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Abstract: Insert conditions significantly influence the product quality and manufacturing efficiency
of lathe machining. This study used the power spectral density distribution of the vibration signals
of a lathe machining accelerometer to design an insert condition classification system applicable to
different machining conditions. For four common lathe machining insert conditions (i.e., built-up edge,
flank wear, normal, and fracture), herein, the insert condition classification system was established
with two stages—insert condition modeling and machining model fusion. In the insert condition
modeling stage, the magnitude features of the segmented frequencies were captured according to
the power spectral density distributions of the accelerometer vibration signals. Principal component
analysis and backpropagation neural networks were used to develop insert condition models for
different machining conditions. In the machining model fusion stage, a backpropagation neural
network was employed to establish the weight function between the machining conditions and
insert condition models. Subsequently, the insert conditions were classified based on the calculated
weight values of all the insert condition models. Cutting tests were performed on a computer
numerical control (CNC) lathe and utilized to validate the feasibility of the designed insert condition
classification system. The results of the cutting tests showed that the designed system could perform
insert condition classification under different machining conditions, with a classification rate exceeding
80%. Using a triaxial accelerometer, the designed insert condition classification system could perform
identification and classification online for four common insert conditions under different machining
conditions, ensuring that CNC lathes could further improve manufacturing quality and efficiency
in practice.

Keywords: insert conditions; accelerometer; power spectral density; CNC lathes

1. Introduction

In machining processes, machine tools operators frequently determine the operating conditions
of the cutting tools based on their professional experience. However, this approach cannot increase
manufacturing efficiency and is expected to result in unreliable machining quality and long machining
times. Therefore, in recent years, developing reliable tool condition monitoring systems has become
an important issue in product manufacturing. Tool condition monitoring systems can identify the
operating conditions of cutting tools and perform classification correctly so that defective cutting tools
can be changed at the appropriate time, enhancing the machining quality and manufacturing efficiency.
In this study, an insert condition classification system applicable to lathe machining processes was
developed to classify four common insert conditions: built-up edge, flank wear, normal, and fracture.
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The main implementation procedure of tool condition monitoring comprises the selection and
mounting of a sensor, signal acquisition and processing, feature capture, and condition classification [1,2],
and it can be classified into direct and indirect monitoring. Direct monitoring technologies use
measuring instruments, such as three-dimensional surface profilers, optical microscopes, scanning
electron microscopes, and charge-coupled device cameras, to inspect the cutting tool conditions
directly [3,4]. Direct monitoring technologies have a higher judgment accuracy for tool condition
classification than do the indirect types and are sometimes used for offline tool condition inspection.
Specifically, when employing these technologies, the cutting tools are extracted from the manufacturing
machine and placed on the measuring instruments to inspect the cutting tool conditions directly.
Indirect monitoring technologies measure sensing signals corresponding to the insert condition during
the machining process, including information, such as cutting force [5–9], vibration [10–12], acoustic
emissions [13–15], temperature [16], and sound [17], and subsequently analyze the signals for tool
condition classification. Indirect monitoring technologies have lower tool condition classification
accuracy than do direct types; however, they are applicable for online tool condition inspection.
Specifically, indirect monitoring technologies can identify and classify the condition of the cutting
tools without extracting them from the manufacturing machine. In practical applications, product
manufacturers initially use indirect monitoring technologies to identify and classify the conditions of
cutting tools online and subsequently use direct monitoring technologies for further inspection.
This process can improve the identification of operators and reduce the frequency and time
required to change cutting tools, thereby contributing to enhancing the machining quality and
manufacturing efficiency.

A tool condition monitoring system mainly captures sensing signal features and performs tool
condition classification. In the sensing signal capture stage, the system performs signal processing
of the acquired original sensing signals and subsequently captures the appropriate sensing features
from the processed signals. Signal processing and feature capturing are typically performed using
time-domain analysis, frequency-domain analysis, time-frequency analysis, and statistical property
methods. In the tool condition classification stage, common classification technologies are utilized,
such as fuzzy logic [8,18], artificial neural networks (ANNs) [18,19], and support vector machines
(SVMs) [20,21].

