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Simple Summary: This paper presents a hierarchical approach to place recognition and pose
refinement for Frequency-Modulated Continuous-Wave (FMCW) scanning radar localisation.

Abstract: This paper presents a novel two-stage system which integrates topological localisation
candidates from a radar-only place recognition system with precise pose estimation using spectral
landmark-based techniques. We prove that the—recently available—seminal radar place recognition
(RPR) and scan matching sub-systems are complementary in a style reminiscent of the mapping and
localisation systems underpinning visual teach-and-repeat (VTR) systems which have been exhibited
robustly in the last decade. Offline experiments are conducted on the most extensive radar-focused
urban autonomy dataset available to the community with performance comparing favourably with
and even rivalling alternative state-of-the-art radar localisation systems. Specifically, we show the
long-term durability of the approach and of the sensing technology itself to autonomous navigation.
We suggest a range of sensible methods of tuning the system, all of which are suitable for online
operation. For both tuning regimes, we achieve, over the course of a month of localisation trials against
a single static map, high recalls at high precision, and much reduced variance in erroneous metric pose
estimation. As such, this work is a necessary first step towards a radar teach-and-repeat (RTR) system
and the enablement of autonomy across extreme changes in appearance or inclement conditions.

Keywords: radar; mapping; localisation; place recognition; autonomous vehicles; deep learning

1. Introduction

The ability to localise in an already visited environment is paramount for robotic autonomy,
since it enables long-term operation. A common solution to this operational paradigm is the creation
of a map as a digital representation of the traversed environment by the autonomous vehicle (AV).
Depending on the detail and the organisation of the information in the map, various representations
have been proposed in the last decades, including: metric, topological, or hybrid topometric ones.
However, meaningful robotic tasks require only locally accurate “metric” localisation in the form of
a rigid-body pose with respect to a prior map [1]. The AV will then be able to use feature matching
during a live pass in the same locations to localise itself onto the map and inform its motion control.

Consider these feature-based techniques and the criticality of safety in these scenarios. In order
for AVs to travel safely at higher speeds or operate in wide-open spaces where there is a dearth of
distinct features, the highest level of robust sensing is required. Frequency-Modulated Continuous
Wave (FMCW) radar satisfies these requirements, thriving in all environmental conditions (rain, snow,
dust, fog, or direct sunlight), providing a 360◦ view of the scene, and detecting targets at ranges of up
to hundreds of metres with centimetre-scale precision.
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Indeed, there is a burgeoning interest in exploiting FMCW radar to enable robust mobile autonomy,
including ego-motion estimation [2–7], localisation [7–11], Simultaneous Localisation and Mapping
(SLAM) [12], and scene understanding [13–15]. However, despite radar’s promise to deliver such
capabilities, the study of these tasks is only mature for cameras and Light Detection and Rangings
(LiDARs), and relatively little attention has been paid to radar for the same application. Figure 1 shows
an example of application, where a scan belonging to the current, live pass (blue) is used to localise onto
the previously-created map, to which a good match (green) and bad match (red) belong. The system
should not only be able to identify (despite opposing viewpoints) the right match (green) but also
to infer the displacement (translational and rotational) between the latter and the current position.
We define this approach as a hierarchical localisation pipeline in which a rotationally-invariant radar
place recognition (RPR) submodule first serves as a coarse localiser to retrieve relevant reference frames
and a pose refinement step (precise in both translation and rotation) is secondly applied to the query
frame and the portion of the map corresponding to the retrieved frames to estimate the metric pose.

Figure 1. Our two-step system relies on a radar place recognition (RPR) module and a downstream
pose refinement module. Firstly, consider the RPR module. Given an online query radar scan (blue dot
on map and blue-framed radar image), the aim is to retrieve a correct match (green), disregarding the
incorrect, although similar, radar scan the map also represents (red) and despite the obvious rotational
offset. Secondly, consider the pose refinement module. Here, the rotational offset should not be
disregarded and must be recovered. The range-azimuth region marked as interesting between the blue
and green scans (dashed lines) is separated (solid lines) by such a rotational offset (significant wrapping
around the horizontal axis), as well as a small translational offset (some movement down the vertical
axis). Here, the conflict between the requirement that the RPR module be robust to small rotational and
translational viewpoint differences and the requirement that the pose refinement module be precise in
the same considerations are shown in this paper to be compatible in a framework that ultimately leads
to a system which is more precise than RPR alone and more expedient than pose refinement alone.

This paper’s contribution is the proposal of a solution for such problem and can be summarised
as the consolidation of two recent lines of investigation in centimetre-scale motion estimation and
large-scale place recognition using FMCW radar. We adopt the vocabulary of “large-scale” from
localisation literature, such as Reference [16], which are evaluated on similarly extensive urban
datasets up to tens of kilometres rather than the vocabulary of works, such as Reference [1], which are
benchmarked on data taken over areas as extensive as hundreds of kilometres. We view this
contribution as the enabling methodology for future systems which will rely on FMCW radar as
the primary sensor for long-term autonomy—for example, in an anticipated RTR application.
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The remainder of this work is structured as follows. Section 2 explores related literature. Section 3
provides the prerequisite detail for the works that we build upon and how they are consolidated
in the proposed system in Section 4. Section 5 provides necessary details for implementation,
evaluation, and our dataset, and Sections 6 and 7 showcase the system in that experimental
setting. Section 8 compares the solution presented here against a comparable solution from the
literature. Sections 9 and 10 discuss the significance of the contribution and suggest further avenues
for investigation.

The preliminary detail on RPR and radar pose refinement covered in Section 3 is from our earlier
publications [2,8], while the marriage of these two systems in Section 4 is the principal contribution of
this paper, along with the entirety of the experimental programme (c.f. Section 5) and experimental
evidence (c.f. Sections 6 and 7).

2. Related Work

This section places the contribution in the literature on radar-based odometry and localisation,
experience-based navigation, and two-stage topological and metric localisation using onboard sensors.

The system we propose in Section 4 has its behaviour explored in Sections 6 and 7 and is compared
in Section 8 against some of the solutions discussed here.

