
sensors

Article

SAR Target Recognition via Meta-Learning and
Amortized Variational Inference

Ke Wang 1 and Gong Zhang 2,*
1 School of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics,

Nanjing 211100, China; wangke_81x@163.com
2 Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, Nanjing University of

Aeronautics and Astronautics, Nanjing 211100, China
* Correspondence: gzhang@nuaa.edu.cn; Tel.: +86-1895-190-9291

Received: 7 September 2020; Accepted: 19 October 2020; Published: 21 October 2020
����������
�������

Abstract: The challenge of small data has emerged in synthetic aperture radar automatic target
recognition (SAR-ATR) problems. Most SAR-ATR methods are data-driven and require a lot of training
data that are expensive to collect. To address this challenge, we propose a recognition model that
incorporates meta-learning and amortized variational inference (AVI). Specifically, the model consists
of global parameters and task-specific parameters. The global parameters, trained by meta-learning,
construct a common feature extractor shared between all recognition tasks. The task-specific
parameters, modeled by probability distributions, can adapt to new tasks with a small amount of
training data. To reduce the computation and storage cost, the task-specific parameters are inferred
by AVI implemented with set-to-set functions. Extensive experiments were conducted on a real SAR
dataset to evaluate the effectiveness of the model. The results of the proposed approach compared
with those of the latest SAR-ATR methods show the superior performance of our model, especially
on recognition tasks with limited data.

Keywords: automatic target recognition; meta-learning; amortized variational inference

1. Introduction

Synthetic aperture radar (SAR) is an active remote sensor with all day and night, high-resolution,
and wide-area imaging capabilities. Because of these unique capabilities, SAR is widely used in
geoscience and remote sensing. Today, numerous SAR sensors are operating on spaceborne and
airborne platforms and are imaging ground targets for surveillance and reconnaissance. For efficient
interpretation of SAR image data, SAR automatic target recognition (SAR-ATR) system are being
developed. SAR-ATR aims to detect and recognize targets, such as trucks and armored personnel
carriers, in SAR images. The workflow of an end-to-end SAR-ATR system includes three stages:
detection, low-level classification, and high-level classification [1]. Once an SAR image enters the
system, detectors, such as constant false-alarm rate (CFAR) detectors, locate candidate targets in the
images [2]. The region of interest (ROI), consisting of the true target and background clutter, is extracted
around each candidate target. The clutter is then analyzed and filtered out in the low-level classification.
Finally, the class or even the model of the target is identified in the high-level classification. In this
paper, we focus on the third stage, that is, high-level classification.

Traditional SAR-ATR methods are generally classified into two categories: feature-based and
model-based. Feature-based methods extract discriminative features from SAR images and train
the classifiers with these features. The features can be extracted in the spatial domain, such as
templates, each of which is an average representation of a target at a particular azimuth angle [3].
Feature extraction can also be carried out in the transformation domain, where the images are

Sensors 2020, 20, 5966; doi:10.3390/s20205966 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s20205966
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/20/5966?type=check_update&version=2

Sensors 2020, 20, 5966 2 of 19

transformed into low-dimensional features. There exist various transformations, such as kernel
principal component analysis (KPCA) [4], structure-preserving projection [5], and locality discriminant
projection [6]. Sparse and redundant representation techniques were developed and subsequently
introduced to the field of SAR-ATR. Sun et al. [7] extracted scale-invariant features and pixel amplitudes
from images and then used the joint dynamic sparse representation classification technique to classify
them. Dong et al. combined the monogenic signal with multiple classification methods, such as sparse
representation classification [8], manifold learning [9], and multi-task learning [10].

Unlike feature-based methods, model-based approaches employ computer-aided design (CAD)
modeling and electromagnetic computing to provide physical descriptions of targets. Target characteristics,
which are regions or parameters of scattering centers, are used as references for recognition.
Zhou et al. [11] used wideband measurements to establish the targets’ 3-D global scattering centers.
These scattering centers were projected onto a 2-D imaging plane and were compared to the test
images. In [12,13], researchers first constructed accurate CAD models of targets. The scattering
centers of the targets were generated by running an electromagnetic simulator on the targets’ CAD
models. Ding et al. [14] proposed a region matching metric suitable for 3-D scattering center models.
They represented scattering centers as binary regions and developed a coarse-to-fine region matching
algorithm to measure the distance between two scattering centers.

Both feature-based and model-based methods require experts to manually design features
or models suitable for SAR images. Convolutional neural networks (CNNs) [15] have received
much attention in SAR-ATR due to their capacity to automatically learn hierarchical image features.
CNN generally consists of multiple convolutional layers used for feature extraction and fully connected
(FC) layers used for feature classification. To reduce the number of network parameters, Chen et al. [16]
built an all-convolutional network without FC layers. Wagner [17] replaced the last FC layer in the
network with a support vector machine (SVM), which increased training complexity but boosted
recognition performance. Min et al. [18] used the student-teacher paradigm to compress a deep
CNN into a micro CNN (MCNN) containing only two layers. Speckle noise, caused by the unique
SAR imaging mechanism, degrades the performance of SAR-ATR. To reduce the influence of speckle
noise, Cho et al. [19] proposed a multiple feature-based CNN (MFCNN) that uses max-pooling and
average-pooling in parallel to aggregate features. Kwak et al. [20] added regularization to the training
process of CNN to minimize feature variations caused by speckle noise. The trained CNN extracts
noise-robust features and hence has improved recognition performance.

Although the CNN achieves state-of-the-art recognition performance, it requires collecting and
annotating huge amounts of training data. Collecting SAR data, however, is limited by cost and security
considerations. Data augmentation is a common practice to overcome this limitation. Ding et al. [21]
used augmentation operations, including translation, rotation, and the addition of noise, to generate
synthetic SAR images. Jiang et al. [22] used Gabor filters to extract multi-scale and multi-directional
features of SAR images. These features, which are more diverse than raw images, can be used as
training samples for the CNN. Similarly, Pei et al. [23] trained a CNN with multiview SAR data,
which is a combination of SAR images at different azimuth angles. The CNN extracted multiview
image features and fused them in a parallel network. In addition to data augmentation, researchers
have also utilized external data sources and developed corresponding transfer learning frameworks.
Transfer learning acquires prior information from external sources such as optical data [24] and virtual
SAR data [25]. It then uses this information to help train CNNs that recognize real SAR targets.

Recently, meta-learning methods [26,27] have made significant progress in few-shot image
classification in which each class has few labeled samples available for training. By learning priors from
many training tasks, meta-learning solves new testing tasks using only a few samples. Acquiring these
priors requires the training and testing tasks to share some common structures, such as visual or semantic
features. Tang et al. [28] proposed an inference model based on Siamese networks, which not only
improves the accuracy of few-shot SAR recognition but also reduces the prediction time. Wang et al. [29]
integrated model-agnostic meta-learning (MAML) with domain adaptation to solve cross-domain

Sensors 2020, 20, 5966 3 of 19

and cross-task SAR-ATR problems. In this paper, we solve SAR-ATR tasks with small data in a
meta-learning framework. Simulated SAR data [30] are also introduced to compensate for the lack of
real data. We build a meta-learning model consisting of global parameters and task-specific parameters.
The model is meta-learned using sufficient simulated SAR data. After meta-learning, it retains the
global parameters and uses real SAR data to update task-specific parameters. To reduce the model
uncertainty caused by small training data, the model places probability distributions over task-specific
parameters. These parameters, vast in number, are estimated by amortized variational inference
(AVI) [31] to reduce the computation and storage cost. Most relevant to our method is the work of [32,33],
in which amortized networks (e.g., plain neural networks) were used to approximate task-specific
parameters. By contrast, our model uses variational inference to clarify the errors introduced by
amortized approximation, thereby improving the training objective function. Furthermore, we propose
a novel amortized network implemented with set-to-set functions [34] to boost the performance of AVI.

The contributions of this paper are summarized as follows:
(1) We propose a novel recognition model integrating meta-learning and AVI. The model can

recognize new targets with a small amount of real data.
(2) To reduce the model uncertainty caused by small data, task-specific parameters of the model

are modeled by probability distributions and are inferred by AVI.
(3) The amortized network of AVI is implemented with set-to-set functions, thereby improving

its performance.

2. Methods

2.1. Model Framework

In this paper, SAR-ATR with small data is defined and solved in a probabilistic meta-learning
framework. The task, a random combination of training samples, is the independent training unit

of the model. Assume that we have a task set {τi}
M
i=1 of M tasks, where the ith task τi =

{(
xi j,yi j

)}N

j=1
has N samples, each of which contains an image xi j and its ground-truth label yi j. The samples of

τi are then split into two disjoint parts: a support set τs
i =

{(
xi j,yi j

)}L

j=1
for training and a query set

τ
q
i =

{(
xi j,yi j

)}N

j=L+1
to evaluate training effectiveness.

A probabilistic graph is employed to visually specify how components depend on each other in
the model framework. Figure 1 shows that the framework consists of global parameters θ, task-specific
parameters φi, and samples that include support and query sets. Three principles guide the choice of
model framework. First, we assume that all the tasks share a common structure parameterized by θ,
which assists the model in solving new tasks with few training samples. Second, we employ the point
estimate for θ because it is shared between tasks and its uncertainty decreases as the number of tasks
increases. Third, the task-specific parameters φi are distributionally estimated to deal with the model
uncertainty caused by small training data.

Sensors 2020, 20, 5966 4 of 19

Sensors 2020, 20, x FOR PEER REVIEW 4 of 19

Figure 1. The graphical model for the meta-learning framework. Open circles represent one or a group
of random variables. The arrows indicate probabilistic dependencies between random variables.