Kaya et al. used an SVM to develop a tool condition monitoring system that could acquire cutting
force, cutting torque, vibration, and acoustic emission signals. This system uses the sensor fusion
method to capture time-domain statistical features from the sensing signals and subsequently employs
a genetic algorithm to determine the main features of the cutting tool conditions [22]. Wang et al. used
a v-SVM to design a tool condition monitoring system that could acquire vibration signals during the
cutting process. This system utilizes the locality preserving projection algorithm to reduce the feature
dimensions and applies the nearest neighbor rule to select the training samples for modeling [23].
Downey et al. proposed a multiple sensor automatic data acquisition system to acquire vibration,
cutting force, and acoustic emission signals, and the system is applicable to the computer numerical
control (CNC) turning center of a real-time production environment. To ensure the quality of acquired
signals, a cutting force sensor is mounted on the lower part of the tool holder of a tool condition
monitoring system, and an accelerometer and acoustic emission sensors are mounted on its upper
part [24]. González-Laguna et al. analyzed vibration signals and found that their root mean square and
the amplitude of a fast Fourier transform were correlated to the condition of the cutting tools in steel
turning operations. Subsequently, they used the results to design a tool wear condition monitoring
system [25]. Arslan et al. studied the relationships among the statistical properties of vibration signals
and found that the tool wear condition and workpiece surface roughness could be estimated using the
crest factor, root mean square, and Kurtosis value of the vibration signals [26]. Salimiasl and Özdemir
evaluated the performance of tool condition monitoring systems using the three most well-known
classification methods: ANNs, fuzzy logic, and the least square method, and concluded that the tool
condition model built using ANNs was the most accurate [18]. Caggiano acquired the cutting force,
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acoustic emission, and vibration signals during turning processes and captured statistical features from
these sensing signals to build an ANN-based tool wear model. This model uses principal component
analysis (PCA) to reduce feature dimensions and can estimate tool flank wear during turning processes
accurately [27].

Presently, tool condition monitoring systems universally employ cutting force, vibration,
and acoustic emission signals. However, dynamometers used for accurate measurement of cutting
force and cutting torque tend to be expensive and large; they occupy part of the manufacturing
machine’s working space and influence the movements of the cutting tools. If a force sensor is mounted
on the tool holder of a tool condition monitoring system, the structural rigidity is expected to be
insufficient, and cutting path interference can occur. Kulandaivelu et al. found that acoustic emission
signals were related to the flank wear advance along the side edge of an insert; therefore, an acoustic
emission sensor should be installed on the side face of a tool holder [28]. However, in this case,
there may be cutting path interference, leading to a collision. Consequently, in this study, accelerometer
vibration signals applicable to the machining processes of CNC lathes were measured. In addition,
based on the excellent signal feature reduction capability of PCA and the outstanding modeling and
classification performance of ANNs, in this study, PCA was used to reduce the feature dimensions of
the accelerometer vibration signals, and ANNs were employed for modeling and classification.

In this study, the power spectral density (PSD) was utilized to analyze the accelerometer vibration
signals. It was found that different insert conditions had various feature magnitudes at certain
frequencies and that different machining conditions could influence the distribution of the feature
magnitudes. To achieve the applicability of the insert condition feature capture and classification
method designed in this study to different machining conditions, an L9 orthogonal array was used for
the lathe machining plan to obtain the experimental data for the insert condition modeling. Because an
L9 orthogonal array has nine machining conditions, correspondingly, nine insert condition models
were built in this study. In the insert condition modeling stage, the PSD distribution magnitude
featured numerous accelerometer signals. In this study, PCA was employed to reduce the feature
dimensions, following which the principal features were utilized for backpropagation neural network
(BPNN) modeling. Because nine insert condition models were built based on the experimental plan
of the L9 orthogonal array, a machining model fusion mechanism needed to be designed so that
these models could be used for classification under different machining conditions. In this study, a
BPNN was employed to design the weight functions between the machining conditions and the insert
condition models, which were applicable to the machining model fusion mechanism. Lathe machining
was performed to validate the feasibility and efficiency of the proposed approach and design. Based on
the lathe machining results, under the machining conditions of the experimental plan and in the
range of the cutting force, the correct classification rate of the insert condition classification system
designed in this study was higher than 80%. Moreover, this rate was significantly better than that of
the Autoencoder+Softmax learning system. The purpose of this study includes the following:

• Designing an insert condition classification system that can be used to identify and classify four
common lathe machining insert conditions—built-up edge, flank wear, normal, and fracture.

• Using the magnitude features of the PSD distribution of the signals obtained from a lathe machining
accelerometer to identify and classify the insert conditions under different machining conditions.