2.1. Vision- and LiDAR-Based Lifelong Navigation

In this work, we defer to the evidence provided in the recent work in Reference [2,6,11] in proving
the radars perform favourably to cameras and LiDARs in motion estimation and localisation and
instead focus our experimental programme on what the proposed system radar-only brings to mobile
robotic navigation capabilities.

However, works, such as Reference [17–19], demonstrate the power of the teach-and-repeat (TR)
operational paradigm in enabling autonomy at scale using stereoscopic and monocular vision, as well
as LiDAR. From amongst several approaches, TR has distinguished itself as being an effective solution
in a number of domains, from urban autonomous driving [20] to Arctic exploration [17]. In this
framework, a robot is driven along a desired path in a teach phase, during which it builds a topometric
map [21,22] of the world by estimating its relative pose between consecutive keyframes. During a
repeat run, localisation is performed by matching features between the live feed and those of the map,
estimating the position of the robot relative to the route previously traversed.

The Experience-based Navigation (EBN) framework [20,23] for lifelong navigation builds on from
TR systems by investigating the utility of experience to localisation capability over many repeat passes
of a changing world.

2.2. Radar-Based Mapping and Localisation

Besides its superior range and despite its lower spatial resolution, Millimetre-Wave (MMW)
radar often overcomes the shortcomings of laser, monocular, or stereo vision because it can operate
successfully in dust, fog, blizzards, and poorly lit scenes [24]. In Reference [25], it is shown in the
context of a SLAM system that while producing slightly less accurate maps than LiDARs, radars are
capable of capturing details, such as corners and small walls.

Some mapping and localisation systems using similar—but not identical—radars as that used in
this work are described in Reference [26,27].

The supervised learning framework presented in Reference [8,9] and which our work extends
uses rotationally-invariant feature extraction and triplet-mining but does not solve for the rigid-body
pose of the sensor. The cross-modal radar-satellite works presented in Reference [10,28] do solve for
the metric pose. The work presented in this paper, in contrast, does not rely on external services (i.e.,
satellite imagery) and is presented as a radar-only solution.

In Reference [7], a method is presented for learning to predict robust keypoints for odometry
estimation and metric localisation in radar. Our work is distinct in that the topological localisation
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aspects are trained for precisely that task—not being trained for odometry estimation and then used
for localisation (having no specific loss for localisation). Additionally, our metric pose refinement is
not differentiable and thus not learned end-to-end.

FMCW dopper-enabled radars have been shown in Reference [29] to be beneficial. In this work,
however, we consider range-only radar.

2.3. Hierarchical Localisation

Often underpinning the software stack for these systems is a hierarchical localisation pipeline
in which visual place recognition (VPR) first serves as a coarse localiser to retrieve relevant reference
frames and a pose refinement step is secondly applied to the query frame and the portion of the map
corresponding to the retrieved frames to estimate the metric pose. Recent examples in the visual
domain include Reference [30–33].

The work in Reference [34] is related to ours in the sense that it can also be seen as a hierarchical
approach to localisation, in the particular case of LiDAR. We see two major distinctions between
Reference [34] and our work. Firstly, to achieve rotational invariance we account for the cylindrical
nature of the scan formation process in our architecture, while Reference [34] maintains the rotation
information and exploits it to extract the yaw displacement from the comparison of the embeddings
of two scans. Secondly, in Reference [34], the measure of overlap for a pair of scans is a nonlinear,
complex function that takes both embeddings as input rather than a simple distance measure. As such,
the query procedure prevents the direct use of efficient searching procedures, such as the k-D-trees we
use in our RPR module.

Similarly, we view the transplant of the LiDAR method developed in Reference [35] to the radar
domain as in Reference [11] as a hierarchical process. In contrast to this approach, the work presented
in this paper uses a learned embedding for RPR as opposed to a mean-reduced ring-key and recovers
the full three degree-of-freedom (3DoF) pose of the vehicle as opposed to rotation-alignment alone.

3. Preliminaries

This section briefly describes, in Sections 3.1 and 3.2, the two enabling subsystems which are
essential to the proposed integration of Section 4. Section 3.1 describes the place recognition submodule,
which is indepently illustrated in Figure 2. Section 3.2 describes the pose estimation submodule,
which is based on an odometry estimation pipeline.

3.1. Radar Place Recognition (RPR)

Recent advances in radar-only place recognition capabilities allow us to use the FMCW sensor
in lieu of global methods with other sensors, such as Global Positioning System (GPS). Here,
we summarise the most salient features of the methodology, shown in Figure 2; the interested reader is
referred to Reference [8] for more detail, as well as the experimental evidence of the robustness of this
RPR module.

Feature extraction: To learn filters and cluster centres which help distinguish polar radar images
for place recognition we use NetVLAD [36] with VGG-16 [37] as a front-end feature extractor—both
popularly applied to the place-recognition problem. Importantly, the original implementation of the
feature extractor is altered to obtain invariance to the orientation of input radar scans, including:
circular padding [38], anti-aliasing blurring [39], and azimuth-wise max-pooling.

Circular padding along the azimuth direction has been applied to each convolutional layer of the
VGG architecture. This is done as the polar representation of the assembled Fast Fourier Transform
(FFT) returns has no true image boundary along the azimuth axis. The operation brings equivariance
to rotation to the feature extraction architecture along the boundary region of the radar scan.
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Figure 2. The Frequency-Modulated Continuous Wave (FMCW) radar place recognition (RPR) pipeline,
from Reference [8]. The offline stages of the pipeline involve enforcing and discretising the metric space,
while the online stages involve inference to represent the place the robot currently finds itself within
in terms of the learned knowledge and querying the discretised space, in this case depicted using a
Voronoi-like structure, which encodes the trajectory of the robot.

Downsample operations lead to high-frequency components of the signal, in this case the radar
image, to cause aliasing in the sampled one. For this reason, we apply a Gaussian blur before each
downsampling operation in order to reduce this effect and help the natural equivariance of the
convolutional operations.

Lastly, we applied a max-pooling operation along the azimuth dimension at the end of the feature
extractor. Indeed, so far the architecture has only been equivariant to rotation, meaning that a rotation
of the radar scan would correspond to a rotation on the output features. Applying a max-pooling
operation, which is inherently invariant to the order of the inputs, would indeed bring this invariance
to the architecture itself on the dimension of application, in this case the azimuth one.