To simplify the symbols, the sample sets, 𝑥 |∀𝑗 , 𝑦 |∀𝑗 , 𝑥 |∀𝑗 , and 𝑦 |∀𝑗 are
abbreviated as 𝑥 , 𝑦 , 𝑥 , and 𝑦 , respectively. According to the maximum likelihood criterion, our
goal is to train a model that utilizes the knowledge in 𝑥 , 𝑦 to predict the labels 𝑦 of new images 𝑥 accurately. The log-likelihood ℒ is defined as:

ℒ = 𝑙𝑜𝑔 𝑝 𝑦 |𝑥 , 𝑥 , 𝑦 , 𝜃
= 𝑙𝑜𝑔 𝑝 𝑦 , 𝜙 |𝑥 , 𝑥 , 𝑦 , 𝜃 𝑑𝜙 , (1)

where 𝑀 is the total number of tasks. As shown in Figure 1, 𝑦 is conditionally independent of 𝑥
and 𝑦 , and 𝜙 is conditionally independent of 𝑥 . According to the above dependency
relationships, we factorize the joint distribution in (1) into two terms:

ℒ = 𝑙𝑜𝑔 𝑝 𝑦 |𝑥 , 𝜙 , 𝜃 𝑝(𝜙 |𝑥 , 𝑦 , 𝜃) 𝑑𝜙 , (2)

where 𝑝(𝜙 |𝑥 , 𝑦 , 𝜃), the posterior distribution over 𝜙 , is learned by the support set 𝑥 , 𝑦 .The
predictive distribution 𝑝 𝑦 |𝑥 , 𝜙 , 𝜃 is inferred by query data 𝑥 and learned 𝜙 . Computing (2)
requires integration over all the values of 𝜙 , which is typically intractable for complex or large-scale
models. Therefore, variational inference [35] is introduced to approximate the posterior 𝑝(𝜙 |𝑥 , 𝑦 , 𝜃). This involves a variational distribution 𝑞(𝜙 ; 𝜆), specified by a set of variational
parameters 𝜆 . We rewrite the integral in (2) as expectations and use Jensen’s inequality to obtain its
lower bound ℒ :

ℒ = 𝐸 (;) 𝑙𝑜𝑔 𝑝 𝑦 |𝑥 , 𝜙 , 𝜃 𝑝(𝜙 |𝑥 , 𝑦 , 𝜃)𝑞(𝜙 ; 𝜆)

= 𝐸 (;) 𝑙𝑜𝑔 𝑝 𝑦 |𝑥 , 𝜙 , 𝜃 − 𝐾𝐿 𝑞(𝜙 ; 𝜆)||𝑝(𝜙 |𝑥 , 𝑦 , 𝜃) , (3)

where the first term represents the predictive log-likelihood given a variational distribution 𝑞(𝜙 ; 𝜆) . The second term is the Kullback-Leibler (KL) divergence between 𝑞(𝜙 ; 𝜆) and 𝑝(𝜙 |𝑥 , 𝑦 , 𝜃). Minimizing the KL divergence will bridge the gap between two distributions to
eliminate approximation errors.

During meta-learning, large numbers of tasks are generated by randomly drawing training
samples from the dataset. With the increasing number of tasks, learning variational parameters 𝜆
for each 𝜙 is challenging due to the cost of storage and computing. Therefore, we introduce an AVI

Figure 1. The graphical model for the meta-learning framework. Open circles represent one or a group
of random variables. The arrows indicate probabilistic dependencies between random variables.

To simplify the symbols, the sample sets,
{
xs

i j

∣∣∣∣∀ j
}
,
{

ys
i j

∣∣∣∣∀ j
}
,
{
xq

i j

∣∣∣∣∀ j
}
, and

{
yq

i j

∣∣∣∣∀ j
}

are abbreviated

as xs
i , ys

i , xq
i , and yq

i , respectively. According to the maximum likelihood criterion, our goal is to train

a model that utilizes the knowledge in
{
xs

i , ys
i

}
to predict the labels yq

i of new images xq
i accurately.

The log-likelihood L is defined as:

L = log

 M∏
i=1

p
(
yq

i

∣∣∣xq
i , xs

i , ys
i ,θ

)
=

M∑
i=1

log
[∫

p
(
yq

i ,φi
∣∣∣xq

i , xs
i , ys

i ,θ
)
dφi

]
,

(1)

where M is the total number of tasks. As shown in Figure 1, yq
i is conditionally independent of xs

i and
ys

i , and φi is conditionally independent of xq
i . According to the above dependency relationships, we

factorize the joint distribution in (1) into two terms:

L =
M∑

i=1

log
[∫

p
(
yq

i

∣∣∣xq
i ,φi,θ

)
p
(
φi

∣∣∣xs
i , ys

i ,θ
)
dφi

]
, (2)

where p
(
φi

∣∣∣xs
i , ys

i ,θ
)
, the posterior distribution over φi, is learned by the support set

{
xs

i , ys
i

}
.

The predictive distribution p
(
yq

i

∣∣∣xq
i ,φi,θ

)
is inferred by query data xq

i and learned φi. Computing (2)
requires integration over all the values of φi, which is typically intractable for complex or large-scale
models. Therefore, variational inference [35] is introduced to approximate the posterior p

(
φi

∣∣∣xs
i , ys

i ,θ
)
.

This involves a variational distribution q(φi;λi), specified by a set of variational parameters λi.
We rewrite the integral in (2) as expectations and use Jensen’s inequality to obtain its lower bound LVI:

LVI =
M∑

i=1

Eq(φi;λi)

[
log

[
p
(
yq

i

∣∣∣xq
i ,φi,θ

) p(φi
∣∣∣xs

i ,ys
i ,θ)

q(φi;λi)

]]
=

M∑
i=1

Eq(φi;λi)

[
log

[
p
(
yq

i

∣∣∣xq
i ,φi,θ

)]]
−KL

(
q(φi;λi)

∣∣∣∣∣∣∣∣p(φi
∣∣∣xs

i , ys
i ,θ

))
,

(3)

where the first term represents the predictive log-likelihood given a variational distribution q(φi;λi).
The second term is the Kullback-Leibler (KL) divergence between q(φi;λi) and p

(
φi

∣∣∣xs
i , ys

i ,θ
)
.

Minimizing the KL divergence will bridge the gap between two distributions to eliminate
approximation errors.

During meta-learning, large numbers of tasks are generated by randomly drawing training
samples from the dataset. With the increasing number of tasks, learning variational parameters λi for
each φi is challenging due to the cost of storage and computing. Therefore, we introduce an AVI that

Sensors 2020, 20, 5966 5 of 19

combines an amortized inference network with variational inference. AVI takes a task τi as input and
uses an inference network shared between all tasks to predict φi. Thus, the optimization problem of
(3) turns into:

LVI =
M∑

i=1

Eqϕ(φi |xs
i ,ys

i ,θ)

[
log

[
p
(
yq

i

∣∣∣xq
i ,φi,θ

)]]
−KL

(
qϕ

(
φi

∣∣∣xs
i , ys

i ,θ
)∣∣∣∣∣∣∣∣p(φi

∣∣∣xs
i , ys

i ,θ
))

, (4)

where qϕ
(
φi

∣∣∣, xs
i , ys

i ,θ
)

is the approximation of q(φi;λi), and the inference network is parameterized by
ϕ. After performing AVI, the model only needs to learn and store globally shared parameters (i.e., θ
and ϕ) throughout the meta-learning process, while φi is predicted by globally shared parameters and
training samples. Finally, the model performs the following optimization:

argmin
θ,ϕ

M∑
i=1

− Eqϕ(φi |xs
i ,ys

i ,θ)

[
log

[
p
(
yq

i

∣∣∣xq
i ,φi,θ

)]]
+ α

×KL
(
qϕ

(
φi

∣∣∣xs
i , ys

i ,θ
)∣∣∣∣∣∣∣∣p(φi

∣∣∣xs
i , ys

i ,θ
))

,

(5)

where the first term of (5) is the cross-entropy loss of the query set, while the KL term can be viewed
as a training regularization step. Due to the varying range of values for the two terms, the weight
coefficient α between them needs to be down-weighted. qϕ

(
φi

∣∣∣xs
i , ys

i ,θ
)

is a Gaussian distribution

with mean and covariance determined by data
{
xs

i , ys
i

}
and parameters

{
θ,ϕ

}
. p

(
φi

∣∣∣xs
i , ys

i ,θ
)

is defined

experimentally and also a Gaussian distribution. Its mean is identical to that of qϕ
(
φi

∣∣∣xs
i , ys

i ,θ
)
, but its

covariance is an identity matrix. For the detailed calculation method of KL divergence, one can refer
to [36].

2.2. Model Structure

As shown in Figure 2, the model is composed of three modules: a feature extractor fθ with global
parameters, a classifier fφ with task-specific parameters, and a weight predictor fϕ. Once the images
enter the model, their low-dimensional features are extracted by fθ. The weight predictor fϕ then
uses support set features fθ(τs) to predict the weights of fφ. Finally, the predictive distribution

p
(
yq

i

∣∣∣xq
i ,φi,θ

)
is produced by fφ using query set features fθ(τq).

Sensors 2020, 20, x FOR PEER REVIEW 5 of 19

that combines an amortized inference network with variational inference. AVI takes a task 𝜏 as
input and uses an inference network shared between all tasks to predict 𝜙 . Thus, the optimization
problem of (3) turns into:

ℒ = 𝐸 | , , 𝑙𝑜𝑔 𝑝 𝑦 |𝑥 , 𝜙 , 𝜃 − 𝐾𝐿 𝑞 (𝜙 |𝑥 , 𝑦 , 𝜃)||𝑝(𝜙 |𝑥 , 𝑦 , 𝜃) , (4)

where 𝑞 (𝜙 |, 𝑥 , 𝑦 , 𝜃) is the approximation of 𝑞(𝜙 ; 𝜆) , and the inference network is
parameterized by 𝜑. After performing AVI, the model only needs to learn and store globally shared
parameters (i.e., 𝜃 and 𝜑) throughout the meta-learning process, while 𝜙 is predicted by globally
shared parameters and training samples. Finally, the model performs the following optimization:

argmin, −𝐸 | , , 𝑙𝑜𝑔 𝑝 𝑦 |𝑥 , 𝜙 , 𝜃 + 𝛼× 𝐾𝐿 𝑞 (𝜙 |𝑥 , 𝑦 , 𝜃)||𝑝(𝜙 |𝑥 , 𝑦 , 𝜃) , (5)

where the first term of (5) is the cross-entropy loss of the query set, while the KL term can be viewed
as a training regularization step. Due to the varying range of values for the two terms, the weight
coefficient 𝛼 between them needs to be down-weighted. 𝑞 (𝜙 |𝑥 , 𝑦 , 𝜃) is a Gaussian distribution
with mean and covariance determined by data 𝑥 , 𝑦 and parameters 𝜃, 𝜑 . 𝑝(𝜙 |𝑥 , 𝑦 , 𝜃) is
defined experimentally and also a Gaussian distribution. Its mean is identical to that of 𝑞 (𝜙 |𝑥 , 𝑦 , 𝜃), but its covariance is an identity matrix. For the detailed calculation method of KL
divergence, one can refer to [36].

