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Abstract: Automatic robot gripper system which involves the automated object recognition of
work-in-process in production line is the key technology of the upcoming manufacturing facility
achieving Industry 4.0. Automatic robot gripper enables the manufacturing system to be autonomous,
self-recognized, and adaptable by using artificial intelligence of robot programming dealing with
arbitrary shapes of work-in-processes. This paper specifically explores the chain of key technologies,
such as 3D object recognition with CAD and point cloud data, reinforcement learning of robot arm,
and customized 3D printed gripper, in order to enhance the intelligence of the robot controller system.
And it also proposes the integration with 3D point cloud based object recognition and game-engine
based reinforcement learning. The result of the prototype of the intelligent robot gripping system
developed by the proposed method with a 4 degree-of-freedom robot arm is explained in this paper.

Keywords: reinforcement learning; robot gripper; point cloud; robot programming; object recognition

1. Introduction

Due to the acceleration to mass customization, automatic bin-picking has became crucial
capability of modern manufacturing system. Lot size “one” production is upcoming market demands,
as consumers’ needs vary, and so manufacturer started to customise their products and therefore
requires ability to quickly manufacture various products. In particular, automatic robot gripper system
which involves the automated object recognition of work-in-process in the production line is the key
technology. Automatic robot gripper enables manufacturing system to be autonomous, self-recognized
and adaptable by using artificial intelligence of tool-path generation dealing with arbitrary shapes
of work-in-processes. But existing programming systems, such as Pick-n-Place, are not suitable for
frequent change of the shape to be handled.

In terms of automation, Pick-n-Place task is one of the major important activity in the
manufacturing system. Pick-n-Place of only a single object is relatively easy task because its object
geometry is always identical in mass production line. But in the case of lot size “one” production [1],
the Pick-n-Place becomes a difficult task, since it has to adapt many varieties of different shapes every
time of grasping task. Most of manufacturing Pick-n-Place facilities are suitable just to standard shape
of product geometry, which causes difficulty dealing with customised products.

It is not straightforward for robots to completely adapt their control program of Pick-n-Place
tasks to arbitrary product shapes without humans’ inputs. For this reason, many factories still produce
their robot arm paths by on-line programming of material handling. Most well known method of
this way is using ‘teach pendant’. It is efficient for picking identical shape by manual programming
because the robot program does not change after a robot expert made it once. But, it is an inefficient
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method when responding to lot size “one” production having to reprogram the robot path every single
time. And also the quality of the path generation could vary according to the worker. Implementing
intelligence and flexibility that makes the robot smart, could solve the above-stated problems with
reasonable investment which will lead to profitability.

This paper suggests using RL (reinforcement learning) for automated robot arm path generation
and deep learning for object classification to grasp various arbitrary object. Legacy commercial system
of automatic bin-picking uses 2D based image detection algorithm to detect the orientation and location
of target product and predefined robot path after long and large training are applied. But the authors
propose the integration with PointNet object recognition algorithm and game-engine (Unity) in RL.
Automatic object recognition, reinforcement learning of robot arm are the main technologies of the
proposed method. The proposed method reduces the effort to prepare training data and the expertise
to establish predefined program as Figure 1. By implementing this method, difficult Pick-n-Place
task could be easily solved with low cost device. This paper specifically explores the chain of key
technologies, such as 3D object recognition with point cloud data, RL of robot arm and gripper,
and a customised 3D printed gripper, in order to enhance the intelligence of the robot controller system
which can lead to highly mass customised production line.

Figure 1. Simple process of commercial robot and GadgetArm.

In Section 2, related and existing models are introduced, such as fundamental researches to
realize autonomous robot programming. In Section 3, describes the overall intelligent robot controller
architecture of automatic robot gripper with more detailed explanation composed with object detection,
automatic tool-path generation, and robot programming. Then in Section 4 the result of the prototype of
the intelligence robot gripping system, developed by the proposed method with a 4 degree-of-freedom
robot arm is explained. Section 5 discusses the comparison and improvement with legacy robot
programming(teach pendant) method and proposes intelligent gripper system method “GadgetArm”.
Conclusions are briefly given in Section 6.