Triplet mining: To enforce the metric space, we perform online triplet mining and apply the
triplet loss described in Reference [40].

The triplet loss can be described using the Euclidean distance function

L(a, p, n) = max(|| f (a)− f (p)||2 − || f (a)− f (n)||2 + α, 0), (1)

where a, p, and n are an anchor radar scan, positive example from the same location, and negative
example from a dissimilar location, respectively, and f represents the encoding done by the
Convolutional Neural Network (CNN) to represent these scans as “embeddings”. Examples of
these are shown in Figure 1 (blue, green, and red, respectively). Loop closure labels are taken from a
groundtruth dataset (c.f. Section 5). Batches are constructed such that there is no overlap of the radar
sensing horizon between a candidate radar scan and any anchor scan already sampled for the batch.

Online querying: Embedding distance is calculated as in Equation (1) above. For example,
the embedding distance between a candidate in the map, ci and the query scan, q, is given by

d(q, mi) = || f (q)− f (ci)||2. (2)

In the deployed subsystem, whenever a new radar scan is available, it is encoded in the
multidimensional space by performing inference upon the trained network. As will be discussed
in Section 5.3, a nearest neighbour (NN) search retrieves the n closest neighbours, instead of a ball
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search out to a maximum embedding distance threshold, which has no guarantee on the number of
candidates passed to the downstream pose refinement (c.f. Section 3.2). Therefore, the maximum
number of queried neighbours is a design parameter and is set in Section 6 by taking into consideration
the speed of the pose refinement algorithm (c.f. Section 3.2) which will be executed on pairs of radar
scans, formed by the query scan and each of the retrieved neighbours. In Section 6, we show a range
of recalls at high precision (c.f. Section 5.2) that are available when performing online queries which
are strictly possible with reasonable compute requirements (c.f. Section 5.3).

Training details: Due to memory limitations on our graphical compute hardware, we crop the last
168 range bins and scale the width by a factor of 8 such that the original 400 × 3768 polar radar scans
are input to the network with resolution 400 × 450. When finetuning either the original architecture
or our proposed modified architecture, we initialise internal weights with the publicly available
checkpoint vd16_pitts30k_conv5_3_vlad_preL2_intra_white, corresponding to the best performing
model described in Reference [41], which produces embedding vectors of length 4096. As the azimuth
axis remains unscaled, this does not affect rotational invariance. Our embedding triplet margin is set
to 1.0 and our learning rate schedule applies a linear decay function initialised at 1× 10−4 and settling
to 5× 10−6 at 5000 steps [42]. We terminate learning at 500,000 steps in all cases. We use gradient
clipping to limit the magnitude of the backpropagated gradients to 80 [43]. An L2 vector norm is
applied to regularise the weights with a scale of 1× 10−7. We use two one-dimensional Gaussian blur
kernels with size 7 and standard deviation of 1.

3.2. Pose Refinement

For geometric verification, we rely on the radar pose refinement pipeline described in Reference [2,3],
which we summarise here. This algorithm reflects the understanding that real, correctly identified
landmarks are the same distance apart in any two radar scans.

Landmark extraction: The landmark extraction algorithm accepts power-range spectra as inputs
and returns a set of landmarks, each specified by its range and azimuth. The core idea is to estimate
the signal’s noise statistics and then scale the power value at each range by the probability that it
corresponds to a real detection. This results in two landmark sets, L1 and L2, for the consecutive radar
scans. Examples of these landmark sets are shown in Figure 3, where L1 and L2 are shown as the
orange and blue sets extracted from (consecutive or non-consecutive) radar scans. These were taken
from the train portion of the dataset trajectories discussed later in Section 5.

Motion correction: It is important for implementation purposes to note that the landmarks we
use for localising a query scan to one of the candidate scans in the map are extracted during mapping.
Therefore, we are able to apply a constant velocity model between motion estimates to reposition
landmarks by accounting for motion distortion of an azimuth scan line. This is important considering
the relatively low scan rate of a FMCW radar (4 Hz) as compared to the speed of the vehicle (typically
30 km h−1 to 50 km h−1).

Data association: The pose refinement algorithm achieves robust point correspondences using
high-level information in the radar scan: intuitively, it seeks to find the largest subsets of two
pointclouds that share a similar correspondence between pairs of landmarks. First, for every point in
the first pointcloud, a potential point match in the second pointcloud is suggested based on a point
descriptor that captures the point’s distance and angular information. This results in a set of candidate
landmark pairs B of size W. In Figure 3, the set B would be comprised of pairs of landmarks from the
orange and blue landmark sets, where W would be smaller than or equal to the smaller of L1 or L2.
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(a) (b)

Figure 3. Example landmark sets after detection on radar scans as described in Section 3.2 where
in Figure 3a |L1| = 1029 (orange) and |L2| = 1074 (blue). In (a), the orange landmark set is highly
compatible with the blue landmark set. This is because the the scans underlying these sets are taken
from very proximal locations. This pair of sets corresponds to the (“bright”) compatibility matrix
illustrated in Figure 4b. In contrast, (b) shows the same landmark set (orange) alongside a highly
incompatible landmark set from a farflung location (blue). This example corresponds to the (“dark”)
compatibility matrix illustrated in Figure 4c.

Spectral decomposition: Non-negative compatibility scores for each pair of these proposed
matches are computed and assigned to the elements of a compatibility matrix, C of size W×W, in the
form of:

Ci,j = Cj,i =
1

1 + |di − dj|
∈ (0, 1], (3)

where di and dj are the distances between a candidate pair i and j. Examples of these compatibility
matrices are shown in Figure 4. We state this here to avoid confusion between the trajectory similarity
matrices visualised later (e.g., the groundtruth SE(2) or embedding distance matrices discussed
in Sections 5 and 6).

