the processes of encoder, residual blocks, gate block,
decoder, and global residual operation. In the encoding process, the resolution of the input image is
reduced twice through convolution layers, while the number of output channels accordingly increases.
The encoding process of proposed method can be expressed as

Ek = σk ((. . . σ1 ((W1 ∗ I) + b1) . . .) ∗Wk + bk) , (5)

where Wk, bk, and σk respectively represent the weight, bias, and Relu activation function [26] of the
k-th convolutional layer, and ∗ the convolution operator. The hazy image I was used as an input in
the encoding process to have 3 input channels. The following convolutional layers have 64 output
channels with 3× 3 kernel. To extract feature maps, the input image is reduced by 4 times using stride
2 twice. In addition, 128 output channels and K = 4 layers are used in the encoding block. Since the
encoded features have low-scale and large channels, the proposed network has large receptive fields.
In other words, the proposed network computes more wider context information [27]. However,
the bottleneck effect decreases the performance of the proposed network because too many parameters
are required to restore the features with large receptive fields [28]. If a network is constructed without
residual blocks, the bottleneck problem is as shown in Figure 2b.

Figure 3. Overall architecture of the proposed network.
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To solve this problem, the proposed network also uses the hierarchical information from low-level
to high-level features using five residual blocks as

R1 = E4 + σe
4
((

We
4 ∗ E4

)
+ be

4
)

,
Rn = σr

n
(

Rn−1 + σr
n−1

((
Wr

n−1 ∗ Rn−1
)
+ br

n−1
))

, 2 ≤ n ≤ 5
(6)

where We
4 , E4, be

4, and σe
4 respectively represent the weight, feature map, bias, and Relu activation

function for the last layer of the previous encoding block. R1 represents the first residual feature
map through element-wise summation with the last feature map of the encoding block. Wr

n−1, Rn−1,
br

n−1 and σr
n−1 respectively represent the weight, residual feature map, bias, and Relu activation

function of the n− 1th block of the residual process. For the residual blocks of the proposed method,
25 layers were used.

Figure 2c shows that the bottleneck problem is solved by adding residual blocks. However,
the enlarged red box does not converge due to the hierarchical information generated from the residual
blocks. To solve this problem, we obtain the weights from low to high level through the gating
operation inspired by the GFN [18] for the feature map to contain a hierarchical information generated
in the residual blocks. The gating operation to obtain the feature map through the element-wise
multiplication of the acquired weights and the value generated in the residual blocks can be defined as

G f1,2,...,5 =
(

Wgate
1 ∗ [R1, R2, . . . , R5] + bgate

1

)
,

G ft =
5
∑

k=1
G fk
◦ Rk,

(7)

where Wgate
1 and bgate

1 respectively represent the weight and bias of gate blocks. “[·]” represents the
concatenation operation of residual feature maps with hierarchical information from low to high level,
and “◦” the element-wise multiplication of G f1,2,...5 and hierarchical feature maps R1,2,...5.

The decoding layer reconstructs the restored image based on the generated and computed
features [29]. In the decoding process, the resolution is restored as

Dup = σd
1

(
Wd

2 ∗
((

Wd
1 ∗

(
G ft↑2

)
+ bd

1

)
↑2

)
+ bd

2

)
, (8)

where Wd
n , bd

n, and σd
1 respectively represent weight, bias, and Relu activation function in the decoding

layer, and “↑2” the up-sampling operation with a scale of 2. The proposed decoding layer repeats
the 3× 3 convolution after up-sampling using bilinear interpolation twice to decode the image to the
original resolution.

The global residual operation can effectively restore degraded images, and can improve the
robustness of the network [30,31]. In this context, we can formulate the relationship between the global
residual operation and the input hazy image I as

G (I) = σ
gr
1

(
Dup + I

)
, (9)

where σ
gr
1 represents the Relu activation function in the global residual operation. Through summation

of decoded Dup and input hazy image I, the generator’s dehazed image G (I) is acquired. We designed
the network structure to solve the bottleneck problem for clean results shown in Figure 2d, where the
proposed gated network can generate more hierarchical features. A list of parameters of the generator
are given in Tables 1 and 2.

Although it was successful to obtain enhanced results of synthetic data using only a generator,
adversarial learning was applied to obtain more robust results in real-world images. For the adversarial
learning, we also propose the discriminator inspired by [32], which increases the number of filters
while passing through layers and has a wider receptive field. The discriminator takes the dehazed



Sensors 2020, 20, 6311 6 of 15

image G (I) or clean image J as input. To classify the images, the proposed discriminator estimates the
features using four convolutional layers as

D (G (I)) = Φ
(

Ψd
4

(
BNd

4

(
. . . Ψd

1

(
BNd

1

(
G (I) ∗Wd

1 + bd
1

))
. . .