• Performing cutting tests with different machining conditions on a CNC lathe to evaluate the
feasibility and performance of the insert condition classification system developed in this study
from different machining aspects.

The rest of this paper is organized as follows. Section 2 describes the experimental equipment used
in this study and the lathe machining plan. Section 3 presents the insert condition modeling approach,
including the frequency segment selection and the insert condition model building. Section 4 describes
the machining model fusion mechanism design approach. Section 5 presents the lathe machining
results of the insert condition classification system developed in this study and the comparative
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experiment results of the Autoencoder+Softmax learning system. In addition, the validation of both the
feasibility and the performance of the system designed in this study is discussed. Section 6 concludes
this paper.

2. Experimental Setup and Experiment Plan

As shown in Figure 1, this study used a CNC lathe for machining. The workpiece was clamped by a
3-jaw chuck and supported by a tailstock. A tool holder with an insert was mounted on a turret, and the
movement of the turret was controlled by a CNC controller. During lathe machining, the workpiece
rotated, and the turret moved along the workpiece so that the insert could perform the cutting operation.
The workpiece with a 90 mm diameter and 300 mm length was made of the commonly used mechanical
manufacturing material, Al6061. Inserts with different conditions were installed on the tool holders
for lathe machining. The insert was made of tungsten carbide. In this study, inserts with different
conditions were collected from several manufacturers of mechanical parts. Figure 2 shows the four
insert conditions—built-up edge, flank wear, normal, and fracture. The phenomenon of material
building up on the edge of an insert denoted the built-up edge. During lathe machining, the high
temperature usually occurred at the interface between the workpiece and the insert. Therefore, the
built-up edge insert condition could occur, in which the material on the insert edge breaks away from
the insert, and the insert causes a fracture. Due to the erosion in the contact portions between the
insert and the workpiece, flank wear could gradually occur at the cutting edge of an insert. Fracture
insert condition generally occurs when the cutting force becomes significantly large in lathe machining.
The sensitivity of the triaxial accelerometer sensor was 100 mV/g, and it was installed on the machine
saddle to measure the accelerometer signals in the machining processes. The sampling frequency of the
data acquisition devices was 4096 Hz. A laptop computer performed the frequency-domain analysis of
the acquired accelerometer signals, and the obtained frequency-domain features were saved for the
subsequent analysis and system design. Each experiment used an infrared non-contact thermometer
to measure the insert temperature to ensure the insert temperature variance was lower than ±5 ◦C
in the lathe machining process. Table A1 in Appendix A lists the devices of the experimental setup,
and Table A2 in Appendix B lists the composition of the Al6061 used in this study.

As machining and insert conditions significantly influence the variance in accelerometer signals,
this study set three levels of machining conditions (i.e., cutting speed, depth of cut, and cutting feed,
as listed in Table 1) as control factors. As summarized in Table 2, L9 orthogonal array machining
experiments were planned. The L9 orthogonal array was employed to plan the machining experiments,
and accordingly, nine experiments were conducted on the four inserts under different conditions.
Accelerometer signals were recorded in each machining experiment.

Figure 1. Installation architecture of lathe machining equipment.
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Figure 2. Four insert conditions. (a) Built-up edge; (b) Flank wear; (c) Normal; (d) Fracture.

Table 1. Machining conditions and levels.

Machining
Conditions

Levels

1 2 3

Cutting speed (m/min) 280 300 320
Depth of cut (mm) 1 1.5 2

Cutting feed (mm/rev) 0.15 0.2 0.25

Table 2. Orthogonal array machining experiment plan.

Experiment no. Cutting Speed
(m/min)

Depth of Cut
(mm)

Cutting Feed
(mm/rev)

1 280 1 0.15
2 280 1.5 0.2
3 280 2 0.25
4 300 1 0.2
5 300 1.5 0.25
6 300 2 0.15
7 320 1 0.25
8 320 1.5 0.15
9 320 2 0.2

3. Insert Condition Modeling

3.1. Frequency Segment Selection

The cutting tool conditions could be determined in terms of accelerometer time-domain signals.
Figure 3a shows the resultant time-domain signals under the built-up edge, flank wear, normal,
and fracture insert conditions. It was challenging to observe differences among the four insert
conditions from the time-domain signals. As shown in Figure 3b, this study obtained the resultant
frequency-domain PSD distributions of the accelerometer signals and found notable differences between
the four insert conditions. The resultant PSD distributions of the accelerometer signals were analyzed
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based on which the apparent magnitude features of the built-up edge, flank wear, normal, and fracture
insert conditions were determined for the subsequent modeling and condition classification.