2. Literature Survey

In this section, previous related methodologies for robot arm grasping are introduced by dividing
them in three parts. First, a method for robot arm to recognize object recognition by 2D data format to
3D data format is presented. Then various ways of training the robot arm to grasp the object properly,
automatically and combining them to the robot programming are introduced. Finally a summary and
opportunities of the related work are discussed.

2.1. Object Recognition

In the past there were many approaches to deal with robot arm’s limitation, grasping unknown
object reliance to humans vision system with online programming. Traditionally used 2D contour
image data for object recognition in grasping [2–4].

Development of a camera that captures depth data made it convenient to earn 3D data format,
which would provide more precise information compared to 2D data format. Also, improvement of
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DL (deep learning) made it possible to use 3D data as input in object recognition tasks by various
DL algorithms. Most well known and used 3D data formats are Voxel and PCD (Point Cloud Data).
3D ShapeNet [5] and VoxNet [6] uses Voxel data format to classify object. But since voxel data format
increases the data size and obscure recognizing the essence of the shape, PointNet [7] used PCD for
object classification. The advantage of the PCD is that since it is the raw data of the object, it is accurate
and has acceptable data size. In the same way, Wang et al. proposed a novel global PCD descriptor to
improve robot grasping operation by using object recognition and pose estimation [8]. And Ji et al.
combined real-time grasp control with vision data in order to achieve reliable and accurate object
grasping even though operation in a cluttered scene [9].

2.2. Existing Platforms of Reinforcement Learning

Using RL in various fields has been successful. This is due to well made simulation software
tools and well described by Erez et al. [10]. These tools are widely used especially in robotics.
Johns et al. used Dart simulation physics engine with CNN image processing to grasp object with
parallel gripper [11]. Also with most popular physics engine Mujoco integrated with OpenAI Gym,
Plappert et al. tested robotic task such as reaching, pushing, sliding and Pick-n-Place task [12] and
Wang, C. et al. trained Husky Dual UR5 robot for mobile manipulation by RL integrated with camera
for object pose estimation [13]. But these simulation software tools are difficult to build complex
simulation environment. So for alternative, games based simulation engine Unity is used for RL task,
since it is more convenient building complex simulation environment. Mousavian et al. used game
engine Unity, integrated with physics engine Flex to generate successful grasp for training data [14].
Advantages of Unity simulation platform are easy to learn and have sufficient physical complexity,
also provide compelling cognitive challenges, and support dynamic multi-agent interaction [15].

2.3. Automatic Robot Programming in Smart Factory

Demands of gripping arbitrary objects in an industrial environment have also been discussed
in papers for the flexibility of smart factories. Reddy et al. stressed the importance of universal
gripper, more like a human hand, to avoid changing the gripper for each part. The human-like hand
would make the gripper commonly suited for use in arbitrary areas from household chores to variable
industrial tasks [16]. Birglen and Schlicht aimed at presenting characteristics of commonly used
impactive grippers to pneumatic and parallel finger movement grippers in terms of performance
index referred to as a C-factor which including stroke, force, and weight specifications. With these
statistical analysis data, they could figure out that even though the variety of grippers on the
market is large, almost all of them share similar characteristics that are used in the industrial
environment [17]. Zhang et al. pointed out the complication of existing self-calibration accompanied by
camera calibration, corner detection and laser tracking. To solve the problems, they introduced inertial
measurement unit and position sensor to obtain the robot poses by Quaternion algorithm and Kalman
filters. After the estimation, extended Kalman filter was used to carry out kinematics identification
to improve the accuracy of robot gripping [18]. In the same way, automatic grasp generation has
been developed by several researchers to improve the intelligence of robot programming. Kraft et al.
suggested methods of automatic grasp generation to replace manual grasp selection with a bin-picking
process to reduce cost [19]. To reduce the cycle time of the process planning, off-line programming
method was implemented by calculating inverse kinematic automatically [20]. Weigand et al. applied
a Runge-Kutta neural network as a neural adaptive control in order to reduce gearbox errors on
industrial robots [21]. Also, recently, to avoid slip Muthusamy et al. proposed the robot system to grasp
an object with slip detection by using computer vision though real-time direct robot programming [22].

2.4. Summary and Opportunities

The conclusions we can draw after reviewing the literature are:
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1. The increase of the rate of object detection has possibility to replace the capability of human
observation which is the guide of robot position in legacy robot programming.