)
∗Wd

4 + bd
4

))
,

D (J) = Φ
(

Ψd
4

(
BNd

4

(
. . . Ψd

1

(
BNd

1

(
J ∗Wd

1 + bd
1

))
. . .

)
∗Wd

4 + bd
4

))
,

(10)

where Wd
n , bd

n, BNd
n , Ψd

n, and Φ respectively represent the n-th weight, bias, batch normalization, leaky
Relu function [33], and sigmoid function in the discriminator. As in Equation (10), the discriminator
takes G (I) or J as input, and the input channel is set to 3. As the number of channels passed through
the layer increases, 192 output feature maps were extracted. In the last layer, the discriminator extracts
a single output feature map to classify the image, and determines whether it is valid (1) or fake (0)
applying to sigmoid function. Detailed parameters of the discriminator are given in Table 3.

Table 1. Details of encoder and residual blocks.

Encoder Residual Blocks

Var. Type I/O Filters Size/Stride Acti. Var. Type I/O Filters Size/Stride Acti.

Input: I Input: E4, R1, R2, R3, R4

E1 Conv 3/64 3/1 Relu E5n Conv 128/64 3/1 Relu
E2 Conv 64/64 3/1 Relu E5n+1 Conv 64/64 3/1 Relu
E3 Conv 64/128 3/2 Relu E5n+2 Conv 64/64 3/1 Relu
E4 Conv 128/128 3/2 Relu E5n+3 Conv 64/64 3/1 Relu

E5n+4 Conv 64/64 3/1
Rn Sum Relu

Output: E4 Output: R1, R2, R3, R4, R5

Table 2. Details of gate block and decoder.

Gate Block Decoder

Var. Type I/O Filters Size/Stride Acti. Var. Type I/O Filters Size/Stride Acti.

Input: Concat(R1, R2, R3, R4, R5) Input: G ftotal

G f1,2,...,5
Conv 320/5 3/1 ↑2 2x

E31 Conv 64/64 3/1
↑2 2x
E32 Conv 64/64 3/1
E33 Conv 64/64 3/1 Relu
E34 Conv 64/64 3/1

E34 + I Sum Relu

Output: G ftotal
=

5
∑

k=1
G fk
◦ Rk Output: G (I)

Table 3. Details of discriminator.

Discriminator

Var. Type I/O Filters Size/Stride Acti.

Input: G (I) or J

C1 Conv 3/48 3/1
BN1 Batch norm 48 Lrelu
C2 Conv 48/96 3/1

BN2 Batch norm 96 Lrelu
C3 Conv 96/192 3/1

BN3 Batch norm 192 Lrelu
C4 Conv 192/1 3/1 Sigmoid

Output: S1
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3.2. Overall Loss Function

The loss function of the proposed method consists of Ll1 , Lvgg, Ladv(D), and Ladv(G). Ll1 can be
obtained by using the mean absolute error between the dehazed image G (I) and the generated clean
image J, which is formulated as

Ll1 =
1
M
‖G (I)− J‖1, (11)

where M = H ×W × C represents the size of input image. Lvgg used a pre-trained VGG16 network
that can extract perceptual information from images and enhance contrast [21]. The equation for
obtaining the VGG16 loss can be formulated as

Lvgg =
4

∑
k=1

1
Nk
‖Vk (G (I))−Vk (J)‖2

2, (12)

where Vk (·) represents the pre-trained VGG16 network, and k = 1, . . . , 4 the number of layers
containing important features. Nk is the product of the height, width, and channel of the VGG16 layer
corresponding to k.

For stable learning and higher quality outputs, least squares generative adversarial network
(LSGAN) [34], which is an improved version of the original GAN, was applied to our proposed model.
The generator creates a dehazed image G (I), and the discriminator distinguishes whether the dehazed
image is real or fake. The resulting adversarial loss is calculated as

minD adv(D) = λD
( 1

2 EJ∼pD(J)
[
(D(J)− 1)2 ]+ 1

2 EI∼pG(I)
[
(D(G(I)))2 ]),

minG adv(G) = λG
( 1

2 EI∼pG(I)
[
(D(G(I))− 1)2 ]),

(13)

where hyper-parameters λD, λG = 0.2 were used for the discriminator and generator losses,
respectively. As shown in Equation (13), the proposed adversarial loss goes through an optimization
process that minimizes the Euclidean distance between the discriminator and generator.