Figure 3. Accelerometer signal time-domain and resultant power spectral density (PSD) distribution
diagrams of different insert conditions. (a) Time-domain diagram of different insert conditions;
(b) Resultant PSD distribution diagram of different insert conditions.

Because a triaxial accelerometer was used in the study, the resultant PSD distribution of the
accelerometer signals could be calculated using the following equation:

ACC =
√

ACCx2 + ACCy2 + ACCz2, (1)

where ACC represents the resultant PSD distribution for the subsequent modeling and condition
classification. Further, ACCx, ACCy, and ACCz are the x-, y-, and z-axis PSD distributions of the
accelerometer signals, respectively. The resultant PSD distributions of different insert conditions could
be significantly influenced by various machining conditions. In this study, the frequency ranges of
the different insert conditions were determined with significantly different magnitude features, based
on the resultant PSD distributions of the accelerometer signals under different machining conditions.
In other words, the frequency ranges of the different insert conditions and those with apparent
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magnitude differences were selected based on the resultant PSD distributions of the accelerometer
signals of the different machining conditions. Furthermore, the resultant PSD magnitudes in these
frequency ranges were selected as the features for modeling and condition classification in this study.
Figure 4a shows the resultant PSD distribution of the accelerometer signals of the four different inserts
performing machining condition 1, as listed in Table 2. The four different inserts presented significantly
different magnitude features in the frequency ranges of 1279–1629 Hz and 1916–2132 Hz. Therefore, in
this study, 1279–1629 Hz and 1916–2132 Hz were selected as the frequency segments for machining
condition 1, and 1.04 Hz was used as the sampling interval to obtain 545 magnitude features. Figure 4b
shows the resultant PSD distribution of the accelerometer signals of machining condition 9 obtained
utilizing the same approach as above. Based on the resultant PSD distribution of machining condition 9,
389 magnitude features in the frequency ranges of 1139–1269 Hz, 1644–1829 Hz, and 1949–2036 Hz were
obtained. The frequency segments were compiled, as shown in Table 3, according to the results of the
orthogonal array machining experiments listed in Table 2. Under the different machining conditions,
the different insert conditions had varied PSD distribution results. Therefore, the various machining
conditions had different numbers and ranges of frequency segments.

Figure 4. Resultant PSD distribution diagrams of different machining conditions. (a) Machining
condition 1; (b) Machining condition 9.
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Table 3. Frequency segment results of different machining conditions.

Machining Conditions Frequency Segments Machining Conditions Frequency Segments

1 1279 Hz–1629 Hz
1916 Hz–2132 Hz

6 784 Hz–971 Hz
1308 Hz–1442 Hz
1635 Hz–1724 Hz
1914 Hz–2132 Hz

2 1391 Hz–1492 Hz
1905 Hz–2132 Hz

7 1314 Hz–1377 Hz
1644 Hz–1838 Hz

3 1395 Hz–1457 Hz
1613 Hz–1713 Hz
1945 Hz–2132 Hz

8 817 Hz–962 Hz
1174 Hz–1427 Hz
1919 Hz–2132 Hz

4 1279 Hz–1506 Hz
1909 Hz–2132 Hz

9 1139 Hz–1269 Hz
1644 Hz–1829 Hz
1949 Hz–2036 Hz

5 1274 Hz–1469 Hz
1905 Hz–2132 Hz

3.2. Building the Insert Condition Models

As the data volume was large, in this study, PCA was employed to reduce the data dimension [29].
PCA is a method for reducing the dimensions of big data and determining the most significant features.
If there is a training set S = {xi, i = 1, · · · , N} and training data xi ∈ Rd, the average of the training set,
X, is as expressed in Equation (2).

X =
1
N

N∑
i=1

xi (2)

The covariance matrix of the training set is C, as expressed in Equation (3).

C =
1
N

N∑
i=1

(
xi −X

)(
xi −X

)T
(3)

The eigenvalue, λi, and the eigenvector, vi, of the covariance matrix, C, are computed and
expressed as Equation (4).