2. Traditional programming methods, such as legacy on/off-line programming, are limited in
relying on human expertise rather than improving the automation of mass customization.

3. Lot size “one” needs the high flexibility to handle all different shapes of work-in-processes.

From these conclusions it appears that there is opportunity to motivate the autonomous robot
control of different shapes. As well as there being a clear need for alternative technological solution
in this area, the series of intelligent robot programming will ensure that the new development will
provide benefits in the personalised material handling.

3. Conceptual Model of Automatic Grasp Generation

3.1. Overall Architecture

Typically legacy robot gripping applies without automatic grasp generation. Humans can detect
a product and think of a grasp strategy without difficulties while a robot needs programming
task before picking objects. Typical robot programming is the iteration of eye-observation and
path-adjustment on teach pendant. Simple picking is reasonable to manual handling because of
small benefit of robot gripping but the high cost of robot systems. Human expertise is required
even though using off-line programming finds an optimised path among the alternatives generated
automatically. This means that gripping task depends on the knowledge and the experience of human
operators in both methods.

For this reason, automatic grasp generation proposed in this paper is a low-cost system dealing
with arbitrary shapes. The main considerations of automatic grasp generation are (1) pre-training from
CAD data and (2) one-shot handling without programming iteration like teach pendant. Pre-training is
finished before work-in-process arrives in the production line. All try-and-error finding optimal path
are finished in virtual reality. Object detection helps for searching the optimal path of the object arrived
in production line. By pre-training and object detection, one-shot handling without any iterations can
be realized. And the automatic grasp generation keeps seamless performance of grasping accuracy
even though human operator replaces to another operator.

To develop the automatic grasp generation system, the overall architecture consists of object
recognition, automatic positioning, and integrated robotic system. This chain of components reduces
manual operation and allows labour to be used elsewhere. Whenever the product shape manipulated
by robot arm is changed, either iterative programming or robot program needs to generate new robot
path again.

An automatic robot gripper system for autonomous manufacturing systems requires two
technologies which are automated object recognition, path-finding and grasping for a full automation
system. This paper suggests an innovative way to satisfy the stated requirement by using a depth
camera for 3D scanning and a video game engine (Unity) for RL. The overall procedure is explained
briefly in Figure 2.

1. STEP1: After the product designer uploads new CAD file of new part shape on manufacturing
database, the file is imported into the virtual reality of RL. The virtual reality consists of two
training environments of two-step RL. First step is to find the gripping position. Second step is
to find the path of the robot arm to reach the gripping position. Two-step RL and virtual reality
were made by Unity ml-agents. Each gripping position and robot path optimised are transmitted
into manufacturing database via SQL query. Then, CAD data is also transmitted into production
line. Factory starts to produce the new part as the physical object of new part.

2. STEP2: After part production of a new part shape is laid down on the working table of a material
handling facility surrounded by a 3D scanner. 3D scanner traces the reflection curves of scanning
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laser and converts the signals into point cloud file. The PCD is input data of 3d object detection.
PCD is stored in the file system of PointNet algorithm.

3. STEP3: When 3D scanning is done, PCD is utilised to find the part type which just arrived by
using PointNet, one of 3D object detection algorithms. Based on the PCD, the part shape placed
on working table is detected by classification algorithm of PointNet. The output of this step is
classifying which type of part shape is arrived in production line. The part type found is sent
into next step.

4. STEP4: The part type classified by PointNet and the gripping position returned from the database
are the input of this step. First task of this step is to send a query of part type detected by
PointNet to manufacturing database where gripping positions of all part shapes are stored. Robot
controller manipulates the gripper along the gripping position returned from database. The chain
of these steps makes the robot control adaptive to arbitrary part shape.

Figure 2. Overall Process of automatic grasping programming.

3.2. Recognition by Point Cloud

An object recognition task is automated by using 3D data in order to improve classification
accuracy and data handling. Proposed architecture apply PointNet [7] architecture (Figure 3) to point
cloud classification task with CAD data and 3D scanned data.

Figure 3. PointNet Architecture for Classification.

Object recognition tasks were traditionally done by methods such as RFID tag or simply by
the human eye. Tagging RFID object could be the easiest way for automating object recognition.
But tag needs to be attached to each object and this causes operation cost which could not be ignored.