2.2. Model Structure

As shown in Figure 2, the model is composed of three modules: a feature extractor 𝑓 with
global parameters, a classifier 𝑓 with task-specific parameters, and a weight predictor 𝑓 . Once the
images enter the model, their low-dimensional features are extracted by 𝑓 . The weight predictor 𝑓
then uses support set features 𝑓 (𝜏) to predict the weights of 𝑓 . Finally, the predictive
distribution 𝑝 𝑦 |𝑥 , 𝜙 , 𝜃 is produced by 𝑓 using query set features 𝑓 (𝜏).

Figure 2. The overall structure of our model. The model samples a task from the synthetic aperture
radar (SAR) dataset and divides it into a support set and a query set. The feature extractor uses a four-
layer convolutional neural network (CNN) to extract image features. The classifier identifies the
category of image features, and its weight is generated by the weight predictor.

The detailed network configuration of the model is shown in Figure 3. The feature extractor uses
a CNN that contains four convolutional blocks to map images into features. Each convolutional block
sequentially performs convolution (Conv), batch normalization (BN), nonlinear activation, dropout,

Figure 2. The overall structure of our model. The model samples a task from the synthetic aperture
radar (SAR) dataset and divides it into a support set and a query set. The feature extractor uses a
four-layer convolutional neural network (CNN) to extract image features. The classifier identifies the
category of image features, and its weight is generated by the weight predictor.

Sensors 2020, 20, 5966 6 of 19

The detailed network configuration of the model is shown in Figure 3. The feature extractor uses
a CNN that contains four convolutional blocks to map images into features. Each convolutional block
sequentially performs convolution (Conv), batch normalization (BN), nonlinear activation, dropout,
and max-pooling operations on the inputs. BN is essential in the network for accelerating the training
convergence. Furthermore, it can effectively improve training stability, especially when training data
are scarce. The classifier consists of an FC layer and a softmax layer, where C is the number of classes.

Sensors 2020, 20, x FOR PEER REVIEW 6 of 19

and max-pooling operations on the inputs. BN is essential in the network for accelerating the training
convergence. Furthermore, it can effectively improve training stability, especially when training data
are scarce. The classifier consists of an FC layer and a softmax layer, where C is the number of classes.

Figure 3. The network configuration of our model.

Before being sent to the feature extractor, the SAR images are first converted to a logarithmic
scale, and their pixel values are normalized to [−1.0, 1.0]. The size of normalized images is then
cropped to 64 × 64 to reduce the influence of clutter and noise. The first convolutional block convolves
input images by 16 filters with a kernel size of 5 × 5. Its outputs are 16 feature maps of size 32 × 32
due to spatial zero paddings and a 2 × 2 max-pooling. The next three convolutional blocks perform
similar processing on input feature maps. Finally, the feature extractor outputs 64 feature maps of
the size 4 × 4 and flattens them into a 1024-D feature vector. The classifier determines the class to
which the feature vector belongs. These feature vectors are also used to learn the weights of the
classifier. The weight predictor uses set-to-set functions to transform feature vectors, extracts
distribution parameters (e.g., mean and variance), and samples the classifier weights by these
parameters.

2.3. Weight Predictor

Predicting task-specific weights for the classifier is challenging since its training samples per
task are limited. It has been observed that in the last FC layer of a CNN, the weight vector and the
input feature vector are highly similar in structure. Previous works in [32,33] regarded the mean of
image features in one class as a class proxy. They inputted the proxy into amortized networks to
predict classifier weights for this class. This idea is too rigid for cases in which the image features
follow a complex distribution containing multiple cluster centers. Our model uses feature sets instead
of feature means to infer classifier weights. The feature sets are first transformed by set-to-set
functions taking into account both the inter-class and the intra-class information. Next, the model
uses the transformed features to infer the distribution of classifier weights.

Given a feature set 𝑍 of C classes, where 𝑍 represents image features belonging to class 𝑖. The set-to-set transformation function 𝑓(𝑍) is defined as 𝑓(𝑍) = 𝑍 + 𝑔 𝑍 ⊕ max ℎ 𝑍 , (6)

where ⊕ denotes vector concatenation, and 𝑔(∙) and ℎ(∙) are nonlinear mappings. We use
cascaded FC layers with ReLU activation to implement these nonlinear mappings. Figure 4 shows
the transformation process of feature sets. For each 𝑍 , its complement elements 𝑍 , 𝑗 ≠ 𝑖 are first
transformed into some representations ℎ 𝑍 , 𝑗 ≠ 𝑖 by nonlinear mappings. The representations
are aggregated as context data (inter-class information) by a maximum operator. Next, we
concatenate 𝑍 with the context vector and input it to the FC layers to obtain the residual mapping 𝑔(𝑍).

Figure 3. The network configuration of our model.

Before being sent to the feature extractor, the SAR images are first converted to a logarithmic scale,
and their pixel values are normalized to [−1.0, 1.0]. The size of normalized images is then cropped to
64× 64 to reduce the influence of clutter and noise. The first convolutional block convolves input images
by 16 filters with a kernel size of 5 × 5. Its outputs are 16 feature maps of size 32 × 32 due to spatial zero
paddings and a 2 × 2 max-pooling. The next three convolutional blocks perform similar processing
on input feature maps. Finally, the feature extractor outputs 64 feature maps of the size 4 × 4 and
flattens them into a 1024-D feature vector. The classifier determines the class to which the feature vector
belongs. These feature vectors are also used to learn the weights of the classifier. The weight predictor
uses set-to-set functions to transform feature vectors, extracts distribution parameters (e.g., mean and
variance), and samples the classifier weights by these parameters.

2.3. Weight Predictor

Predicting task-specific weights for the classifier is challenging since its training samples per task
are limited. It has been observed that in the last FC layer of a CNN, the weight vector and the input
feature vector are highly similar in structure. Previous works in [32,33] regarded the mean of image
features in one class as a class proxy. They inputted the proxy into amortized networks to predict
classifier weights for this class. This idea is too rigid for cases in which the image features follow a
complex distribution containing multiple cluster centers. Our model uses feature sets instead of feature
means to infer classifier weights. The feature sets are first transformed by set-to-set functions taking
into account both the inter-class and the intra-class information. Next, the model uses the transformed
features to infer the distribution of classifier weights.

Given a feature set {Zi}
C
i=1 of C classes, where Zi represents image features belonging to class i.

The set-to-set transformation function f (Zi) is defined as

f (Zi) = Zi + g
(
Zi ⊕max

j,i
h
(
Z j

))
, (6)

where ⊕ denotes vector concatenation, and g(·) and h(·) are nonlinear mappings. We use cascaded FC
layers with ReLU activation to implement these nonlinear mappings. Figure 4 shows the transformation
process of feature sets. For each Zi, its complement elements

{
Z j, j , i

}
are first transformed into some

representations
{
h
(
Z j

)
, j , i

}
by nonlinear mappings. The representations are aggregated as context

Sensors 2020, 20, 5966 7 of 19

data (inter-class information) by a maximum operator. Next, we concatenate Zi with the context vector
and input it to the FC layers to obtain the residual mapping g(Zi).Sensors 2020, 20, x FOR PEER REVIEW 7 of 19

Figure 4. Illustration of set-to-set transformation. MAX denotes the max-pooling operation, CAT
denotes vector concatenation, and ADD denotes vector addition. 𝑔(𝑍) can also be regarded as a conditioned mapping that considers other classes in the set.

Finally, we add 𝑍 and 𝑔(𝑍) to obtain 𝑓(𝑍). As stated in [34], the maximum operator in Figure 4
can be replaced by a sum operator. However, we experimentally found that the maximum operator
performs better than the sum operator.

To reduce the model uncertainty caused by small data, the classifier weights are random
variables that are inferred by AVI. In practice, the weights are task-specific parameters 𝜙 , where i
is the index of the tasks. We formulate 𝜙 as a stochastic matrix; thus, 𝜙 = 𝑤 , ⋯ , 𝑤 , ⋯ , 𝑤 ∈𝑅 × , where C is the number of classes and D is the dimension of feature vectors. The distribution of 𝑤 is specified as a factorized Gaussian distribution 𝑁 𝑤 |𝜇 , 𝑑𝑖𝑎𝑔 𝜎 , where 𝜇 and 𝑑𝑖𝑎𝑔 𝜎
are the mean vector and diagonal covariance matrix of 𝑤 , respectively. The weight predictor 𝑓
uses set-to-set functions to transform support set features 𝑓 (𝜏), produces parameters 𝜇 and 𝜎
for each 𝑤 , and samples 𝑤 with these parameters. To facilitate the backpropagation of gradients, 𝑓 samples 𝑤 with a local reparameterization trick instead of sampling 𝑤 directly. The sampling
of 𝑤 is defined as follows: 𝑤 ~𝑁 𝑤 |𝜇 , 𝑑𝑖𝑎𝑔 𝜎 ↔ 𝑤 = 𝜇 + 𝜎 ⨀𝜖, 𝜖~𝑁(0, 𝐼) , (7)

where 𝑤 is represented by a linear function of Gaussian variables 𝜖, and ⨀ denotes the element-
wise product.

3. Results and Discussion

3.1. Training Details

The workflow of our model includes three stages: meta-learning, updating, and testing. During
meta-learning, the model learns parameters 𝜃 and 𝜑 using simulated SAR data. In the updating
stage, the model freezes 𝜃 and uses a small amount of real SAR data to update 𝜑. The remaining
real data are used to test the model. To mimic the meta-learning scenario, both real and simulated
data are organized as N-way, K-shot classification tasks. To construct a task with support and query
splits, we randomly chose N classes from the dataset and then collected (K + L) images from each
class. These images were then divided into two disjoint subsets: a support set of size N × K and a
query set of size N × L. We used N = 10, K = 5, and L = 15 in all the tests. Our model was trained by
the ADAM optimizer [37] with a learning rate of 0.001. The regularization term (the KL divergence
of Equation (5)) and dropout operation are only used in the meta-learning stage. The weight
coefficient 𝛼 and the drop rate are set to 0.0001 and 0.5, respectively. All the experiments were
carried out on a computer configured with Intel i5-8400 CPU, GeForce GTX 1080Ti GPU and 16 GB
RAM. The model needed to be trained for 14,000 iterations in the meta-learning stage and 300

Figure 4. Illustration of set-to-set transformation. MAX denotes the max-pooling operation,
CAT denotes vector concatenation, and ADD denotes vector addition.

g(Zi) can also be regarded as a conditioned mapping that considers other classes in the set.
Finally, we add Zi and g(Zi) to obtain f (Zi). As stated in [34], the maximum operator in Figure 4
can be replaced by a sum operator. However, we experimentally found that the maximum operator
performs better than the sum operator.