Cvi = λivi. (4)

The first m eigenvectors, {vi, i = 1, · · · , m}, with large eigenvalues {λi, i = 1, · · · , m} are selected to
establish the transformation matrix, W =

[
v1 v2 · · · vm

]
, where W ∈ Rd×m. The test data, x ∈ Rd,

are subtracted from the average vector, X, and the transformation matrix, W, is employed to obtain the
transformed data, y, as expressed in Equation (5).

y = WT
(
x−X

)
=


v1

T

v2
T

...
vm

T


(
x−X

)
=


v1

T
(
x−X

)
v2

T
(
x−X

)
...

vm
T
(
x−X

)
 =


y1

y2
...

ym

 (5)

Therefore, the transformed data, y, can be expressed as the projection of the test data, x,
in eigenvectors {vi, i = 1, · · · , m}. The projection of eigenvector v1 corresponding to the maximum
eigenvalue, λ1, of the test data, x, is called the first principal component, y1. Specifically, the transformed
data, y, are composed of m principal components

{
y1y2 · · ·, ym

}
. Therefore, PCA can reduce the original

dimension of the test data, d, to form transformed data with dimension m, where m ≤ d. In the
application of PCA, the number, m, of the larger eigenvalues (or larger eigenvectors), i.e., the number of
principal components, is determined. The common approach calculates the ratio of the total variance,
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q, to determine the m value, as expressed in Equation (6). The ratio of the total variance, q, needed to
be larger than 0.95 to determine the m value, in this study.

q =
λ1 + λ2 + · · ·+ λm

λ1 + λ2 + · · ·+ λd
(6)

In this study, PCA was employed to obtain several principal components of the magnitude
features, and subsequently, ANNs were used to build the insert condition models. A single hidden
layer BPNN [30,31] was utilized for the insert condition modeling. The BPNN used the tan-sigmoid and
softmax function as the neuron transfer functions and employed the Levenberg–Marquardt algorithm
to train the ANNs. Accordingly, the machining experiment plan summarized in Table 2 was completed,
and nine insert condition models of the different machining conditions were built in this study.

In the ANN modeling of machining condition 9 specified in Table 2, frequency segments for
the accelerometer PSD distribution of the machining experiment results were obtained, as shown in
Figure 4b. A total of 389 magnitude features were obtained at this stage. Subsequently, the dimensions
of the magnitude features were reduced using PCA, and the principal components were obtained.
In this study, the first three principal components (m = 3) were selected as the inputs of the BPNN
model for machining condition 9. The ratio of the total variance was 0.9621, and the hidden layer
used by the BPNN had four neurons. The confusion matrix summarized in Table 4 shows that the
correct classification rate of the BPNN model for machining condition 9 built in this study was 100%.
The diagonal elements of the confusion matrix reveal that 11 test data were correctly classified. Column
1 of Table 4 shows that three built-up edge test data were correctly classified, and Column 2 of Table 4
indicates that two flank wear test data were correctly classified. Column 3 of Table 4 shows that
three test data were correctly classified as normal, and Column 4 of Table 4 indicates that three test
data were correctly classified as a fracture. Table 5 lists the BPNN modeling information for the
different machining conditions. Clearly, because the machining conditions had a significant effect
on the accelerometer PSD distribution, the BPNN models built using these machining conditions
were different. In the BPNN models with a single hidden layer, machining condition 6 required more
neurons. However, machining condition 8 could build the BPNN model using fewer neurons.

Table 4. Confusion matrix of the backpropagation neural network (BPNN) model (machining condition 9).

Predicted Class

Built-Up Edge Flank Wear Normal Fracture

Actual class

Built-up edge 3 0 0 0

Flank wear 0 2 0 0

Normal 0 0 3 0

Fracture 0 0 0 3

Table 5. Machining conditions and BPNN model information.

Machining
Conditions

Number of
Neurons

Number of
Principal Components

Ratio of
Total Variance

1 8 5 0.9960
2 7 3 0.9782
3 4 4 0.9973
4 8 3 0.9935
5 8 4 0.9704
6 12 5 0.9980
7 5 5 0.9629
8 3 2 0.9972
9 4 3 0.9621
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4. Machining Model Fusion Mechanism Design