Sensors 2020, 20, 6183 6 of 16

The most primitive way, recognized by the human eye, is used in a teach pendant. RFID tag and
human recognition are expensive methods in the case of mass customization. Automatic process is
required to follow market change.

To make it automatic, the authors propose the integration of a 3D scanner and a deep learning
algorithm. Using 3D data improves classification accuracy and data handling. Improvement of 3D
camera makes it possible to collect depth data and extract point cloud data. Using 3D data improves
the accuracy of the classification of arbitrary objects rather than using 2D image. Only by the 2D data
format, it is hard to recognize a 3D geometry accurately due to limited viewpoint. Most known 3D
data used for classification task are Voxel format and Point cloud format. But when using voxel data
format, data becomes unnecessarily large because it approximates cubic representation of the object.
Earning richness of geometry information and avoiding complexities that make the calculation faster
is possible by directly taking point cloud as input.

In this paper, accuracy for classification task was considered as an important factor to enhance the
performance of the system. For this reason, choosing PCD as an input format was necessary, since it
could provide both enough geometry data and reasonable data size for the overall process. The authors
used PointNet architecture for point cloud classification task. It is a simple and robust deep learning
algorithm for classifying and segmenting object using directly PCD as input. As PointNet architecture
receives PCD as its input, it is used as the main algorithm for classifying object.

There are mainly two methods for collecting PCD.
The first way of collecting PCD is from the CAD file. Even though there is tolerance between

design shape and manufactured shape, the existence of CAD data is reliable input of object detection.
CAD file is shared by product data management system commonly used by most manufacturing
industry. By using CAD file, for example .obj format, it can easily be changed to point cloud format
and extract point cloud. Also it is possible to change the density of the point cloud. High density
of points means extracting high number of points from the object. Extracting high density of point
can give more accurate geometry information, but too much can cause degradation of computing
speed of classification algorithm. To make the algorithm fast enough, but still has enough geometry
information, 2048 points are chosen from the point with poisson-sampling method for point sampling
in order to sample uniformly.

The second way is 3D scanning an object using depth camera. 3D scanning takes longer time
compared to a fixed depth camera in case of collecting data. But when the camera is fixed, it could
collect imperfect data, only about half of the geometrical data, since the opposite part is not being
shown. The object detection task by 3D scanning finishes in a short time which is allowable in
production line. The proposed system also uses only single algorithm for object detection. Using an
another algorithm makes the system more complicated and reduces the speed for classification task.

A test dataset is generated from CAD file and 3D scanning. CAD file is labelled by the designer
and converted into training data of PointNet. 3D scanning data is used for the input during
operation. PointNet compares 3D scanning data with the training data and returns the label indicating
product model.

3.3. Reinforcement Learning in Unity Ml-Agents

The proposed automatic robot programming system employs the RL in order to generate the
gripping position of each part shape. The virtual reality of RL consists of robot arm, gripper and part
shape to be manipulated. It provides the environment where a machine learning algorithm attempts
all actions that robot arm can do. For this paper ml-agents [23] was used, an RL toolkit provided by
Unity Technologies, to make robot arm learn how to grasp the object.

A high DOF (Degree of freedom) of RL has a relatively high possibility of going in the wrong
direction during training. The target robot arm has 6 behaviours which are 4-DOF of robot arm,
gripping action, and application of gravity. Before the behaviour of the gripper gets stable, part shape
might be hit by unexpected gripper movement during training mode. Hitting objects cause the part
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shape to fly away and lead to rapid decline of the learning rate. Limiting DOF in time is required for
avoiding an unexpected learning direction.

For this reason, training environments are separated into two pieces. The proposed RL is
composed of gripping training and robot arm training. Separating the training into two parts reduces
the running time to achieve finding optimised gripping position. Gripping training has 2-DOF of
gripping action and gravity application. And robot arm training controls 4-DOF rotations.