To reduce the model uncertainty caused by small data, the classifier weights are random variables
that are inferred by AVI. In practice, the weights are task-specific parameters φi, where i is the index of
the tasks. We formulate φi as a stochastic matrix; thus, φi =

[
w1, · · · , w j, · · · , wC

]
∈ RD×C, where C is

the number of classes and D is the dimension of feature vectors. The distribution of w j is specified

as a factorized Gaussian distribution N
(
w j

∣∣∣∣∣µ j, diag
(
σ2

j

))
, where µ j and diag

(
σ2

j

)
are the mean vector

and diagonal covariance matrix of w j, respectively. The weight predictor fϕ uses set-to-set functions
to transform support set features fθ(τs), produces parameters µ j and σ2

j for each w j, and samples
w j with these parameters. To facilitate the backpropagation of gradients, fϕ samples w j with a local
reparameterization trick instead of sampling w j directly. The sampling of w j is defined as follows:

w j ∼ N
(
w j

∣∣∣∣µ j, diag
(
σ2

j

))
↔ w j = µ j + σ j � ε, ε ∼ N(0, I) , (7)

where w j is represented by a linear function of Gaussian variables ε, and � denotes the
element-wise product.

3. Results and Discussion

3.1. Training Details

The workflow of our model includes three stages: meta-learning, updating, and testing. During
meta-learning, the model learns parameters θ and ϕ using simulated SAR data. In the updating stage,
the model freezes θ and uses a small amount of real SAR data to update ϕ. The remaining real data
are used to test the model. To mimic the meta-learning scenario, both real and simulated data are
organized as N-way, K-shot classification tasks. To construct a task with support and query splits,
we randomly chose N classes from the dataset and then collected (K + L) images from each class.
These images were then divided into two disjoint subsets: a support set of size N × K and a query
set of size N × L. We used N = 10, K = 5, and L = 15 in all the tests. Our model was trained by the
ADAM optimizer [37] with a learning rate of 0.001. The regularization term (the KL divergence of
Equation (5)) and dropout operation are only used in the meta-learning stage. The weight coefficient α

Sensors 2020, 20, 5966 8 of 19

and the drop rate are set to 0.0001 and 0.5, respectively. All the experiments were carried out on a
computer configured with Intel i5-8400 CPU, GeForce GTX 1080Ti GPU and 16 GB RAM. The model
needed to be trained for 14,000 iterations in the meta-learning stage and 300 iterations in the updating
phase, and each iteration took 0.19 s. In the testing stage, it took 0.002 s for the model to recognize each
target image.

3.2. Datasets

The model was trained on simulated SAR data and then updated and tested on real SAR data.
The real SAR data were collected by an SAR system operating in X-band (9.6 GHz), HH-polarization,
and spotlight mode, in support of the Moving and Stationary Target Acquisition and Recognition
(MSTAR) project. The target images were imaged over a 360◦ azimuth angle and had a spatial resolution
of 0.3× 0.3 m. A huge number of ground target images with various classes, azimuth angles, depression
angles, and so on, were gathered. Some of these images are publicly available and are widely used
as a benchmark for SAR-ATR testing [38]. Table 1 summarizes the publicly released MSTAR dataset,
including ten classes, each with hundreds of images.

Table 1. Description of the real SAR dataset.

Class Depression Number Depression Number

T72 17◦ 232 15◦ 196
BMP2 17◦ 233 15◦ 196
BTR60 17◦ 256 15◦ 195
BTR70 17◦ 233 15◦ 196

2S1 17◦ 299 15◦ 274
BRDM2 17◦ 298 15◦ 274

T62 17◦ 299 15◦ 273
D7 17◦ 299 15◦ 274

ZSU234 17◦ 299 15◦ 274
ZIL131 17◦ 299 15◦ 274

The simulated dataset was generated and shared by Kusk et al. [30] at the Technical University
of Denmark. The target’s radar cross-section (RCS) was generated by an electromagnetic computing
software that takes the target’s CAD model as input. The RCS was then passed to a postprocessing
tool that models thermal noise, terrain clutter, and SAR focusing, to produce simulated SAR images.
The detailed simulation parameters are listed in Table 2.

Table 2. Simulation parameters.

Parameters Values

Center Frequency 9.6 G Hz
Resolution 0.3 m
Pixel Size 0.2 m
Bandwidth 0.5 G Hz
SAR Focusing Spotlight
Weighting Taylor, −35 db

The simulated dataset includes seven vehicles: bulldozer, bus, car, hummer, motorbike, tank,
and truck. Each vehicle contains two variants built by different CAD models. In our experimental
setup, each variant was viewed as an independent class, thereby establishing a dataset containing
images of fourteen types of targets. The size and resolution of the simulated images are consistent with
those of the real images, but the imaging angles are more diverse. The simulated images were acquired
at azimuth angles from 0◦ to 360◦ at 5◦ intervals and a few depression angles (15◦, 17◦, 25◦, 30◦, 35◦, 40◦,
and 45◦). Table 3 lists the name, the CAD model and the number of images per class in the simulated
dataset. In each class, the number of images is the product of the azimuths and the depressions.

Sensors 2020, 20, 5966 9 of 19

Table 3. Description of the simulated SAR dataset.

Class CAD Model Number

Bulldozer#1 8020 504
Bulldozer#2 13,013 504

Bus#1 30,726 504
Bus#2 55,473 504
Car#1 Toyota 504
Car#2 Peugeot 504

Hummer#1 3663 504
Hummer#2 9657 504

Motorbike#1 3651 504
Motorbike#2 3972 504

Tank#1 65,047 504
Tank#2 86,347 504
Truck#1 2096 504
Truck#2 2107 504

3.3. Reference Methods

To quantitatively evaluate the model, we employed several state-of-the-art recognition methods
as references, which are summarized in Table 4. Among these methods, class-dependent structure
preserving projection (CDSPP) and kernel robust locality discriminant projection (KRLDP) are based
on discriminant projection, kernel sparse representation (KSR) and tri-task joint sparse representation
(TJSR) are based on sparse representation, and the rest are deep learning methods. The experimental
results of CNN, transfer learning (TFL), probabilistic meta-learning (PML), MobileNet, and predicting
parameters from activations (PPA) were obtained from our implementations. Their network structures
are similar to that of our model. The results of other methods in Table 4 are cited directly from
their papers.

Table 4. Reference methods that are studied in this paper.

Abbreviation Full Name Ref.

CNN convolutional neural network [15]
TFL transfer learning [25]
PPA predicting parameters from activations [33]
PML probabilistic meta-learning [32]
KSR kernel sparse representation [9]
TJSR tri-task joint sparse representation [10]

CDSPP class-dependent structure preserving projection [5]
KRLDP kernel robust locality discriminant projection [6]
MCNN micro convolutional neural network [18]

MFCNN multiple feature-based convolutional neural network [19]
A-ConvNet all-convolutional network [16]

TAI-SARNET deep transferred atrous-inception synthetic aperture radar network [39]
MobileNet efficient convolutional neural networks for mobile vision applications [40]

3.4. Results under Standard Operation Conditions

Operation conditions (OCs), the working environment in which SAR sensors acquire images,
have a significant impact on the recognition performance of the SAR-ATR system. In this experiment,
we evaluated the model under standard operation conditions (SOCs), where the training and testing
images were acquired under similar configurations, depression angles, etc. After the meta-learning,
real images with depression angles of 17◦ and 15◦ were used to update and test the model, respectively.
Our model was compared with several reference methods using different amounts of training data.
Note that the term “training data” used in all the experiments refers to real SAR data to facilitate
comparison with reference methods.

Figure 5 shows that the recognition rates of all methods (our model, PML, PPA, TFL, and CNN)
rise rapidly with increasing data, and then saturate when reaching a certain amount of training data.

Sensors 2020, 20, 5966 10 of 19

Our model achieves a recognition rate of more than 95% with only 30% of the data, indicating that it has
excellent data use efficiency. When 10% of the training data are used, the recognition rate of the model is
89.7%, compared with 88.7% for PML, 87.4% for PPA, 80.2% for TFL, and 75.9% for CNN. In recognition
tasks with small data, our model outperforms other methods by large margins. With more data,
the recognition performance of all methods improves, and our model consistently achieves the best
performance. When using 100% training data, the recognition rate for our model is 97.9%, which is
0.3%, 1.5%, 1.8%, and 1.8% better than those of the competitors, PML, PPA, TFL, and CNN, respectively.
CNN performs the worst because it is trained only on the real data. By transferring knowledge from
simulated to real data, the recognition rate of TFL is higher than that of CNN. Methods that use the
meta-learning framework (i.e., our model, PML, and PPA) are superior to TFL, especially when training
data are scarce. By introducing posterior distributions over parameters, our model can deal with the
uncertainty caused by small data and hence perform well in small data scenarios.

Sensors 2020, 20, x FOR PEER REVIEW 10 of 19

Figure 5 shows that the recognition rates of all methods (our model, PML, PPA, TFL, and CNN)
rise rapidly with increasing data, and then saturate when reaching a certain amount of training data.
Our model achieves a recognition rate of more than 95% with only 30% of the data, indicating that it
has excellent data use efficiency. When 10% of the training data are used, the recognition rate of the
model is 89.7%, compared with 88.7% for PML, 87.4% for PPA, 80.2% for TFL, and 75.9% for CNN.
In recognition tasks with small data, our model outperforms other methods by large margins. With
more data, the recognition performance of all methods improves, and our model consistently
achieves the best performance. When using 100% training data, the recognition rate for our model is
97.9%, which is 0.3%, 1.5%, 1.8%, and 1.8% better than those of the competitors, PML, PPA, TFL, and
CNN, respectively. CNN performs the worst because it is trained only on the real data. By
transferring knowledge from simulated to real data, the recognition rate of TFL is higher than that of
CNN. Methods that use the meta-learning framework (i.e., our model, PML, and PPA) are superior
to TFL, especially when training data are scarce. By introducing posterior distributions over
parameters, our model can deal with the uncertainty caused by small data and hence perform well
in small data scenarios.