In this study, nine ANN insert condition models were built according to the orthogonal array
summarized in Table 2. To use the insert condition models for the insert condition classification of the
different machining conditions, a machining model fusion mechanism was designed. This designed
mechanism could establish the weight function between the machining conditions and the insert
condition models. In this study, a single hidden layer BPNN was used to establish the machining model
fusion mechanism. The fusion mechanism BPNN model had three inputs: cutting speed, depth of cut,
and cutting feed, as well as nine outputs, which were the weight values of the nine insert condition
models. The hidden layer had six neurons. The training processes of the fusion mechanism BPNN
model used the machining conditions listed in Table 2 as the training data. When the input machining
conditions of the fusion mechanism BPNN model were the machining conditions of experiment 9
(cutting speed 320 m/min, depth of cut 2 mm, and cutting feed 0.2 mm/rev), the weight value of its output
corresponding to the insert condition model of experiment 9 needed to be approximately 1. Moreover,
the weight values corresponding to the insert condition models of the other experiments needed to be
approximately 0. The relationship between the inputs and outputs of the fusion mechanism BPNN
model is shown in Figure 5, where the “machining conditions” correspond to the nine machining
conditions listed in Table 2. Furthermore, "PI" and "PI Value" represent the outputs and the weight
values of the nine insert condition models, respectively.

Figure 5. Fusion mechanism established by the backpropagation neural network (BPNN) model.

Using the nine insert condition models detailed in Table 5 and the fusion mechanism BPNN model
shown in Figure 5, in this study, an insert condition classification system applicable to the different
machining conditions, as summarized in Table 6, was designed. The principal components of the PSD
distribution of the accelerometer signals were imported into the nine insert condition models to obtain
the insert condition classification, Si j, as follows:

Si j
∣∣∣

i = 1, 2, 3, 4
j = 1, . . . , 9

= {0, 1} (7)

where the value of Si j is 0 or 1. For example, S19, S29, S39, and S49 represent the built-up edge, flank
wear, normal, and fracture classification results of the accelerometer signals in insert condition model 9
(model 9), respectively, and the value of each classification result is 0 or 1. The machining conditions
(cutting speed, depth of cut, and cutting feed) when acquiring the accelerometer signals are imported
into the fusion mechanism BPNN model, and the weight values, PIi|i=1,...,9, of the machining conditions
for the nine insert condition models can be obtained. According to the insert condition classification,
Si j, and the weight values, PIi, of the insert condition model, the weighted sum values, SB, SW , SN,
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and SF, for the built-up edge, flank wear, normal, and fracture insert conditions, respectively, can be
calculated as follows:

SB =
∑9

i=1
S1iPIi, (8)

SW =
∑9

i=1
S2iPIi, (9)

SN =
∑9

i=1
S3iPIi, and (10)

SF =
∑9

i=1
S4iPIi. (11)

The normalized values, SB(%), SW(%), SN(%), and SF(%) are as follows:

SB(%) =
SB

SB + SW + SN + SF
× 100%, (12)

SW(%) =
SW

SB + SW + SN + SF
× 100%, (13)

SN(%) =
SN

SB + SW + SN + SF
× 100%, and (14)

SF(%) =
SF

SB + SW + SN + SF
× 100%. (15)

Finally, the insert conditions corresponding to the accelerometer signals can be classified by
comparing the normalized values of Equations (12)–(15).

Table 6. Insert condition classification calculation results.

Weight Values Built-Up Edge Flank Wear Normal Fracture

Model 1 PI1 S11 S21 S31 S41
Model 2 PI2 S12 S22 S32 S42
Model 3 PI3 S13 S23 S33 S43
Model 4 PI4 S14 S24 S34 S44
Model 5 PI5 S15 S25 S35 S45
Model 6 PI6 S16 S26 S36 S46
Model 7 PI7 S17 S27 S37 S47
Model 8 PI8 S18 S28 S38 S48
Model 9 PI9 S19 S29 S39 S49

Weighted sum values — SB SW SN SF
Normalized values — SB(%) SW(%) SN(%) SF(%)

The execution process and results of the insert condition classification system designed in this
study are described below and listed in Table 7. The accelerometer signals were obtained from the
machining experiment (with a cutting speed of 318 m/min, depth of cut of 1.8 mm, and a cutting feed
of 0.19 mm/rev). First, the accelerometer signals were converted into PSD distributions. Subsequently,
they were dealt with in the following ways.

• The frequency segments were executed according to the PSD distributions to obtain the
magnitude features.

• The principal components were calculated using PCA according to the obtained
magnitude features.

• The insert condition classification, Si j, was calculated according to the insert condition models
and the principal components.