3.3. Training Details

Figure 4 shows the learning process of the proposed model including: (i) computing the mean
absolute error and perceptual losses using Equations (11) and (12), (ii) updating the generator after
adding the previously obtained losses, and (iii) updating the discriminator loss in Equation (13).
The generator loss is finally updated.

Figure 4. Learning process.

4. Experimental Results

To train the proposed model, Adam optimizer was used with learning rate (10)−4 for combined Ll1
and VGG16 loss (Ll1 + Lvgg) and (10)−6 for adversarial loss (Ladv(G), Ladv(D)). We used 10,000 images
from indoor training set (ITS) and 18,200 images from outdoor training set (OTS) Part 1 for the training
dataset [35]. We implement our model using a personal computer with a 3.70 GHz Intel Core i9-9900K
processor and NVIDIA GTX 2080ti 12GB GPU. Training time took almost 30 hours and Pytorch was
used as the framework. In consideration of the training speed and stability, the batch size was set to 10,
and every image was resized to 256× 256 for the input patch of the network. For testing, an input
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image was resized to 512× 512 to generate the corresponding output. We used 500 synthetic objective
testing set (SOTS) outdoor and indoor images, and proved the dehazing performance of the proposed
model for 500 real-world hazy images provided by fog aware density evaluator (FADE) [36]. For a fair
comparison, state-of-the-art dehazing methods including: DCP [9], CAP [10], radiance-reflectance
optimization (RRO) [4], all-in one network (AOD) [37], DCPDN [17], and GFN [18] were tested together
with the proposed method.

4.1. Performance Evaluation Using Synthetic Data

To synthesize a hazy image, depth map information is required. Li et al. synthesized hazy
images using both indoor and outdoor data with depth information [35]. For example, in an outdoor
environment, the depth range extends up to several kilometers, whereas in an indoor environment,
it has several meters. For this reason, we used 500 SOTS outdoor and indoor images for experiments
with various depths [35] and synthetically simulated haze images to evaluate the objective performance
in the sense of MSE and PSNR, SSIM [38], and CIEDE2000 that calculates the color difference in the
CIELAB space [39]. If two images become closer, SSIM approaches 1, while CIEDE2000 approaches 0.

Tables 4–7 show the averages of quantitative evaluation results for 500 SOTS outdoor and indoor
images with consideration of statistical significance. As shown in Tables 4–7, the proposed method
shows higher performance than any other methods in the sense of all metrics.

Table 4. Comparative SSIM results of dehazing methods on SOTS. Best score is marked in red.

SSIM DCP [9] CAP [10] RRO [4] AOD [37] DCPDN [17] GFN [18] Proposed

Outdoor

Mean 0.8156 0.8159 0.8223 0.8947 0.8649 0.8717 0.9589
Std 0.0733 0.1171 0.0476 0.0453 0.0743 0.0779 0.0222
Min 0.6114 0.4142 0.6329 0.6677 0.6134 0.5260 0.8522
Max 0.9657 0.9879 0.9198 0.9722 0.9834 0.9871 0.9910

Indoor

Mean 0.8431 0.8447 0.8197 0.8362 0.7451 0.9113 0.9377
Std 0.0563 0.0622 0.0862 0.0779 0.1132 0.0327 0.0273
Min 0.6775 0.6276 0.5489 0.5529 0.4331 0.8089 0.8569
Max 0.9458 0.9652 0.9618 0.9610 0.9549 0.9767 0.9852

Table 5. Comparative CIEDE2000 results of dehazing methods on SOTS. Best score is marked in red.

CIEDE2000 DCP [9] CAP [10] RRO [4] AOD [37] DCPDN [17] GFN [18] Proposed

Outdoor

Mean 14.0003 9.8399 10.1197 7.7192 11.3252 6.2929 4.2070
Std 4.9894 3.1774 2.9756 2.5158 4.5708 2.6843 2.1787
Min 3.6469 2.4560 3.9555 2.4727 2.0515 2.3672 1.6188
Max 33.2482 19.7684 20.3894 17.9665 29.8194 16.8856 15.2767

Indoor

Mean 10.6250 8.2445 10.1597 8.1847 17.5894 5.5170 4.7627
Std 3.9784 3.0052 3.7726 3.8485 5.4186 1.2776 1.5630
Min 4.4610 3.5705 4.6058 3.0409 6.6099 2.8880 1.7230
Max 26.9328 20.7123 24.8660 24.3492 34.4222 13.7701 9.8903

Table 6. Comparative PSNR results of dehazing methods on SOTS. Best score is marked in red.