Figure 5. The recognition rates obtained from different amounts of training data.

The model was also compared with deep transferred atrous-inception synthetic aperture radar
network (TAI-SARNET), TAI-SARNET with transfer learning (TAI-SARNET-TF), and MobileNet.
These methods are lightweight network architectures that can be used for recognition in small-data
scenarios. TAI-SARNET-TF1 transfers prior knowledge from optical data, TAI-SARNET-TF2
transfers prior knowledge from SAR data and TAI-SARNET-TF3 transfers knowledge from mixed
data. Table 5 summarizes the recognition results with small sample sizes. The results of MobileNet
were obtained from our implementation, while the results of TAI-SARNET and TAI-SARNET-TF
were from [39]. Our model performs better than the competitors in small-data scenarios. When the
proportion of training data is 1/2, the recognition rate of our model is 97.0%, which is 3.8%, 2.7%,
0.9%, 3.4%, and 5.5% higher than those of the competitors. When the proportion decreases to 1/32,
our model surpasses the competitors by large margins.

Table 5. Recognition results when using small sample sizes.

Methods
Recognition Rate Using Different Proportions of Training Data

1/32 1/16 1/8 1/4 1/3 1/2
Our model 70.1% 82.2% 89.6% 94.3% 95.7% 97.0%

TAI-SARNET 44.5% 67.0% 76.3% 88.7% 89.4% 93.2%
TAI-SARNET-TF1 56.7% 75.9% 84.9% 91.0% 92.8% 94.3%
TAI-SARNET-TF2 63.5% 80.1% 88.4% 94.1% 95.8% 96.1%
TAI-SARNET-TF3 60.0% 76.8% 82.2% 92.3% 93.3% 93.6%

MobileNet 29.6% 34.7% 45.6% 74.9% 86.2% 91.5%

Figure 5. The recognition rates obtained from different amounts of training data.

The model was also compared with deep transferred atrous-inception synthetic aperture radar
network (TAI-SARNET), TAI-SARNET with transfer learning (TAI-SARNET-TF), and MobileNet.
These methods are lightweight network architectures that can be used for recognition in small-data
scenarios. TAI-SARNET-TF1 transfers prior knowledge from optical data, TAI-SARNET-TF2 transfers
prior knowledge from SAR data and TAI-SARNET-TF3 transfers knowledge from mixed data. Table 5
summarizes the recognition results with small sample sizes. The results of MobileNet were obtained
from our implementation, while the results of TAI-SARNET and TAI-SARNET-TF were from [39].
Our model performs better than the competitors in small-data scenarios. When the proportion of
training data is 1/2, the recognition rate of our model is 97.0%, which is 3.8%, 2.7%, 0.9%, 3.4%, and 5.5%
higher than those of the competitors. When the proportion decreases to 1/32, our model surpasses the
competitors by large margins.

Table 5. Recognition results when using small sample sizes.

Methods
Recognition Rate Using Different Proportions of Training Data

1/32 1/16 1/8 1/4 1/3 1/2

Our model 70.1% 82.2% 89.6% 94.3% 95.7% 97.0%
TAI-SARNET 44.5% 67.0% 76.3% 88.7% 89.4% 93.2%

TAI-SARNET-TF1 56.7% 75.9% 84.9% 91.0% 92.8% 94.3%
TAI-SARNET-TF2 63.5% 80.1% 88.4% 94.1% 95.8% 96.1%
TAI-SARNET-TF3 60.0% 76.8% 82.2% 92.3% 93.3% 93.6%

MobileNet 29.6% 34.7% 45.6% 74.9% 86.2% 91.5%

Sensors 2020, 20, 5966 11 of 19

Finally, we compared the model with several SAR-ATR methods proposed in recent years.
The recognition results in Figure 6 were obtained with 100% training data. The recognition rate
of the model is marginally lower than those of all-convolutional network (A-ConvNet) and micro
convolutional neural network (MCNN), but it is still higher than those of most reference methods.
Although our model focuses on recognition tasks in small-data scenarios, it can realize performance
improvement with more training data and achieves excellent results.

Sensors 2020, 20, x FOR PEER REVIEW 11 of 19

Finally, we compared the model with several SAR-ATR methods proposed in recent years. The
recognition results in Figure 6 were obtained with 100% training data. The recognition rate of the
model is marginally lower than those of all-convolutional network (A-ConvNet) and micro
convolutional neural network (MCNN), but it is still higher than those of most reference methods.
Although our model focuses on recognition tasks in small-data scenarios, it can realize performance
improvement with more training data and achieves excellent results.

Figure 6. Comparison of different methods under the standard operation conditions (SOCs) test.

3.5. Results under Depression Angle Variations

In this test, the depression angles of training and testing images are markedly different, which
is one of the extended operation conditions (EOCs). Figure 7 compares the target images at various
depression angles. When the depression angles are not significantly different (17° versus 30°), the
target shapes are similar, with only slight differences in scattering centers. When the depression
angles differ noticeably (17° versus 45°), the target shape, scattering pattern, and even the speckle
noise of the two images are different. Following the referenced methods, images of three targets (2S1,
BRDM2, and ZSU234) were selected to evaluate the model. As shown in Table 6, the training set
contains 890 images collected at a depression angle of 17°, and the test set contains 1778 images at
depression angles of 30° and 45°.

Figure 7. Illustration of target images at different depression angles. All targets have an azimuth angle
of 45°.

Figure 6. Comparison of different methods under the standard operation conditions (SOCs) test.

3.5. Results under Depression Angle Variations

In this test, the depression angles of training and testing images are markedly different, which is
one of the extended operation conditions (EOCs). Figure 7 compares the target images at various
depression angles. When the depression angles are not significantly different (17◦ versus 30◦), the target
shapes are similar, with only slight differences in scattering centers. When the depression angles differ
noticeably (17◦ versus 45◦), the target shape, scattering pattern, and even the speckle noise of the
two images are different. Following the referenced methods, images of three targets (2S1, BRDM2,
and ZSU234) were selected to evaluate the model. As shown in Table 6, the training set contains 890
images collected at a depression angle of 17◦, and the test set contains 1778 images at depression angles
of 30◦ and 45◦.

Sensors 2020, 20, x FOR PEER REVIEW 11 of 19

Finally, we compared the model with several SAR-ATR methods proposed in recent years. The
recognition results in Figure 6 were obtained with 100% training data. The recognition rate of the
model is marginally lower than those of all-convolutional network (A-ConvNet) and micro
convolutional neural network (MCNN), but it is still higher than those of most reference methods.
Although our model focuses on recognition tasks in small-data scenarios, it can realize performance
improvement with more training data and achieves excellent results.

Figure 6. Comparison of different methods under the standard operation conditions (SOCs) test.

3.5. Results under Depression Angle Variations

In this test, the depression angles of training and testing images are markedly different, which
is one of the extended operation conditions (EOCs). Figure 7 compares the target images at various
depression angles. When the depression angles are not significantly different (17° versus 30°), the
target shapes are similar, with only slight differences in scattering centers. When the depression
angles differ noticeably (17° versus 45°), the target shape, scattering pattern, and even the speckle
noise of the two images are different. Following the referenced methods, images of three targets (2S1,
BRDM2, and ZSU234) were selected to evaluate the model. As shown in Table 6, the training set
contains 890 images collected at a depression angle of 17°, and the test set contains 1778 images at
depression angles of 30° and 45°.

Figure 7. Illustration of target images at different depression angles. All targets have an azimuth angle
of 45°.

Figure 7. Illustration of target images at different depression angles. All targets have an azimuth angle of 45◦.

Sensors 2020, 20, 5966 12 of 19

Table 6. Dataset for the depression angle test.

Class Training (17◦) Test (30◦) Test (45◦)

2S1 299 298 299
BRDM2 288 287 288
ZSU234 303 303 303

We compared the recognition rates of five methods at a depression angle of 30◦, where training
and testing images are slightly different. Figure 8 plots the recognition rates under different proportions
of training data. When 10% of the training data is used, the recognition rates of the model, PML, PPA,
TFL, and CNN are 92.9%, 92.1%, 90.4%, 89.0%, and 87.9%, respectively. Using the complete training
data, the recognition rates of the five methods increase to 96.5%, 96.0%, 95.7%, 95.7%, and 95.5%,
respectively. The recognition rates increase with the amount of training data, and our model is always
better than the four competitors.

Sensors 2020, 20, x FOR PEER REVIEW 12 of 19

Table 6. Dataset for the depression angle test.

Class Training (𝟏𝟕°) Test (𝟑𝟎°) Test (𝟒𝟓°)
2S1 299 298 299

BRDM2 288 287 288
ZSU234 303 303 303

We compared the recognition rates of five methods at a depression angle of 30°, where training
and testing images are slightly different. Figure 8 plots the recognition rates under different
proportions of training data. When 10% of the training data is used, the recognition rates of the model,
PML, PPA, TFL, and CNN are 92.9%, 92.1%, 90.4%, 89.0%, and 87.9%, respectively. Using the
complete training data, the recognition rates of the five methods increase to 96.5%, 96.0%, 95.7%,
95.7%, and 95.5%, respectively. The recognition rates increase with the amount of training data, and
our model is always better than the four competitors.

Figure 8. The recognition rates of different methods at a depression angle of 30°.

As shown in Figure 9, at a depression angle of 45°, the recognition performance of all methods
deteriorates dramatically. When the proportion of training data is 10%, the recognition rates of our
model, PML, PPA, TFL, and CNN are 78.7%, 78.0%, 76.4%, 52.5%, and 56.8%, respectively. When the
proportion increases to 100%, the recognition rates of the five methods increase to 82.1%, 79.3%,
78.6%, 55.6%, and 62.2%, respectively. A drastic change in the depression angle significantly modifies
the target’s appearance and hence leads to a huge difference between training and testing images.
This difference makes the recognition methods gain little from the training data, thereby degrading
their recognition performance. Despite using simulated SAR data, TFL performs worse than CNN
trained only by the real data. One possible explanation is that the method of fine-tuning network
parameters, which is used by TFL, is not suitable for this scenario.