• The weight values, PIi, of the insert condition model were calculated according to the machining
model fusion mechanism and the machining conditions.
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• The weighted sum values of the built-up edge, flank wear, normal, and fracture insert conditions
were calculated using Equations (8)–(11).

• The normalized values of the insert conditions were calculated using Equations (12)–(15).
• According to the normalized values of the insert conditions listed in Table 7, the insert condition

corresponding to the accelerometer signals was the built-up edge condition.

Table 7. Insert condition classification results. (cutting speed 318 m/min, depth of cut 1.8 mm, cutting
feed 0.19 mm/rev).

Weight Values Built-Up Edge Flank Wear Normal Fracture

Model 1 1.36 × 10−8 1 0 0 0
Model 2 1.55 × 10−6 0 1 0 0
Model 3 3.39 × 10−5 0 1 0 0
Model 4 7.53 × 10−8 0 1 0 0
Model 5 5.00 × 10−4 1 0 0 0
Model 6 1.34 × 10−5 1 0 0 0
Model 7 5.97 × 10−5 1 0 0 0
Model 8 9.10 × 10−3 1 0 0 0
Model 9 9.90 × 10−1 1 0 0 0

Weighted sum values — 0.9997 3.55 × 10−5 0 0
Normalized values — 99.9964% 0.0036% 0 0
Classification result Built-up edge

5. Experimental Results and Discussion

5.1. Machining Condition Test Within Range of Machining Experiment Plan

In this study, the machining conditions listed in Table 1 were used for the cutting tests.
The machining conditions were a cutting speed of 290 m/min, depth of cut of 1.9 mm, and cutting
feed of 0.23 mm/rev. A total of 24 accelerometer signals was obtained from the cutting tests, including
six signals each for the built-up edge insert condition, flank wear insert condition, normal insert
condition, and the fracture insert condition. These 24 accelerometer signals obtained from the tests
were employed for insert condition classification using the classification system designed in this study,
and the results are summarized in Table 8.

• There were six signals for the built-up edge insert condition, among which the classification
results of five signals were correct, and that of one signal was incorrect. The classification rate was
83.33%.

• There were six signals for the flank wear insert condition, and the classification result was
completely correct. The classification rate was 100%.

• There were six signals for the normal insert condition, among which the classification results of
four signals were correct, and those of two signals were incorrect. The classification rate was
66.67%.

• There were six signals for the fracture insert condition, among which the classification results of
five signals were correct, and that of one signal was incorrect. The classification rate was 83.33%.

The experimental results obtained using a cutting speed of 290 m/min, depth of cut of 1.9 mm,
and cutting feed of 0.23 mm/rev showed that the correct classification rate of the insert condition
classification system designed in this study was 83.33%. Subsequently, the approaches for the cutting
tests under the different machining conditions were the same. The results were as follows:

• The classification rate resulting from the experiment under the machining conditions of a cutting
speed of 318 m/min, depth of cut of 1.8 mm, and cutting feed of 0.19 mm/rev was 92.86%.
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• The classification rate resulting from the experiment under the machining conditions of a cutting
speed of 305 m/min, depth of cut of 1.4 mm, and cutting feed of 0.23 mm/rev was 87.5%.

• The classification rate resulting from the experiment under the machining conditions of a cutting
speed of 285 m/min, depth of cut of 1.6 mm, and cutting feed of 0.18 mm/rev was 81.25%.

Therefore, the correct classification rate of the insert condition classification system developed in
this study for the machining conditions within the range of the machining experiment plan was at
least 80%.

Table 8. Insert condition classification results. (cutting speed 290 m/min, depth of cut 1.9 mm, cutting
feed 0.23 mm/rev).

Actual
Class

Number of
Signals

Insert Condition Classification

Built-Up Edge Flank Wear Normal Fracture

Built-up edge 6 5 - - 1
Flank wear 6 - 6 - -

Normal 6 - 2 4 -
Fracture 6 - 1 - 5

5.2. Machining Condition Test Outside Range of Machining Experiment Plan

To evaluate the insert condition classification rate of the classification system developed in this
study for the machining conditions outside the range of the machining experiment plan, a cutting speed
of 323 m/min, depth of cut of 2.3 mm, and cutting feed of 0.14 mm/rev were used for the cutting tests.
A total of 15 signals were obtained: four signals each for the built-up edge, flank wear, and normal
insert conditions, respectively, and three signals for the fracture insert condition. The 15 test signals
derived from the experiment were classified by the insert condition classification system developed in
this study, and the results are listed in Table 9. The built-up edge, flank wear, normal, and fracture insert
condition classification rates were 75%, 50%, 75%, and 0%, respectively. Therefore, the experimental
results for the cutting speed of 323 m/min, depth of cut of 2.3 mm, and cutting feed of 0.14 mm/rev
showed that the correct classification rate of the classification system developed in this study was only
53.33%. The system built in this study was inapplicable to conditions outside the machining conditions
listed in Table 1.