The vector m ∈ {0, 1}W is a solution of the data association problem, where mi = 1 for a landmark
pair match B{i} that is considered or mi = 0 otherwise. The optimal solution, i.e., the solution that
maximises the overall compatibility, can be computed as:

m∗ = argmaxm∈{0,1}W mTCm. (4)

As m is discrete, the above maximisation is computationally difficult. So, in line with
Reference [44], we relax this constraint to find the continuously-valued u∗:

u∗ = argmaxu∈[0,1]W uTCu (5)

In short, the optimal set of matches maximises the overall compatibility; thus, we use the
normalised principal eigenvector of the compatibility matrix. We then apply Singular-Value
Decomposition (SVD) to retrieve the registration transformation between the two scans [45].
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(a) (b) (c)

Figure 4. Examples of pairwise compatibility matrices, C, which as described in more detail
in Section 3.2 are used to solve for the SE(2) motion of the sensor. (a) A trivial example arising
from the same radar scan passed to the pose refinement module. (b) An example using two radar
scans in close proximity but with some offset. (c) An example where two radar scans are taken
from distant locations in the world. From these, it is clear that the “brightness” of the (visualised)
compatibility matrix can be used as a quality-score measure for the metric localisation solution as
described in Section 4. Importantly, the dimensions of these matrices are determined by the number
of matching landmarks between the two input radar scans (after data association). Examples of these
landmark sets are shown in Figure 3, where in Figure 4b C is of shape 1029 × 1029 corresponding to
W = 1029 of the |L1| = 1029 orange and W = 1250 of the |L2| = 1074 blue landmarks in Figure 3a.

4. Hierarchical Radar Localisation

Figure 5 provides an illustration of the offline and online stages of the proposed system from a
perspective of nodes in an experience map (c.f. Section 4.1 below). Both systems described in Section 3
are used in both stages (mapping and localisation), since they are essential in converting the live data
flow into the formats used for comparison. The interaction of these two submodules is made more
explicit in Figure 6.
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(b) Localisation procedure.

Figure 5. The system is composed of two main phases: mapping (a) and localising (b). The mapping
process entails a two-fold discretisation: one made in a topometric space through an experience map
and one made in an embedding space through a kD-tree procedure for fast lookups. Each radar scan in
the live data is used to estimate the robot’s motion during both mapping and localisation, but only
a portion of them is actually used for localisation. The scans are chosen to be retained through a
decimation process, either based on traversed space or time delay.

In the remainder of this section, we will discuss these steps in more detail.

4.1. Mapping

To create a topometric map, our approach is to first decimate the radar scans si ∈ Sm, where Sm is
the incoming, online sensor stream used for the map creation; the result is a decimated set S ′m ⊆ Sm,
S ′m = ∆(Sm), where ∆(·) is the decimation operation. This step is completely optional and performed
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with the only purpose of limiting the map size. We approach this task as a combination of two fixed
thresholds: the first one in space, δm, and the second one in time, τm. We then select a scan si ∈ Sm

iff. D(sj, si) ≥ δm and T(sj, si) ≥ τm—where D(·) or T(·) are the distance operators in space and time,
respectively, and sj ∈ S ′m, sj ≺ si is the last selected radar scan.

The selected locations S ′m and their relative displacements, depicted as nodes and edges,
respectively, are then processed to be embedded in the topometric map. The pose refinement subsystem
is the main odometry source for the proposed experiments—although our method does not lose
generality if we use an external odometry source. To be clear, this odometry source is not used to
propagate localisation candidates in a Montecarlo Localisation (MCL) or particle-filter incremental fashion.
Although we expect that this would bolster performance, this paper is concerned with the integration
of the RPR and pose refinement modules, and we leave this to future work.

In this view, the map is composed of two separate digital representations: a so-called experience
mapM and a structured, multidimensional embedding space E .

Experience map: The experience map addresses the need of the robot to integrate the localisation
system to any further planning pipeline and has the task of containing and make available the necessary
information. This experience map is illustrated as shaded blue in Figure 6. In our case, the nodes in
the experience map will be used down the line for pose refinement. As such, we decided to store both
the pointcloud and the point descriptors that we need for pose refinement, sacrificing memory for
efficiency and speed further ahead.
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RPR network

Figure 6. A block diagram illustrating the interaction of the two main submodules in our system: the
radar place recognition (RPR) submodule described in Section 3.1 and the pose refinement module
described in Section 3.2. A first drive-by of the route, which may be autonomous or piloted manually,
is converted into a map of radar scans and their associated RPR embeddings—vectors of size 4096.
Likewise, incoming (live) query radar scans are encoded by the feature extraction Convolutional Neural
Network (CNN). The query embedding is associated with some subset of the map which is “close” in
embedding space. We have illustrated here one such “closest” map frame. This map candidate and the
query frame are then passed through the pose refinement module—a process which involves landmark
extraction, data association, and rigid-body motion estimation. Importantly, to trade off online and
robustness requirements, the two operating thresholds required must be tuned appropriately, as we
cover in Section 6.

Embedding space: Secondly, we use a representation of the map for fast retrieval of localisation
candidates. To do so, we transform each radar scans into a multidimensional space E by means of
the RPR network. This process is illustrated as the blue networks in Figure 6. A nice property of the
multidimensional space is that the closest two points in terms of arithmetic difference, the closest in
terms of visual similarity. This property lead us to the possibility to structure E into efficient structures
for similarity—i.e., closeness—retrieval. We opted for a kD-tree structure due to the implementation
simplicity and its deterministic nature, but other possible alternatives exist in literature [46].
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4.2. Localisation

The mapping procedure is depicted in Figure 5b. Once the map has been created and the AV
is traversing the environment again, the localisation procedure can take place. It is possible, as in
Reference [47], to perform mapping and localisation in tandem and to create database content as the
map is being used for localisation. We leave this for later work (c.f. Section 10).

For now, let us consider an online radar stream Sl , shown left in Figure 6. As first step, we perform
a decimation operation ∆(·) to filter the incoming data, resulting in the set S ′l . Similarly to the mapping
procedure, we use a distance and a time thresholds δl and τl to limit the computational burden of the
localisation process.

The localisation pipeline is further composed by three stages. First, the embedding space E is
used to retrieve n closest matches in terms of visual similarity to the current radar scan, then each of
them is tested for geometrical similarity and, if positive, the planar displacement between the pair of
scans that best match is computed.