Finally, using the complete dataset, we compared the model with several reference SAR-ATR
methods, and their recognition rates are plotted in Figure 10. Note that KRLDP, MCNN, and A-
ConvNet only provide recognition results at a depression angle of 30°. When the depression angle of
the test images (30°) is close to that of the training images (17°), all of the recognition rates are
maintained at a high level of more than 90%. Our model is superior to all reference methods except
KRLDP. When the testing depression angle increases to 45°, all of the recognition rates decrease
sharply. Our model obtains a recognition rate of 82.1%, which surpasses the competing methods by
large margins. This superior performance is due to the meta-learning and simulated data used in the
model. Unlike reference methods only trained by real images with scarce depression angles, our
model is meta-trained by a large number of simulated images with multiple depression angles. The
learned angle-invariant global parameters make our model remain relatively robust under
depression variations.

Figure 8. The recognition rates of different methods at a depression angle of 30◦.

As shown in Figure 9, at a depression angle of 45◦, the recognition performance of all methods
deteriorates dramatically. When the proportion of training data is 10%, the recognition rates of our
model, PML, PPA, TFL, and CNN are 78.7%, 78.0%, 76.4%, 52.5%, and 56.8%, respectively. When the
proportion increases to 100%, the recognition rates of the five methods increase to 82.1%, 79.3%,
78.6%, 55.6%, and 62.2%, respectively. A drastic change in the depression angle significantly modifies
the target’s appearance and hence leads to a huge difference between training and testing images.
This difference makes the recognition methods gain little from the training data, thereby degrading
their recognition performance. Despite using simulated SAR data, TFL performs worse than CNN
trained only by the real data. One possible explanation is that the method of fine-tuning network
parameters, which is used by TFL, is not suitable for this scenario.

Finally, using the complete dataset, we compared the model with several reference SAR-ATR
methods, and their recognition rates are plotted in Figure 10. Note that KRLDP, MCNN, and A-ConvNet
only provide recognition results at a depression angle of 30◦. When the depression angle of the test
images (30◦) is close to that of the training images (17◦), all of the recognition rates are maintained at a
high level of more than 90%. Our model is superior to all reference methods except KRLDP. When the
testing depression angle increases to 45◦, all of the recognition rates decrease sharply. Our model obtains
a recognition rate of 82.1%, which surpasses the competing methods by large margins. This superior
performance is due to the meta-learning and simulated data used in the model. Unlike reference
methods only trained by real images with scarce depression angles, our model is meta-trained by a
large number of simulated images with multiple depression angles. The learned angle-invariant global
parameters make our model remain relatively robust under depression variations.

Sensors 2020, 20, 5966 13 of 19Sensors 2020, 20, x FOR PEER REVIEW 13 of 19

Figure 9. The recognition rates of different methods at a depression angle of 45°.

Figure 10. Comparison of different methods under the depression angle test. KRLDP, MCNN, and A-
ConvNet only provide recognition results for a depression angle of 30°.

3.6. Results under Configuration Variations

In this experiment, the targets used for training and testing have different configurations.
Configuration refers to small appearance modifications, such as adding or removing fuel barrels, side
skirts, and smoke grenade launchers to the targets. On the battlefield, targets of the same type but
with different configurations should be classified into the same class. This is a challenging task
because when two targets are just different in configurations, they have similar scattering
characteristics. As shown in Figure 11, target images in three configurations are generally similar
except for a slight difference in position and intensity of scattering centers. We trained and tested the
model with four ground targets, in which T72 and BMP2 have three configuration variants indicated
by different serial numbers. For T72 and BMP2, targets with the serial numbers 132 and 9563 were
used for training, while the remaining ones, with the serial numbers S7, 812, C21 and 9566, were used
for testing. For T62 and BTR60, their training and testing images have the same configuration, but
with different depression angles. Table 7 summarizes the serial numbers and numbers of images used
in this test.

Figure 9. The recognition rates of different methods at a depression angle of 45◦.

Sensors 2020, 20, x FOR PEER REVIEW 13 of 19

Figure 9. The recognition rates of different methods at a depression angle of 45°.

Figure 10. Comparison of different methods under the depression angle test. KRLDP, MCNN, and A-
ConvNet only provide recognition results for a depression angle of 30°.

3.6. Results under Configuration Variations

In this experiment, the targets used for training and testing have different configurations.
Configuration refers to small appearance modifications, such as adding or removing fuel barrels, side
skirts, and smoke grenade launchers to the targets. On the battlefield, targets of the same type but
with different configurations should be classified into the same class. This is a challenging task
because when two targets are just different in configurations, they have similar scattering
characteristics. As shown in Figure 11, target images in three configurations are generally similar
except for a slight difference in position and intensity of scattering centers. We trained and tested the
model with four ground targets, in which T72 and BMP2 have three configuration variants indicated
by different serial numbers. For T72 and BMP2, targets with the serial numbers 132 and 9563 were
used for training, while the remaining ones, with the serial numbers S7, 812, C21 and 9566, were used
for testing. For T62 and BTR60, their training and testing images have the same configuration, but
with different depression angles. Table 7 summarizes the serial numbers and numbers of images used
in this test.

Figure 10. Comparison of different methods under the depression angle test. KRLDP, MCNN,
and A-ConvNet only provide recognition results for a depression angle of 30◦.

3.6. Results under Configuration Variations

In this experiment, the targets used for training and testing have different configurations.
Configuration refers to small appearance modifications, such as adding or removing fuel barrels, side
skirts, and smoke grenade launchers to the targets. On the battlefield, targets of the same type but with
different configurations should be classified into the same class. This is a challenging task because when
two targets are just different in configurations, they have similar scattering characteristics. As shown
in Figure 11, target images in three configurations are generally similar except for a slight difference
in position and intensity of scattering centers. We trained and tested the model with four ground
targets, in which T72 and BMP2 have three configuration variants indicated by different serial numbers.
For T72 and BMP2, targets with the serial numbers 132 and 9563 were used for training, while the
remaining ones, with the serial numbers S7, 812, C21 and 9566, were used for testing. For T62 and
BTR60, their training and testing images have the same configuration, but with different depression
angles. Table 7 summarizes the serial numbers and numbers of images used in this test.

Sensors 2020, 20, 5966 14 of 19
Sensors 2020, 20, x FOR PEER REVIEW 14 of 19

Figure 11. Illustration of target images in different configurations (titled by their serial numbers). All
targets have an azimuth angle of 90° and a depression angle of 17°.

Table 7. Dataset for the configuration test.

Class
Training(𝟏𝟕°) Test(𝟏𝟓°)

Serial Number Number Serial Number Number
T72 132 232 S7, 812 386
T62 A51 299 A51 273

BMP2 9563 233 C21, 9566 392
BTR60 k10yt7532 256 k10yt7532 195

We compared the model with several reference methods and provide the results in Figure 12.
For a fair comparison, all results were obtained from full training data. The recognition rate of our
model is 93.8%, compared with 93.2% for PML, 92.9% for PPA, 93.9% for KSR, 91.2% for TJSR, and
92.2% for KRLDP. Our model performs better than most methods but slightly worse than KSR.
Experimental results verify that the model can effectively solve recognition problems under
configuration variations.

Figure 12. Comparison of different methods under the configuration test.

3.7. Evaluation of Model Calibration

With a considerable number of network parameters, CNN obtains high predictive accuracy, but
it tends to be overconfident and is poorly calibrated. An overconfident CNN will assign a high
confidence score (i.e., the softmax output at the end of the network) towards the wrong class for
things it has not seen before. This makes it unsuitable for SAR-ATR systems that must not only
provide predictions but also calibrated confidence measures. Only when the model is well-calibrated
can we use the confidence score to judge the reliability of the recognition results. The results with low
confidence can be passed to image analysts or supervisors for further inspection. Bayesian methods

Figure 11. Illustration of target images in different configurations (titled by their serial numbers).
All targets have an azimuth angle of 90◦ and a depression angle of 17◦.

Table 7. Dataset for the configuration test.

Class
Training (17◦) Test (15◦)

Serial Number Number Serial Number Number

T72 132 232 S7, 812 386
T62 A51 299 A51 273

BMP2 9563 233 C21, 9566 392
BTR60 k10yt7532 256 k10yt7532 195

We compared the model with several reference methods and provide the results in Figure 12. For a
fair comparison, all results were obtained from full training data. The recognition rate of our model is
93.8%, compared with 93.2% for PML, 92.9% for PPA, 93.9% for KSR, 91.2% for TJSR, and 92.2% for
KRLDP. Our model performs better than most methods but slightly worse than KSR. Experimental
results verify that the model can effectively solve recognition problems under configuration variations.

Sensors 2020, 20, x FOR PEER REVIEW 14 of 19

Figure 11. Illustration of target images in different configurations (titled by their serial numbers). All
targets have an azimuth angle of 90° and a depression angle of 17°.

Table 7. Dataset for the configuration test.

Class
Training(𝟏𝟕°) Test(𝟏𝟓°)

Serial Number Number Serial Number Number
T72 132 232 S7, 812 386
T62 A51 299 A51 273

BMP2 9563 233 C21, 9566 392
BTR60 k10yt7532 256 k10yt7532 195

We compared the model with several reference methods and provide the results in Figure 12.
For a fair comparison, all results were obtained from full training data. The recognition rate of our
model is 93.8%, compared with 93.2% for PML, 92.9% for PPA, 93.9% for KSR, 91.2% for TJSR, and
92.2% for KRLDP. Our model performs better than most methods but slightly worse than KSR.
Experimental results verify that the model can effectively solve recognition problems under
configuration variations.

Figure 12. Comparison of different methods under the configuration test.

3.7. Evaluation of Model Calibration

With a considerable number of network parameters, CNN obtains high predictive accuracy, but
it tends to be overconfident and is poorly calibrated. An overconfident CNN will assign a high
confidence score (i.e., the softmax output at the end of the network) towards the wrong class for
things it has not seen before. This makes it unsuitable for SAR-ATR systems that must not only
provide predictions but also calibrated confidence measures. Only when the model is well-calibrated
can we use the confidence score to judge the reliability of the recognition results. The results with low
confidence can be passed to image analysts or supervisors for further inspection. Bayesian methods

Figure 12. Comparison of different methods under the configuration test.