In this work, the PPO (Proximal Policy Optimization) [24] algorithm was used. PPO is one of
the policy gradient method algorithms. PPO is easier to implement and has more ease of sample
complexity than the previous policy gradient algorithm TPRO (Trust Region Policy Optimisation) [25].
PPO has also displayed the best performance on continuous control tasks. One of the advantages of
ml-agents is making multi-agents at the same time like in Figure 4. This function saves time for RL
since it could test various grasp positions simultaneously. This way we can get the gripper’s position
where the gripper can grasp the object successfully. Then the gripper’s position is sent to the robot
offline programming software to move the robot arm at grasp position in real.

Figure 4. Using multi-agents for saving learning time.

Basic components of RL are agent, observation, action and reward. In this RL, the agent is the
gripper and observation, action, reward is generated by the Unity environment shown in Figure 5.
First, gripper moves along X,Y,Z axis. During RL the agent observes distance of gripper to bottle as
Vector3 value(x,y,z) frame by frame. Next, gripper runs grasping motion and after applying gravity
to the object to check if it has grasp well or not. If an object is dropped, the agent gets minus value
reward, and if gripped correctly it gets plus value reward.
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Figure 5. Training process of Reinforcement Learning.

3.4. Robot Programming & Gripper

Robot programming methods can be divided into two categories—online programming,
commonly used with teach pendant connected to the robot arm via a cable or lead through method,
and off-line programming. Although online programming is easily suitable for all types, improving
off-line programming is necessary to realize industrial 4.0 for the reason that the suitability of online
programming decreases as the industrial processes become complex. Furthermore, from an economical
perspective, off-line programming only could be justified for large volumes of production in big
enterprises. However, by cooperating with RL in Unity ml-agents, this method can break through the
limitations compared to commonly used robot programming using augmented reality which combines
the features of online and off-line programming to make off-line programming more interactive
and flexible.

4. Prototype Implementation

4.1. Target Objects

This section is mainly focused on introducing the prototype of the GadgetArm and how it is
implemented. As mentioned above, this paper is suggesting a simple and reasonable method for
automatic grasping. Any object that can be classified by PointNet can be our target object. In this work,
a bottle was chosen as the main target object because it could be easily obtained and has reasonable
size considering the size of the gripper. For the test environment, the gripper was made using a 3D
printer, which modified the open source design to fit the robot. Also modified gripper was controlled
by Arduino-UNO board for grasping and connected with IgUS Robolink RL-DCi-4-DOF. The robot
arm could reach 510 mm and payload 1000 g with 4 Degree of freedom. For vision task to extract PCD,
Intel RealSense D435 was used as fixed depth camera and for 3D scanning task, Shining 3D scanner
was used. Ideal prototype simulation environment are shown in Figure 6. Proposed architecture was
implemented within the test environment where Windows 10 PC equips NVIDIA GTX 1060 GPU and
16 GB memory.
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Figure 6. Prototype simulation environment.

4.2. Implementation of Pointnet

The process of the recognition task is explained in Figure 7. As mentioned above, a bottle,
vase and cup were selected as the target object. If there exists a CAD file, it could be easily converted
to PCD format by various open software. In case, where no CAD file exist, it could be scanned by
3D scanner to get the PCD. For experiment, even though existed an actual size CAD file, printed
with 3D printer and 3D scanned the actual bottle for testing. For both two cases, CAD file converted
to PCD and 3d scanned PCD, 2048 points were sampled by poisson sampling method using PCU
library [26]. Training PCD set was based on ModelNet40 [5] dataset. For custom target object, in this
case bottle, vase and cup, CAD data was earned from web crawling which is 1 to 1 scale to the real
object. To test 3D scanning method, printed the object with the 3D printer and after then performed
scanning as Figure 8. Shining 3D EinScan-Se was used for scanning. Another important process left
is scaling the size of the PCD by zero-mean and normalizing into a unit sphere for effective learning.
Finally, by the algorithm based on PointNet which classifies up to 40 objects, classifies which class it
belongs to. To test the performance of the PointNet algorithm, PCD earned from both CAD data and
3D scanning were used for each object type. The algorithm classified well on both cases on bottle and
vase. But the cup PCD from CAD data was not able to classify correctly, even though PCD from 3D
scanning classified perfectly. According to the classification result, the data of the object (CAD data)
information is delivered to the Unity environment to start RL.

Figure 7. Process of recognition task.
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Figure 8. 3D scanned result of bottle, vase and cup.