Visual Similarity: In this stage, the topological localisation network is used to retrieve from the
embedding space candidates which are proximal in the multidimensional embedding space to the
current radar scan. As mentioned before, we measure closeness with the euclidean distance || · ||2
and query the balanced kD-tree structure used as map for all the candidates within a certain range
E. This is shown as the embedding distance threshold in Figure 6. E is set to limit the search to the
nodes with high visual similarity to the online radar scan; nevertheless, since the computational power
present on the robot is finite and the map can include many nodes that are visually similar, we can set
a maximum number of nodes to be retrieved, N. N is set to match the temporal performances needed
by the system, i.e., the maximum number of scans that can be processed in a useful time period by the
final stage of the pipeline.

Geometrical Similarity: Once n ≤ N candidates are retrieved from the embedding-space map
(c.f. Online querying in Section 3.1), a verification stage is carried out on each of them. To this end,
we perform a geometric verification on the two pointclouds extracted from the online, query radar
scan and each of the candidates, one at a time. The choice is to perform the geometric verification as
second stage since it is orders of magnitude slower than the visual-similarity search.

Since the method proposed in Reference [2] does not include introspection for assessing the fitness
of the relative pose solution and [5] requires training a model with supervision by an external sensor,
we opt for a radar-only solution that takes advantage of the compatibility matrix C (c.f. Spectral
decomposition in Section 3.2). Since C is computed starting by scan-dependent descriptors, to increase
the speed of the pipeline, it is possible to cache in the map itself the subproducts of the procedure
(cf. Experience map in Section 4.1).

In the design of a quality score s for a pose refinement solution, consider the compatibility matrix
C of Equation (3). Each compatibility score (for a pair of matching landmarks between consecutive
radar scans) is a member of the set (0, 1], where a higher value of compatibility score means a higher
confidence that the pairs do actually match. In this scenario, a perfect compatibility matrix would
contain 1 for every candidate pair (i, j).

In this light, we can design s of a match between two radar scans as the average value of the
compatibility matrix C, i.e.,

s =
∑i,j Ci,j

M2 −M
∀i, j ∈ {1 . . . N} | i 6= j, (6)

where M is the dimension of the squared compatibility matrix C, defined in Equation (3) on page 7.
We subtract the trace of the matrix from the score since it does not contain any information about
the geometrical compatibility of the points between the two scans. The quality score s can then be
compared against a threshold Σ to define if the radar-scan pair is indeed a loop closure. This threshold
is shown as the quality score threshold in Figure 6.
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This quality score can be interpreted as the “brightness” of the compatibility matrix visualisations
shown in Figure 4. The corresponding thresholded quantity in the “ScanContext” hierarchy of
Reference [11,35] is computed by finding the most likely rotational alignment between radar scans
using cosine-similarities. In contrast to rotation alignment alone, our method exploits a metric on
the full 3DoF relative pose of the scans, which is itself a byproduct that “ScanContext” does not
provide. Additionally, the “ScanContext” method relies directly on radar power returns, which are
prone to sensor artefacts (e.g., multipath reflections), while our measure of quality is computed from
the compatibility of landmarks which are themselves detected in a manner which is designed to be
robust to these effects (c.f. Section 3.2).

Pose Computation: Lastly, once one or more candidates are acknowledged as loop closure—by
comparing the value of s against the threshold Σ—the final step of the pose-computation pipeline can
be carried out to estimate the displacement between the query scan and the candidates—resulting in
the pose solution R, t shown top-right in Figure 6.

5. Experimental Design

This section describes the experimental setup which is the basis for the results to follow
in Sections 6 and 7. Specifically, as this work deals with the novel integration (c.f. Section 4) of two
(c.f. Section 3) seminal radar techniques, Section 6 spends some time describing the hyperparameter
tuning suitable for effective use of the sensor for the application proposed. To this end, we lay out
localisation performance and processing requirements in Sections 5.2 and 5.3. Section 5.1 begins by
describing the dataset required for this optimisation, as well as the training and testing of the system
as in Section 7.

5.1. Dataset

The experiments are performed using data collected from the Oxford RobotCar platform [48].
The vehicle, as described in the recently released Oxford Radar RobotCar Dataset [49], is fitted with a
CTS350-X Navtech FMCW scanning radar.

Groundtruth Location: The groundtruth database is curated offline to capture the sets of nodes
that are at a maximum distance (15 m, see Section 5.2 below for more detail) from a query frame. This is
peformed using the same data structures and operations as the discussion around Equation (2) which
deals with online querying of the RPR embedding space—but this time in a metric space measured by
an inertial system—as the initial phase of our proposed hierarchical localisation system. This has the
added benefit of giving us ground truth rigid-body poses, as well as the topological matches, required
to train our CNN. Through this, we create a graph-structured database that yields triplets of nodes for
training the representation described in Reference [8] and summarised in Section 3.1.

To this end, we adjust the accompanying groundtruth odometry described in Reference [49] in
order to build a database of groundtruth locations. We manually selected a moment during which
the vehicle was stationary at a common point and trimmed each ground trace accordingly. We also
aligned the ground traces by introducing a modest rotational offset.

Trajectory Demarcation: As shown in Figure 7a, each approximately 9 km trajectory in the Oxford
city centre was divided into three distinct portions: train, valid, and test.

The network is trained with groundtruth topological matches between two reserved trajectories
in the train split – 2019-01-10-11-46-21-radar-oxford-10k and 2019-01-10-14-50-05-radar-oxford-10k

from ori.ox.ac.uk/datasets/radar-robotcar-dataset/datasets.
The valid split selected was quite simple, consisting of two straight periods of driving separated

by a right turn. This split is simply used to monitor the losses as the RPR module is learning.
The test split (c.f. Figure 7b), upon which the results presented in Sections 6 to 8 are based,

was specifically selected to feature vehicle traversals over portions of the route in the opposite direction;
data from this split are not seen by the network during training. To be clear, no part of this test

ori.ox.ac.uk/datasets/radar-robotcar-dataset/datasets
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split—including the portion where streets, lanes, and alleys are driven in reverse—has any overlap
whatsoever with the train or valid split. This is emphasised in Figure 7a.