3.7. Evaluation of Model Calibration

With a considerable number of network parameters, CNN obtains high predictive accuracy, but it
tends to be overconfident and is poorly calibrated. An overconfident CNN will assign a high confidence
score (i.e., the softmax output at the end of the network) towards the wrong class for things it has not
seen before. This makes it unsuitable for SAR-ATR systems that must not only provide predictions
but also calibrated confidence measures. Only when the model is well-calibrated can we use the
confidence score to judge the reliability of the recognition results. The results with low confidence
can be passed to image analysts or supervisors for further inspection. Bayesian methods [31] offer a

Sensors 2020, 20, 5966 15 of 19

practical framework to address this shortcoming. Our model uses AVI to infer posterior distributions
over task-specific parameters instead of calculating a point estimate of them. The posterior captures
the uncertainty of these parameters and results in a well-calibrated model.

First, we used reliability diagrams [41] to visually measure the model calibration. The reliability
diagrams reflect the relationship between expected predictive accuracy and confidence score. The more
aligned the bars and diagonals in reliability diagrams, the less the calibration error of the model.
Figure 13 shows the reliability diagrams of our model and PPA for different amounts of training data.
In each subplot of Figure 13, the expected accuracies are lower than the confidence scores, indicating
a tendency towards overconfidence in both of the two methods. However, the gaps between the
expected accuracies and confidence scores of our model are less than those of PPA. Our model provides
a more calibrated confidence score by inferring posterior distributions over parameters.

Sensors 2020, 20, x FOR PEER REVIEW 15 of 19

[31] offer a practical framework to address this shortcoming. Our model uses AVI to infer posterior
distributions over task-specific parameters instead of calculating a point estimate of them. The
posterior captures the uncertainty of these parameters and results in a well-calibrated model.

First, we used reliability diagrams [41] to visually measure the model calibration. The reliability
diagrams reflect the relationship between expected predictive accuracy and confidence score. The
more aligned the bars and diagonals in reliability diagrams, the less the calibration error of the model.
Figure 13 shows the reliability diagrams of our model and PPA for different amounts of training data.
In each subplot of Figure 13, the expected accuracies are lower than the confidence scores, indicating
a tendency towards overconfidence in both of the two methods. However, the gaps between the
expected accuracies and confidence scores of our model are less than those of PPA. Our model
provides a more calibrated confidence score by inferring posterior distributions over parameters.

Figure 13. Reliability diagrams of (a) our model with 100% data, (b) our model with 50% data, (c) our
model with 10% data, (d) PPA with 100% data. (e) PPA with 50% data, (f) PPA with 10% data.

Second, we used the expected calibration error (ECE) and the maximum calibration error (MCE)
to quantify the model calibration. ECE and MCE represent the weighted average deviation and the
worst-case deviation between the expected accuracy and confidence score of each bin, respectively.
The lower the calibration error scores, the better the model calibration. Table 8 shows that both MCE
and ECE of the model are always less than those of PPA under three different proportions of training
data. It can also be observed that providing more training data can reduce MCE and ECE, thereby
achieving better model calibration.

Table 8. Comparison of error scores using different amounts of training data.

Error Scores 10% 50% 100%
ECE of Our model 0.0573 0.0117 0.0082

ECE of PPA 0.0812 0.0267 0.0185
MCE of Our model 0.1506 0.0589 0.0435

MCE of PPA 0.2285 0.1375 0.1298

The above experimental results verify that our model performs better than PPA in model
calibration. Our model uses posterior distributions to capture the randomness of task-specific

Figure 13. Reliability diagrams of (a) our model with 100% data, (b) our model with 50% data, (c) our
model with 10% data, (d) PPA with 100% data. (e) PPA with 50% data, (f) PPA with 10% data.

Second, we used the expected calibration error (ECE) and the maximum calibration error (MCE)
to quantify the model calibration. ECE and MCE represent the weighted average deviation and the
worst-case deviation between the expected accuracy and confidence score of each bin, respectively.
The lower the calibration error scores, the better the model calibration. Table 8 shows that both MCE
and ECE of the model are always less than those of PPA under three different proportions of training
data. It can also be observed that providing more training data can reduce MCE and ECE, thereby
achieving better model calibration.

Table 8. Comparison of error scores using different amounts of training data.

Error Scores 10% 50% 100%

ECE of Our model 0.0573 0.0117 0.0082
ECE of PPA 0.0812 0.0267 0.0185

MCE of Our model 0.1506 0.0589 0.0435
MCE of PPA 0.2285 0.1375 0.1298

Sensors 2020, 20, 5966 16 of 19

The above experimental results verify that our model performs better than PPA in model calibration.
Our model uses posterior distributions to capture the randomness of task-specific parameters, while
the PPA treats these parameters as deterministic values. Integrating over the posteriors will lead to a
well-calibrated model.

3.8. Models with Different Network Structures

This section discusses the recognition results of models with different network structures.
We designed eight different networks, summarized in Table 9. AVG represents an average-pooling
operation. The difference between these networks lies in the number of convolutional kernels and
whether the average pool is used at the end of the feature extractor. The last four rows of Table 9 show
the implementation details of the weight predictor.

Table 9. Summary of different network structures.

A B C D E F G H

Conv, 8 × 5 × 5 Conv, 16 × 5 × 5 Conv, 16 × 5 × 5 Conv, 32 × 5 × 5

BN, ReLU, Dropout, Max-pooling

Conv, 16 × 5 × 5 Conv, 32 × 5 × 5 Conv, 32 × 5 × 5 Conv, 64 × 5 × 5

BN, ReLU, Dropout, Max-pooling

Conv, 32 × 3 × 3 Conv, 64 × 3 × 3 Conv, 64 × 3 × 3 Conv, 128 × 3 × 3

BN, ReLU, Dropout, Max-pooling

Conv, 64 × 3 × 3 Conv, 64 × 3 × 3 Conv, 128 × 3 × 3 Conv, 256 × 3 × 3

BN, ReLU, Dropout, Max-pooling

– AVG – AVG – AVG – AVG

Flattening

FC, 1024 FC, 64 FC, 1024 FC, 64 FC, 2048 FC, 128 FC, 4096 FC, 256

FC, 1024 FC, 64 FC, 1024 FC, 64 FC, 2048 FC, 128 FC, 4096 FC, 256

FC, 2048 FC, 128 FC, 2048 FC, 128 FC, 4096 FC, 256 FC, 8192 FC, 512

FC, 1024 FC, 64 FC, 1024 FC, 64 FC, 2048 FC, 128 FC, 4096 FC, 256

Table 10 compares the recognition results of different networks. All of the results were obtained
under the SOC experimental setup. Networks using average pooling (B, D, F, H) are inferior to networks
without average pooling (A, C, E, G), suggesting that average pooling degrades the recognition
performance. The average pooling reduces the dimensions of feature vectors, which determine the
number of hidden units in FC layers. The network capacity of the weight predictor is reduced with the
decrease in the number of hidden units, thus degrading the recognition performance. Compared with
the average-pooling, the number of convolutional kernels has less impact on recognition performance.
Network C, used by our model, achieves the best result.

Table 10. Recognition results of different networks.

Networks A B C D E F G H

Recognition results 97.3% 90.5% 97.9% 92.3% 97.5% 93.7% 97.0% 95.9%

3.9. Recognition Results under Different Amounts of Simulated Data

In this section, we analyze the influence of simulated data on model recognition performance.
We randomly selected 20%, 40%, 60%, 80%, and 100% images from the simulated dataset to construct
small datasets. During meta-learning, these small simulated datasets are used to train the model.
After the meta-learning, we used real SAR images at a depression angle of 17◦ to update the model
and use real images at other depression angles (15◦, 30◦, 45◦) to test it. Table 11 list the test results

Sensors 2020, 20, 5966 17 of 19

with different small simulated datasets. When using 100% simulated data, the recognition rates of the
model at 15◦, 30◦, and 45◦ are 97.9%, 96.5%, and 82.1%, respectively. When the proportion drops to
20%, the recognition rates of the three test angles are reduced by 1.9%, 2.1%, and 5.3%, respectively.
The recognition rate of the model decreases as the amount of simulated data decreases. The smaller the
simulated data set, the smaller the number of azimuth angles, depression angles, and classes contained
in it. The model cannot learn enough prior knowledge from such a small dataset, thus degrading its
recognition performance. In order to further improve the recognition performance of the model, we
should construct a complete simulated dataset. The dataset must contain a variety of target images,
each of which covers complete azimuth and depression angles. Besides, the simulated images should
have various ground clutters and speckle noises.

Table 11. Recognition results with different small simulated datasets.

Test Depression
Angles

Recognition Results

20% 40% 60% 80% 100%

15◦ 96.0% 96.8% 97.2% 97.6% 97.9%
30◦ 94.4% 95.3% 95.9% 96.2% 96.5%
45◦ 76.8% 78.1% 79.5% 81.7% 82.1%

4. Conclusions

Recognition with small data has been a daunting problem in SAR-ATR because collecting sufficient
real SAR data is difficult. In this paper, we propose a model incorporating meta-learning and AVI,
which realizes the knowledge transfer from simulated data to real data. With meta-learning and
simulated SAR data, our model can recognize novel targets using small amounts of real SAR data.
Moreover, inferring the posterior distributions with AVI allows the model to provide calibrated
confidence scores in addition to predictions. The results of extensive experiments verify that our model
obtains state-of-the-art results, especially in the small-data scenario.

Author Contributions: Conceptualization, K.W. and G.Z.; methodology, K.W. and G.Z.; software, K.W.; validation,
K.W.; formal analysis, K.W. and G.Z.; investigation, K.W.; resources, G.Z.; data curation, G.Z.; writing—original
draft preparation, K.W.; writing—review and editing, K.W. and G.Z.; visualization, K.W.; supervision, G.Z.; project
administration, G.Z.; funding acquisition, G.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (grant Nos. 61871218,
61801211, 61701046, 61471191, 61501233, 61671241, 61501228, and 61071163), the Fundamental Research Funds for
the Central University, China (grant nos. NG2020001, 3082017NP2017421, 3082019NC2019002), the Base Research
Foundation (grant no.NS2015040), the Open Research Fund of State Key Laboratory of Space-Ground Integrated
Information Technology (grant no.2018_SGIIT_KFJJ_AI_03), and the Funding of Key Laboratory of Radar Imaging
and Microwave Photonics (Nanjing University of Aeronautics and Astronautics), Ministry of Education.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Eldarymli, K.; Gill, E.W.; Mcguire, P.; Power, D.; Moloney, C. Automatic target recognition in synthetic
aperture radar imagery: A state-of-the-art review. IEEE Access 2016, 4, 6014–6058. [CrossRef]

2. Cui, Y.; Zhou, G.; Yang, J.; Yamaguchi, Y. On the iterative censoring for target detection in SAR image.
IEEE Geosci. Remote Sens. Lett. 2011, 8, 641–645. [CrossRef]

3. Novak, L.M.; Owirka, G.J.; Brower, W.S.; Weaver, A.L. The automatic target-recognition system in SAIP.
Lincoln Lab. J. 1997, 10, 187–201.