PSNR DCP [9] CAP [10] RRO [4] AOD [37] DCPDN [17] GFN [18] Proposed

Outdoor

Mean 14.8567 18.4366 18.6245 19.6552 17.5784 22.1102 25.5830
Std 2.9009 3.1846 2.5864 2.4030 3.3812 4.1891 4.2117
Min 8.0599 12.7874 11.7237 12.8299 8.8716 12.5997 13.6739
Max 26.1906 34.5381 26.3478 27.4443 31.5347 33.1781 34.2140

Indoor

Mean 17.0254 19.1585 18.0264 18.8528 13.0895 22.6664 23.6014
Std 2.7620 2.5793 3.0466 3.2735 2.7285 2.6877 2.9066
Min 9.4716 10.8411 9.0158 10.3277 6.9896 13.1246 16.2261
Max 24.0988 25.3788 23.5649 26.6223 20.6942 29.6524 31.6312
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Table 7. Comparative MSE results of dehazing methods on SOTS. Best score is marked in red.

MSE(%) DCP [9] CAP [10] RRO [4] AOD [37] DCPDN [17] GFN [18] Proposed

Outdoor

Mean 4.14 1.83 1.77 1.27 2.29 0.98 0.49
Std 2.42 1.08 1.08 0.69 1.74 0.94 0.67
Min 0.28 0.06 0.26 0.20 0.07 0.05 0.04
Max 15.06 5.54 6.78 4.8 12.83 5.9 4.96

Indoor

Mean 2.53 1.51 2.15 1.78 5.82 0.69 0.56
Std 1.71 1.02 1.96 1.57 3.44 0.49 0.40
Min 0.49 0.29 0.46 0.30 0.84 0.13 0.07
Max 11.38 8.66 13.14 9.26 20.14 4.85 2.41

4.2. Similarity Comparison Using Benchmarking Dataset

In order to evaluate the qualitative performance, we show dehazing results using different
methods for both outdoor and indoor images as shown in Figures 5 and 6.

Figure 5b shows an increased contrast, but the road region is over-enhanced due to an inaccurately
estimated transmission map, resulting in color distortion and halo effect near strong edges. Figure 5c
also shows a color distortion problem and remaining haze. Figure 5d shows completely removed
haze at the cost of over-enhancement in the sky region. In Figure 5e, haze in all regions is not
completely removed. Figure 5f exhibits an over-saturation in the sky region and an increased brightness.
Figure 5g shows halo effect around strong edges and over-enhancement problem. On the other hand,
the proposed method provides high-quality images without the aforementioned problems.

Figure 5. Comparison of dehazing results using synthetic outdoor hazy images [35] for qualitative
evaluation: (a) hazy input image, (b) DCP [9], (c) CAP [10], (d) RRO [4], (e) AOD [37], (f) DCPDN [17],
(g) GFN [18], (h) the proposed method, and (i) clean image.
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Figure 6. Comparison of dehazing results using synthetic indoor hazy images [35] for qualitative
evaluation: (a) hazy input image, (b) DCP [9], (c) CAP [10], (d) RRO [4], (e) AOD [37], (f) DCPDN [17],
(g) GFN [18], (h) the proposed method, and (i) clean image.

The contrast of the Figure 6b,c is significantly increased, but their colors were distorted due to
the incorrect transmission map estimation. In Figure 6d, the contrast is increased, but the haze is
not completely removed. Figure 6e can preserve the original color, but the image is turbid. Figure 6f
is brighter than normal and exhibits over-saturation around the chandelier. In Figure 6g, haze is
removed well, but there are still halo artifacts near the strong edges. On the other hand, the proposed
method provides a clean, high-quality image without color distortion or over-saturation even in an
indoor environment.

4.3. Ablation Study

We present results of the ablation study by comparing results using: (i) only Ll1 , (ii) Ll1 + Lvgg,
and (iii) the complete version of the proposed method as shown in Figure 7. We also present the
quantitative evaluation of the same ablation study with respect to different numbers of epochs as
shown in Table 8. The experiments were performed using 500 non-reference real-world images without
clean image pairs of FADE [36], and computes natural image quality evaluator (NIQE) [40]. A lower
NIQE score indicates a relatively higher quality image.
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Figure 7. The effect of different loss functions in the proposed model using FADE [36]: (a) hazy input
image, (b) only Ll1 , (c) Ll1 + Lvgg, and (d) the proposed method.