(a) (b) (c)

Figure 7. (a) train (blue), valid (black), and test (magenta) splits of the full Oxford Radar RobotCar Dataset.
Red portions serve as padding between splits to account for the long range of the radar. (b) Example
of test split for one of the traversals. A and B are straight portions which look very similar, while C
is a very uniform-looking roundabout; these properties are represented in the embedding distance
(c.f. Figure 8). Moreover, B is driven twice, in the two opposite directions. The true positive boundary
(c.f. Section 5.2) is shown green in (c). This 25 m threshold is deemed suitable even in tight roundabouts,
such as this, where a larger boundary (blue) would make the location of the vehicle in this tight turn
ambiguous.

Portion B of the test set (as shown in Figure 7b) is traversed twice, in opposite directions,
as depicted by the off-diagonal positives in Figure 8a. The localisation pipeline can detect the backward
traversals, as can be noticed by the low values in embedding distance—Figure 8b—and high quality
score—Figure 8c. Furthermore, it is interesting to notice the squared-looking blue portions of the
embedding distance: these are portions in the map which are not geometrically contiguous, but are
similar nevertheless in embedding space; in particular they are the straight portions of the test set—A
and B in Figure 7b—and different sections of the roundabout—C. We additionally observe that the
same portions of the map are not as close in quality score, meaning that, even if they look alike,
the geometries of the scans do not match.

Foray Reservation: We use in total 30 forays from the Oxford Radar RobotCar Dataset:

• 2 forays for training,
• 2 forays for hyperparameter tuning,
• 1 foray for mapping, and
• 25 forays for localisation.

The results focus on a TR scenario, in which all remaining trajectories in the dataset are localised
against a map built from the test set of the first trajectory – 2019-01-10-12-32-52-radar-oxford-10k

from ori.ox.ac.uk/datasets/radar-robotcar-dataset/datasets – that we did not use for learning or
hyperparameter tuning, totalling 25 trajectory pairs (and 26 km of driving) with the same map but a
different localisation run.

5.2. Localisation Performance Requirements

In the groundtruth SE(2) database, all locations within a 25 m radius of a groundtruth location are
considered true positives, whereas those outside are considered true negatives. We consider—due to
the long radar sensing horizon on the order of 165 m—that putative matches out to 25 m are well within

ori.ox.ac.uk/datasets/radar-robotcar-dataset/datasets
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the capabilities of a downstream radar-only relative pose estimation system as described in Section 3.2.
This is further illustrated and discussed in Figure 7c.

As the localisation solution is designed to be used in a software autonomy stack, we consider that
false positives are potentially disastrous for motion control and pay heed to recall at 100% precision as
the optimal point on the precision-recall curves which follow.

For positional errors, we attribute the bias in error (i.e.,10 m) to the manual alignment
(c.f. Groundtruth Location in Section 5.1) and focus our discussion instead on either the stability
or variance of these errors.

5.3. Online Requirements

While δm and τm (c.f. the mapping phase of our proposed system in Section 4.1) do not influence
the online performances of the pipeline—if not in a larger or smaller search pool for candidates—the
maximim number of topological candidates N and the localisation-stream decimation parameters δl
and τl (c.f. the localisation phase of our proposed system in Section 4.2) are crucial design parameters.
This is due to the desire that the pipeline must have a processing rate which is of the same order of
magnitude of the live radar stream. Indeed, although the intermediate results needed by the procedure
are calculated during the odometry estimation—e.g., pointclouds and point descriptors—the pose
refinement pipeline works at about 7 Hz, while the Navtech radar sensor in use has a sampling
frequency of 4 Hz.

We dictate as an online requirement that localisation solutions should be reported with δl no
more than 15 m of linear vehicle motion. This distance serves as it is smaller than the true positive
boundary (c.f. Section 5.2). Thus, given a urban vehicle speed limit of 50 km h−1, the resulting
localisation rate is 0.93 Hz (or a delay of 1.08 s—which we approximate to τl = 1 s—between reported
localisation solutions). Under these assumptions, we feed the pose refinement subsystem with the best
N = 5 candidates from the topological localisation subsystem to address for the kD-tree lookup time.
For simplicity, we set δm = δl and τm = τl without loss of generality.

Once the five candidates have been geometrically tested, only the candidate which achieved the
highest quality score will be used for localisation.
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Figure 8. Graphical representation of the SE(2) distance with 25 m threshold applied (c.f. Section 5.2)
to form a binary mask used as ground-truth (a), embedding distance (b) and quality score (c) for each
pair of radar scans in two separate trials. For each matrix visualised here, the vertical and horizontal
axes are in units measuring the number of frames in the query and reference trajectories, respectively.
Note that in (b) frames which are proximal in embedding space are shaded dark, while the inverse is
true for (c), where frames with high quality-scores are shaded lightly. It is especially important to note
that the quality-score matrix in (c) is not computed in its entirety during online operation (prohibitively
computationally expensive) but is shown in full here for illustrative purposes.
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6. Hyperparameter Tuning

Here, we reserve two experiences—2019-01-10-14-02-34-radar-oxford-10k and
2019-01-10-15-19-41-radar-oxford-10k from ori.ox.ac.uk/datasets/radar-robotcar-dataset/datasets –
for tuning the hyperparameters needed for the system to operate, namely the maximum embedding
distance threshold E and minimum match quality score Σ to accept as a verified match.

Figure 9 shows the resultant families of precision and recall (PR) curves.
When not including verification by the pose refinement module (c.f. Section 3.2), these PR curves

give us a sense for how good the embedding metric space illustrated in Figure 2 learned by the radar
place recognition CNN (c.f. Section 3.1) is.

Figure 9a represents the curves where all the queried candidates—with embedding distance lower
than the set threshold E—are tested for their quality score; Figure 9b, instead, assumes only the five
candidates with the lowest embedding distance—also lower than E—are tested for scan-matching.
We see no relevant difference between the two families, except that the use of only five candidates
leads to a lower maximum recall, since many of the candidates are discarded.

Based on a design principle in which we require 100% precision (c.f. Section 5.2) and that online
requirements limit the number of scan-match calls to 5 (c.f. Section 5.3) we chose the minimum
embedding distance and maximum quality score that lead to the operating point—E = 1.0 and
Σ = 0.421, respectively, which are used in the following experiments. With these parameter values,
the improvement in recall at 100% precision with geometric verification is on the order of 15%.