4.3. Reinforcement Learning

Among the objects in ModelNet40, we selected three objects for RL—bottle, vase, and cup shown
in Figure 9 as the ones that the gripper can grasp in reality. The version of RL environment is Python
3.7, Tensorflow 2.3.0, ml-agents 0.18.1. And we used the following PPO hyper-parameters Table 1.

Figure 9. 3D objects in Unity.

Table 1. PPO Hyper-Parameter.

HyperParameter Value

Batch Size 800

Buffer Size 12,000

Learning Rate 3.0 × 10−4

Max Steps 500,000

Beta 5.0 × 10−3

Epsilon 0.2

Lambda 0.95

Training model was trained on a continuous environment and the gripper was set able to move
XYZ axis and rotate only by B axis since the tested robot was 4-DOF. Final gripping position derived
from gripping training is the input of robot path training in two-step RL. Robot path generators are
also provided by on-line/off-line program system of commercial robot system. This section explains
the detail of gripping training because robot path training is replaceable to legacy robot system.

For reward progress it was divided into 3-steps—(1) Gripper movement stage, (2) Gripping stage,
(3) Apply gravity. Reward was given at each stage for a step-wise learning. The gripper observes the
distance to the object and learns to get closer, otherwise it gets negative reward. Colliders which can
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detect collision with others were added to both sides of the gripper and got positive reward only if the
object and the both side of gripper were tagged at the same time. After the gripping stage, gravity was
applied to the object to find out whether the object was grasped properly. To train the gripper to keep
holding the object, two box colliders were added, one at the bottom floor and one at the above the
gripper, so in case of object drops or object flies away it ends episode and is set to get negative reward.
The data flow of gripping training is depicted in Figure 5.

The reward and cumulative reward graphs are shown in Figure 10. We trained three objects for
500,000 steps and repeated it 10 times independently. The gripper is trained more stable in bottle
than other objects. This result is because of constant cylinder shape of bottle. Round shape fits well
with the shape of our gripper and gripper can grasp anywhere more successfully than a cup which
is asymmetrical.

Figure 10. Results of reinforcement learning.

With the consideration of industrial applications, we added two turning machining examples
as the industrial experiments. Industrial parts are shown in Figure 11. All the turning examples are
tested with standing position. because typical production line brings the parts on pallet system.
The cumulative reward graphs of GadgetArm reinforcement learning are shown in Figure 12.
We trained two objects in the same conditions to the above experiment. Two graphs always have
a value greater than 0 and keep high average rate. It means learning results are stable rapidly and do
not decline easily. Even though simple shape parts, industrial robots need to fine control to have stable
gripping program of robot arm. The proposed methods let operators not to consider about detail of
robot motion after the parts are located in fixed pallet. This means robot arm can learn well to grasp
industrial parts too.
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Figure 11. Industrial parts in Unity.

Figure 12. Results of reinforcement learning for Industrial parts.

4.4. Robot Programming

Most robot arms have their own programming language based on their software and users can
improve by themselves to drive the robot arms. Igus Robolink robot arm was used with Commonplace
CPRog programming environment to drive the robot arm, and XML files were used to control it
wirelessly through TCP/IP protocol. Therefore whenever creating an optimal path in Unity, a 3D
simulation environment, it was necessary to fit this data into an XML format. It was automatically
converted by Unity to XML format and the experiment was conducted by using the paths.

Robot programming to grasp the object used the optimal coordinates obtained by RL in Unity.
This coordinate was used in the Igus Robolink software to move the robot arm to the coordinate in
reality. However, in Unity, the robot arm joints deflection due to the mechanical vibration and the
influence of gravity is not considered, so the process of matching the reference using the program was
additionally required. Therefore, in order to minimize vibration, the speed of movement of the robot
arm was slowed down to optimize, and the amount of change in the z-axis (vertical axis of ground
plate) was considered as the optimized coordinate through multiple iterations.
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5. Discussion and Conclude Remarks

The most well known and used method for robot arm grasp is teach pendant and bin picking.
The comparison of the overall process between them is explained in Figure 13. In the term of
automation, RL has much more advantages than other methods. If unknown object is added, teach
pendant needs trained worker and bin picking needs to be programmed by programmer manually.
But RL can grasp unknown object only by adding CAD file and be trained. Repeatable work done
by human could be replaced by our automatic robot gripper system. This system is easily adaptable
according to many situation.