As shown in the enlarged purple box in the second row of Figure 7b, the dehazing result only
exhibits undesired artifacts between the haze and tree regions, which results in an unnatural image.
Figure 7c still has undesired artifacts and over-enhancement in the hazy region. Furthermore, color
distortion occurs near the yellow line in the enlarged green box in the fourth row. On the other hand,
the proposed method provides high-quality images without undesired artifacts.

Table 8. NIQE [40] measurement results on the effect of loss functions.

Methods 40 80 120 160 200

Ll1 3.6836 3.6145 3.5732 3.5523 3.5656
Ll1 + Lvgg 3.6557 3.6461 3.6044 3.5494 3.5125

Proposed method 3.4893 3.4686 3.451 3.4931 3.5039

4.4. Subjective Quality Comparison

Both quantitative and qualitative evaluations were conducted with the methods compared in
Sections 4.1 and 4.2 to confirm that the proposed method provides high-quality images even in the
real-world. To evaluate the non-reference image quality, the averages of FADE [36] 500 images were
measured by NIQE and entropy and are given in Table 9.
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As shown in enlarged blue boxes in Figure 8, existing methods result in over-enhanced
roads, whereas the proposed method successfully removes the haze in the entire image without
an over-enhanced problem. As shown in enlarged yellow boxes in Figure 8, the DCP generates
color distortion in Figure 8b, and the RRO generates over-saturation in Figure 8d. On the other hand,
the proposed reconstructs the shape of the vehicle to become visible in Figure 8h. As shown in enlarged
green boxes in Figure 8, the haze is not removed well, whereas the proposed method makes the person
clearly visible.

Figure 8. Subjective comparison of different dehazing methods using FADE [36]: (a) hazy input
image, (b) DCP [9], (c) CAP [10], (d) RRO [4], (e) AOD [37], (f) DCPDN [17], (g) GFN [18], and (h) the
proposed method.
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Table 9. Comparative results of dehazing methods on FADE [36]. Best score is marked in red, and the
second best score is marked in blue.

Metric DCP [9] CAP [10] RRO [4] AOD [37] DCPDN [17] GFN [18] Proposed

NIQE [40] 4.0023 4.1433 4.4429 4.0059 4.3767 4.2806 3.5039
Entropy [36] 6.8954 7.1554 7.327 7.0785 7.1664 7.2664 7.2745

In Table 9, the best score is marked in red, and the second best score is marked in blue.
The proposed method gives the highest NIQE score and the second best entropy score with little
difference from the best score. Based on these results, the proposed method clearly outperforms existing
methods in the sense of both qualitative and quantitative evaluations. In Table 10, the execution
times of the proposed method and learning-based methods are compared.The AOD method was faster,
but the proposed method not only has better scores than AOD in terms of both NIQE and entropy,
but also was faster than DCPDN and GFN. In addition, when the proposed method implemented
under a GPU environment, the processing times can be reduced over 100 times.

Table 10. Comparative execution times of the dehazing methods (seconds).

Resolution AOD (cpu) [37] DCPDN (cpu) [17] GFN (cpu) [18] Proposed (cpu) Proposed (gpu)

256× 256 0.14 n/a 10.12 2.23 0.01
512× 512 0.49 12.56 40.51 8.99 0.04

1024× 1024 1.9045 n/a 163.62 38.34 0.17

Framework Pytorch Pytorch Matlab-caffe Pytorch Pytorch

5. Conclusions

If the atmospheric scattering model is inaccurately estimated, the resulting images become
degraded. To solve this problem, we proposed a residual-based dehazing network without estimating
the atmospheric scattering model, where a gate block and local residual blocks are applied to widen
the receptive field without a bottleneck problem, and global residual operation is applied for robust
training. The combined structures were designed to construct a robust generator while solving the
problem arising from each structure. The proposed model is trained by minimizing the combined
VGG16 loss, mean absolution error loss. Furthermore, LSGAN-based learning was applied to acquire
robust results for a real image. The discriminator reduces the statistical difference between dehazed
and clean images to reduce the statistical divergence. In order to prove the effectiveness of key elements
in the proposed method, we conducted an ablation study with an in-depth analysis in Section 4.1.
We compared the dehazing performance of the proposed method with state-of-the-art methods for
both synthetic and real-world haze images in Section 4 to show that the proposed method performs
best in the sense of metrics such as PSNR, SSIM, CIEDE2000, MSE, NIQE, and second in sense of
entropy. This shows that the proposed model is a robust haze removal network without estimation of
the atmospheric scattering model. In the future research, we will improve the proposed networks to
remove dense haze.
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