So far, we evaluated each candidate singularly, i.e., in the count of positive and negative matches,
each node in the localised and mapped trajectory is taken in consideration as separate entity. In a real
localisation task, though, we consider a successful localisation if a queried frame from the localisation
trajectory has a match in the map. For this reason, Figure 9c shows the PR curves obtained by using
only the best quality-score match between the 5 selected one. we can see how our choices for E and Σ
in this context are sub-optimal for the task, since it is possible to achieve higher recall either by rising E
or lowering Σ. In short, we decided not to rise E or lower Σ as a further layer of robustness so that all
the 5 localisation candidates would be actual loop closures.

We compare our system (from now on referred as kRadar+SM) against two different baselines. First,
we use topological matches alone with the same E threshold (referred as kRadar@1); this comparison
will expose the benefit of the pose refinement pipeline as employed in the second stage of the pipeline.
Moreover, for more fair comparison, we use the best match in embedding distance with the highest
threshold E which leads to 100% precision. The analysis in Figure 9c leads to a value of E = 0.36;
therefore we refer to this baseline as kRadar@0.36. This comparison will show how the usage of five
candidates will greatly increase the recall of the system. Indeed, while the precision remains at 100%,
the recall drops from about 75% to about 10%—as in Figure 9c.

ori.ox.ac.uk/datasets/radar-robotcar-dataset/datasets
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(a) (b)

(c)

Figure 9. Families of precision and recall (PR) curves for hyperparameters tuning as described
in Section 6. These curves represent three different strategies for querying first the visual similarity and
then the geometric similarity as measured by Euclidean distance and quality score in the embedding
space and pose refinement stages of our pipeline. In (a), the legend values show embedding distance
thresholds, E, below which all candidates for a match to the query frame are measured for their quality
score by pose refinement. The parameter which is varied over each curve is the quality score threshold
to take as a “correct” match, Σ, from the most (top) to the least (bottom) strict value. “Original”
refers to the results reported in Reference [8] with no pose refinement (only RPR), i.e., as Σ = 0.
However, as described in Section 5.3, for online operation, we require that only 5 candidates be passed
downstream to the pose refinement submodule; therefore, in (b), the 5 closest candidates (also within
an embedding distance threshold of E) are used to compute quality scores which must be higher than Σ
to be considered a match. We select the lowest embedding distance that achieves highest recall at 100%
precision, i.e., E = 1.0, at a quality score threshold of Σ = 0.421; this is based on tuning the system
to the “knee” of the PR curve, where we achieve 100% precision. While before we were considering
each candidate singularly, in (c) we show the performances of the system considering a successful
localisation if the best single candidate—i.e., with the best quality score match from amongst the 5
candidates closest within embedding space—is a positive match. Here, we can achieve much higher
recall at 100% precision, but at the cost of sacrificing correctness for all 5 candidates—which may be
useful in a multi-particle filtering localisation scheme, for example.

7. Localisation Performance

In this final results section, we explore an RTR scenario by showing aggregate and metric
localisation performance when localising a single experience over a map (c.f. Section 7.1) and then
localising the remaining experiences in the month-long dataset against that same map (c.f. Section 7.2).
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7.1. Localisation of a Single Experience

In this experiment, we evaluate the accuracy of the reported poses over a repeat pass on the one
traversal reserved as map – 2019-01-10-12-32-52-radar-oxford-10k from ori.ox.ac.uk/datasets/radar-
robotcar-dataset/datasets.

In this experiment, our system achieves 100% precision and 19.7% recall, being able to correct the
faulty cases of kRadar@1 which achieves 90% precision and 97.3% recall. From Figure 10a, which shows
the qualitative results of projecting the localisation results onto the ground-truth map trajectory, one can
notice how most of the errors includes a mismatch between portions A and B, or within C (c.f. Figure 7b).
Please note that the trajectories in Figure 10a are offset for visualisation purposes only and that these
offsets are not applied when computing the metric errors reported in Figure 10b, statistics of metric
errors reported in Figure 11, or precision-recall performance reported in Figure 9.

Even if tuned for 100% precision, kRadar@0.36 does not achieve it, remaining at 92.3% precision
and only 19.7% recall. This result shows that topological localisation solutions alone are hardly enough
for a complete system and geometric consistency is an effective way to correct for faulty candidates.

Figure 10b shows the positional deviation of the localisation solutions against the ground-truth
position of the localised traversal. This is a further confirm that geometrical compatibility can lead
to more robust systems, discarding bad matches even if their embedding distance is lower than
the threshold.

(a) (b)

Figure 10. (a) Qualitative view of the localisation process. The tracks have been offset for visualisation
purposes. (b) Positional errors as the localised trajectory one single trial. kRadar@0.36 has been labelled
with crosses due to its low recall. Please notice the logarithmic scale.

7.2. Month-Long Localisation

To better confirm the previous results, in this experiment we investigate the utility of a single
experience to localisation outlook over many repeat passes. Figure 11 shows the statistics of
the positional error as functions of trajectory number—or equivalently, time—using kRadar@0.36
(c.f. Figure 11a), kRadar@1 (c.f. Figure 11b) and our proposed system (c.f. Figure 11c). Here,
these performance metrics remain relatively constant throughout the month. We assert that no such
guarantee is available in camera- or LiDAR-based TR systems (due to appearance change driven by
condition) and attribute any noticeable variation to structural variation and scene dynamics (moving
cars or people). Specifically, consider that the upper bound for the lateral error for the first localised
trajectory (left-most) in Figure 11c is only on the order of 101—minor errors limited to the same street
that the car is truly present on—while, for Figure 11a,b, it is on the order of 102 to 103—grievous errors
on the scale of the extent of the dataset. This severe failure of performance is consistent across dataset
logs, or localised trajectories, in Figure 11b, and not limited to this first experience as in Figure 11a.

ori.ox.ac.uk/datasets/radar-robotcar-dataset/datasets
ori.ox.ac.uk/datasets/radar-robotcar-dataset/datasets
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Figure 11c, our proposed system, maintains (maximum) errors on the order of 101 consistently across
the month-long localisation effort.