Figure 13. Comparison between Teach-Pendant, Bin-Picking and reinforcement learning (RL).

(1) Object detection: object recognition task is implemented by using PCD based algorithm.
3D data based approach is the way to utilise more geometric information than 2D images used by 2D
image recognition algorithm. From the implementation of the proposed object detection, followings
are found. First, in preparation for dataset, if new part comes, several hundred of image data is
needed in 2D image recognition. Capturing images is time-consuming and difficult to be automated.
PCD is extracted from CAD data which is pre-defined before production line starts to produce the
parts. That is CAD data is existed before the part arrived in material handling robot. Simple sampling
iteration of point cloud is required for the data collection and is fully automated without additional
works for building dataset. Second, in generate variations of part geometry, another benefit to use
PCD data is to make many variations of part shapes composed of training dataset. CAD solid kernel
has the geometric functions of Boolean operation, extrusion, lofting, and so forth. These functions are
used for modifying original CAD shape and building the dataset of its variations. Third, capturing
point cloud is the challenges of PCD object detection, 3D camera observes the only one side of part
shape which is not sufficient for comparing with whole shape of CAD file. This paper showed the
solution of 360-degree rotation table is applied to resolve the issue of capturing PCD in this paper.
As for the further possible issue related to capture PCD, other cases to consider are when the object is
tilt and when the object shape is complicated.

(2) Reinforcement learning environment: Even though the gripper reaches the optimal grasp
position, the time spent searching for the optimal position varies according to the object. For example,
in the case of bottle and vase, gripper reaches optimal position easily to bottle rather than vase. It could
tell that object’s shape complexity matters and since the bottle has the more constant shape of a cylinder,
the gripper arrived at the optimal position earlier. For industrial parts, we should implement more
experiments to find which shapes are hard to grasp and other aided methods to increase utility. Due to
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the limitation of the proposed learning model, reinforcement was conducted step-wise instead of
one-step to reach the final goal in a more stable manner. Not using the entire robot arm and using
only a gripper for training prevented the learning model from being complex. But it was effective
enough for grasping an object in a reasonable position with fine-tuned gripping behaviour. Since there
are also many errors in the final gripping operation even in actual robot control, these functions are
expected to work effectively in the field as well. For the RL algorithm, PPO is only one of the policy
gradient based algorithm. We used SAC which is hybrid algorithm that combines the advantages of
policy gradient and Q-Learning but in our case it did not work well. The direction of future studies is
changing RL algorithm, for example DQN [27], DDPG [28] and tuning hyper-parameter of PPO and
SAC for higher performance.

(3) Robot Programming: Since the 4-DOF robot arm was used in the current implementation,
there were some physical limitations. If a robot arm could move, when a higher DOF is used, diverse
paths can be formed for a single target coordinate. Therefore, even if there are obstacles interfering
to reach the target coordinate, it is possible to avoid these and achieve the goal by using multi paths.
However, 4-DOF robot arm can operate perfectly only when there are not any objects around the target
due to the physical limitations. In future studies, higher DOF robot arm will be employed to apply RL
in more diverse environments. And we should consider precision of robot manipulation. One of the
methods for increasing precision at industry 4.0 can be online calibration.

Finally, we should consider applying the GadgetArm System to factories. For example,
worker safety (Human-Robot Interaction), change of gripper to a more universal gripper, and the
validity of the importing GadgetArm system instead of the current system.

6. Conclusions

In this paper, simply combining systems or technology from various fields, it was able to build
a system for an automatic robot gripper. Rather than using a passive teach pendant, GadgetArm
suggests a method for getting one step closer to achieving Industry 4.0. PointNet for arbitrary object
recognition, Unity ml-agents RL for finding optimal grasp position, control the robot control system
with 3D printed gripper and connecting these independent processes with one system. As shown in
Figure 14, in the range of the quantity appropriate to an automatic process, by adapting GadgetArm,
it could lower the cost per item compared to the legacy grasping method. This process can be easily
modified according to diverse industry, not only for manufacturing facility but every field that suffers
from Pick-n-Place task, or even in the household.

Figure 14. Cost comparison by number of product type.
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