4. Muller, K.; Mika, S.; Ratsch, G.; Tsuda, K.; Scholkopf, B. An introduction to kernel-based learning algorithms.
IEEE Trans. Neutral Netw. 2002, 12, 181–201. [CrossRef] [PubMed]

5. Liu, M.; Chen, S.; Wu, J.; Yang, T. Configuration recognition via class-dependent structure preserving
projections with application to targets in SAR images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11,
2134–2146. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2016.2611492
http://dx.doi.org/10.1109/LGRS.2010.2098434
http://dx.doi.org/10.1109/72.914517
http://www.ncbi.nlm.nih.gov/pubmed/18244377
http://dx.doi.org/10.1109/JSTARS.2018.2830103

Sensors 2020, 20, 5966 18 of 19

6. Yu, M.; Zhang, S.; Dong, G.; Zhao, L.; Kuang, G. Target recognition in SAR image based on robust locality
discriminant projection. IET Radar Sonar Navig. 2018, 12, 1285–1293. [CrossRef]

7. Sun, Y.; Du, L.; Wang, Y.; Hu, J. SAR automatic target recognition based on dictionary learning and joint
dynamic sparse representation. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1777–1781. [CrossRef]

8. Dong, G.; Wang, N.; Kuang, G. Sparse representation of monogenic signal: With application to target
recognition in SAR images. IEEE Signal Proc. Lett. 2014, 21, 952–956.

9. Dong, G.; Kuang, G. SAR target recognition via sparse representation of monogenic signal on grassmann
manifolds. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1308–1319. [CrossRef]

10. Dong, G.; Kuang, G.; Wang, N.; Zhao, L.; Lu, J. SAR target recognition via joint sparse representation of
monogenic signal. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3316–3328. [CrossRef]

11. Zhou, J.; Shi, Z.; Cheng, X.; Fu, Q. Automatic target recognition of SAR images based on global scattering
center model. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3713–3729.

12. Diemunsch, J.R.; Wissinger, J. Moving and stationary target acquisition and recognition (MSTAR) model-based
automatic target recognition: Search technology for a robust ATR. Proc. SPIE 1998, 3370, 481–491.

13. Ross, T.D.; Bradley, J.J.; Hudson, L.J.; Connor, M.P.O. SAR ATR: So what’s the problem? An MSTAR
perspective. In Algorithms for Synthetic Aperture Radar Imagery VI; SPIE: Bellingham, WA, USA, 1999;
pp. 662–672.

14. Ding, B.; Wen, G. A region matching approach based on 3-D scattering center model with application to SAR
target recognition. IEEE Sens. J. 2018, 18, 4623–4632. [CrossRef]

15. Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet classification with deep convolutional neural networks.
In Advances in Neural Information Processing Systems; NIPS: Lake Tahoe, CA, USA, 2012; pp. 1097–1105.

16. Chen, S.; Wang, H.; Xu, F.; Jin, Y.Q. Target classification using the deep convolutional networks for SAR
images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4806–4817. [CrossRef]

17. Wagner, S.A. SAR ATR by a combination of convolutional neural network and support vector machines.
IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 2861–2872. [CrossRef]

18. Min, R.; Lan, H.; Cao, Z.G.; Cui, Z. A gradually distilled CNN for SAR target recognition. IEEE Access 2019,
7, 42190–42200. [CrossRef]

19. Cho, J.H.; Park, C.G. Multiple feature aggregation using convolutional neural networks for SAR image-based
automatic target recognition. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1882–1886. [CrossRef]

20. Kwak, Y.; Song, W.J.; Kim, S.E. Speckle-noise-invariant convolutional neural network for SAR target
recognition. IEEE Geosci. Remote Sens. Lett. 2019, 16, 549–553. [CrossRef]

21. Ding, J.; Chen, B.; Liu, H.; Huang, M. Convolutional neural network with data augmentation for SAR target
recognition. IEEE Geosci. Remote Sens. Lett. 2016, 13, 364–368. [CrossRef]

22. Jiang, T.; Cui, Z.; Zhou, Z.; Cao, Z. Data augmentation with Gabor filter in deep convolutional neural
networks for SAR target recognition. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience
and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 689–692.

23. Pei, J.; Huang, Y.; Huo, W.; Yang, J.; Yeo, T.S. SAR automatic target recognition based on multiview deep
learning framework. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2196–2210. [CrossRef]

24. Kang, C.; He, C. SAR image classification based on the multi-layer network and transfer learning of mid-level
representations. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium,
Beijing, China, 10–15 July 2016; pp. 1146–1149.

25. Hansen, D.M.; Kusk, A.; Dall, J.; Nielsen, A.A.; Engholm, R. Improving SAR automatic target recognition
models with transfer learning from simulated data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1484–1488.
[CrossRef]

26. Vinyals, O.; Blundell, C.; Lillicrap, T.; Kavukcuoglu, K.; Wierstra, D. Matching networks for one shot learning.
In Advances in Neural Information Processing Systems; NIPS: Barcelona, Spain, 2016; pp. 3630–3638.

27. Finn, C.; Abbeel, P.; Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. arXiv
2017, arXiv:1703.03400.

28. Tang, J.; Zhang, F.; Zhou, Y.; Yin, Q.; Hu, W. A fast inference networks for SAR target few-shot learning based
on improved siamese networks. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience
and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 1212–1215.

29. Wang, K.; Zhang, G.; Leung, H. SAR target recognition based on cross-domain and cross-task transfer
learning. IEEE Access 2019, 7, 153391–153399. [CrossRef]

http://dx.doi.org/10.1049/iet-rsn.2018.5132
http://dx.doi.org/10.1109/LGRS.2016.2608578
http://dx.doi.org/10.1109/JSTARS.2015.2513481
http://dx.doi.org/10.1109/JSTARS.2015.2436694
http://dx.doi.org/10.1109/JSEN.2018.2828307
http://dx.doi.org/10.1109/TGRS.2016.2551720
http://dx.doi.org/10.1109/TAES.2016.160061
http://dx.doi.org/10.1109/ACCESS.2019.2906564
http://dx.doi.org/10.1109/LGRS.2018.2865608
http://dx.doi.org/10.1109/LGRS.2018.2877599
http://dx.doi.org/10.1109/LGRS.2015.2513754
http://dx.doi.org/10.1109/TGRS.2017.2776357
http://dx.doi.org/10.1109/LGRS.2017.2717486
http://dx.doi.org/10.1109/ACCESS.2019.2948618

Sensors 2020, 20, 5966 19 of 19

30. Kusk, A.; Abulaitijiang, A.; Dall, J. Synthetic SAR image generation using sensor, terrain and target models.
In Proceedings of the EUSAR 2016: 11th European Conference on Synthetic Aperture Radar, Hamburg,
Germany, 6–9 June 2016; pp. 405–408.

31. Ravi, S.; Beatson, A. Amortized Bayesian meta-learning. In Proceedings of the International Conference on
Learning Representations, New Orleans, LA, USA, 28 September 2018.

32. Wang, K.; Zhang, G.; Xu, Y.; Leung, H. SAR target recognition based on probabilistic meta-learning.
IEEE Geosci. Remote Sens. Lett. 2020, 13, 1–5. [CrossRef]

33. Qiao, S.; Liu, C.; Shen, W.; Yuille, A.L. Few-shot image recognition by predicting parameters from activations.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT,
USA, 19–21 June 2018; pp. 7229–7238.

34. Ye, H.; Hu, H.; Zhan, D.; Sha, F. Few-shot learning via embedding adaptation with set-to-set functions.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA,
14–19 June 2020; pp. 8808–8817.

35. Zhang, C.; Butepage, J.; Kjellstrom, H.; Mandt, S. Advances in variational inference. IEEE Trans. Pattern Anal.
Mach. Intell. 2017, 41, 2008–2026. [CrossRef]

36. Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2014, arXiv:1312.6114.
37. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2015, arXiv:1412.6980.
38. Ross, T.; Worrell, S.; Velten, V.; Mossing, J.; Bryant, M. Standard SAR ATR evaluation experiments using the

MSTAR public release data set. In Algorithms for Synthetic Aperture Radar Imagery V; SPIE: Orlando, FL, USA,
1998; Volume 3370, pp. 566–573.

39. Ying, Z.; Xuan, C.; Zhai, Y.; Sun, B.; Li, J.; Deng, W.; Mai, C.; Wang, F.; Labati, R.D.; Piuri, V.; et al. TAI-SARNET:
Deep transferred atrous-inception CNN for small samples SAR-ATR. Sensors 2020, 20, 1724. [CrossRef]

40. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H.
Mobilenets: Efficient Convolutional Neural Networks for Mobile Vision Applications. Available online:
https://arxiv.org/abs/1704.04861 (accessed on 16 April 2017).

41. Guo, C.; Pleiss, G.; Sun, Y.; Weinberger, K.Q. On calibration of modern neural networks. arXiv 2017,
arXiv:1706.04599.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/LGRS.2020.2983988
http://dx.doi.org/10.1109/TPAMI.2018.2889774
http://dx.doi.org/10.3390/s20061724
https://arxiv.org/abs/1704.04861
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methods
	Model Framework
	Model Structure
	Weight Predictor

	Results and Discussion
	Training Details
	Datasets
	Reference Methods
	Results under Standard Operation Conditions
	Results under Depression Angle Variations
	Results under Configuration Variations
	Evaluation of Model Calibration
	Models with Different Network Structures
	Recognition Results under Different Amounts of Simulated Data

	Conclusions
	References