As seen also in Figure 12a, in a more compact way, our system exhibits the highest performance
in rejecting incorrect matches, thus limiting the positional error. While also the lower threshold in
kRadar@0.36 increases the ability in rejecting the bad matches, it never reaches the performances of the
complete system. Moreover, Figure 12b,c show how kRadar@0.36 increases precision to the detriment
of recall, while kRadar+SM achieved 100% precision—except a single case with 98.96%—with far less
effect on recall.

(a)

(b)

(c)

Figure 11. Statistics of the positional error as the localised trajectory is varied over the course of a month
and the map is held constant. (a) represents kRadar@0.36 (b) kRadar@1 and (c) kRadar+SM. As described
in Section 5.2, there is a bias in these errors (of approximately 10 m) attributed to the manual alignment
of the groundtruth odometry traces. Despite this, our proposed system is shown in Figure 11c to exhibit
tighter variance over the course of this experiment. Please note the logarithmic scale.

(a) (b) (c)

Figure 12. Statistics for positional error (a), precision (b), and recall (c) for the proposed system
and the two considered baselines. As described in Section 5.2, there is a bias in these errors (of
approximately 10 m) attributed to the manual alignment of the groundtruth odometry traces. Despite
this, our proposed system is shown to exhibit tighter variance over the course of this experiment.
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8. Benchmark Comparison

In this section, we briefly examine how the contribution compares against other solutions within
reach from the broader community.

The solution with the most readily available public implementation is “ScanContext” [35]. This has
been adapted to radar in Reference [11]. However, only a C++ implementation for LiDAR is publicly
available. Therefore, we have used in generating the results presented in this section our own
implementation. Specifically, we use a ring key length of 120 and downsample the radar bins to 40—in
the same way as presented in Reference [11,35]. We show, in Figure 13, a family of pr-curves, each of
which uses a different number of NNs, starting from 5 and going up to 50—with the later being used
to report the results in Reference [11]. These curves are generated for the test portion of the Oxford
Radar RobotCar Dataset, as for the results discussed in Section 6 above.
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Figure 13. A family of pr curves for the method of Reference [11] as run on the dataset collected in
central Oxford.

Considering that the maps (c.f. Section 4.1) for the test portion typically contain 150 keyframes
(spaced out by vehicle motion), the key takeaway from Figure 13 is that, no matter how many NNs
we pass from the place recognition stage to the pose refinement stage of the method presented in
Reference [11], high recalls at high precisions are not achieved in the fashion we show for our proposed
system in Figure 9c. Consider additionally that the method presented in Reference [11] also only
recovers pose up to rotation, rather than the full SE(2) relative pose of the vehicle with respect to the
map as is available in our method.

Please also note that the precision-recall performance reported for the “ScanContext” method as
applied to radar here is worse than that reported in Reference [11]. We attribute this to our definition
of true and false positives and negatives. In Reference [11], a query’s localisation solution is considered
correct if the top retrieved candidate is within a certain distance of the actual location of the query.
In our work, however, all candidates within that certain distance are considered bonafide matches that
must be retrieved.
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9. Conclusions

We have presented an application of recent advances in learning representations for imagery
obtained by radar scan formation for place recognition and seminal work in radar pose estimation to
an autonomy-enabling hierarchical localisation process. We demonstrated the efficacy of the proposed
system on the largest radar-focused urban autonomy dataset collected to date and showed that the
proposed system:

1. can be used to bolster the performance of topological localisation by geometric verification,
2. reports accurate poses in a TR scenario,
3. maintains localisation performance over long time scales, and
4. lends itself well to lifelong navigation techniques for improving localisation.

Specifically, we suggest a range of sensible methods for tuning the system which are suitable for
online operation and achieve over the course of a month of localisation trials against a single static
map high recalls at high precision and much reduced variance in erroneous metric pose estimation.
Depending on the nature of this tuning, we can achieve 100% precision at 85% recall with the single,
best match (see Figure 12b,c). This performance is shown to compare favourably against another
hierarchical radar localisation process, namely “ScanContext”.

While closed-loop motion control experiments were out of the scope of this paper, we expect that
the findings reported here are a strong motivator for exploiting this sensor technology for large-scale
mobile robotic navigation in the future, specifically radar teach-and-repeat modes of autonomy.

10. Future Work

In the future, we plan to retrain, retune, and test the system on the all-weather platform
described in Reference [50] and in off-road scenarios as planned in Reference [51]. We plan to explore
experimental settings which place stress on modern techniques for teach-and-repeat (TR) autonomy
using cameras, LiDARs and radars. However, even though the place recognition stage is largely sensor
agnostic, considering that this work is radar-specific in the pose refinement stage of its hierarchy,
this future experimental programme will revolve around adverse conditions themselves.

We expect that the significance of this work will be persistent and anticipate follow-on
investigation of efficient methods for selecting which experience to trust for localisation in a
multi-experience TR scenario as in Reference [52], as well as predictive systems for characterising
localisation performance in TR envelopes around the taught path as in Reference [53].

Finally, we are interested in the density of experiences in a selective recording of memory
and expect (due to the immunity of radar to weather and illumination) that fewer memories would be
required to represent places than in comparable vision-based systems [47].
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Abbreviations

The following abbreviations are used in this manuscript:

fmcw Frequency-Modulated Continuous-Wave
rtr radar teach-and-repeat
cnn Convolutional Neural Network
vlad Vector of Locally Aggregated Descriptors
dl Deep Learning
wsl Weakly-Supervised Learning
vo Visual Odometry
gps Global Positioning System
ro Radar Odometry
uwb Ultra Wide Band
fft Fast Fourier Transform
slam Simultaneous Localisation and Mapping
mmw Millimetre-Wave
fcnn Fully Convolutional Neural Network
lidar Light Detection and Ranging
nn nearest neighbour
auc Area-under-Curve
fov field-of-view
pr precision and recall
tr teach-and-repeat
svd Singular-Value Decomposition
vtr visual teach-and-repeat
av autonomous vehicle
ebn Experience-based Navigation
vpr visual place recognition
rpr radar place recognition
tdof three degree-of-freedom
mcl Montecarlo Localisation
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