Table 9. Insert condition classification results. (cutting speed 323 m/min, depth of cut 2.3 mm, cutting
feed 0.14 mm/rev).

Actual
Class

Number of
Signals

Insert Condition Classification

Built-Up Edge Flank Wear Normal Fracture

Built-up edge 4 3 - - 1
Flank wear 4 - 2 - 2

Normal 4 - - 3 1
Fracture 3 3 - - -

5.3. Cutting Force Experiment

To observe the effect of the cutting force on the classification rate, in this study, cutting tests
were performed, wherein the machining conditions for the cutting force experiment were in the range
listed in Table 1. Equations (16)–(18) were employed to calculate the cutting force [32,33], wherein F
represents the calculated cutting force (N), kc represents the specific cutting force (N/mm2), a is the
depth of cut (mm), f is the cutting feed (mm/rev), u is a unitless coefficient, kc1 represents the specific
cutting force (N/mm2), hm is the chip thickness (mm), mc is the non-dimensional factor, γ0 is the rake
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angle, and Kr is the edge angle. For the Al6061 workpiece material and inserts used in this study,
γ0 was −6◦, kc1 was 700 N/mm2, mc was 0.25, Kr was 95◦, and u was 0.978 [33].

F = kc × a× f u (16)

kc = kc1 × hm
−mc ×

(
1−

γ0

100

)
(17)

hm = f × sin(Kr) (18)

In this study, machining with a cutting speed of 306 m/min, depth of cut of 1.1 mm, and cutting feed
of 0.22 mm/rev was performed for the cutting tests. The calculated cutting force was 271.4 N. A total of
14 signals were obtained by this experiment: four signals for the built-up edge insert condition, three
signals for the flank wear insert condition, three signals for the normal insert condition, and four signals
for the fracture insert condition. These obtained 14 test signals were classified using the classification
system developed in this study, and the results are listed in Table 10. The built-up edge, flank wear,
normal, and fracture insert condition classification rates were 100%, 0%, 67%, and 25%, respectively.
The correct classification rate of the experimental results was only 50%. Subsequently, in this study, the
same approach as above was employed to test under a cutting speed of 310 m/min, depth of cut of
1.2 mm, and cutting feed of 0.17 mm/rev (a cutting force of 245 N). The classification rate was 42%.
The classification rate resulting from the experiment under a cutting speed of 285 m/min, depth of
cut of 1.1 mm, and cutting feed of 0.17 mm/rev (a cutting force of 225 N) was 50%. According to the
experimental results, the correct classification rate was clearly low. Therefore, the machining conditions
were within the range of the machining experiment plan; however, the smaller cutting force reduced
the classification rate of the system.

Table 10. Insert condition classification results. (cutting speed 306 m/min, depth of cut 1.1 mm, cutting
feed 0.22 mm/rev).

Actual
Class

Number of
Signals

Insert Condition Classification

Built-Up Edge Flank Wear Normal Fracture

Built-up edge 4 4 - - -
Flank wear 3 - - 3 -

Normal 3 - 1 2 -
Fracture 4 2 - 1 1

5.4. Comprehensive Discussion

Summarizing, considering the above-mentioned experimental results, an experimental comparison
table was established, which is provided in Table 11. Figure 6 shows the relationship between the
cutting force and the classification rate. According to Table 11, the classification rate of the insert
condition classification system developed in this study for the machining conditions outside the
scope of the experiment listed in Table 1 was only approximately 50%. Specifically, in comparison
to the classification rate resulting from the machining conditions within the scope of the experiment,
which was higher than 80%, the one resulting from those outside the scope of the experiment was
clearly lower. Based on the cutting force test results, although machining conditions within the scope
of the experiment were used, the classification rate with a smaller cutting force was lower. As shown
in Figure 6, the classification rate was higher than 80% when the cutting force was higher than 341 N,
whereas it was only approximately 50% when the cutting force was lower than 271 N. The machining
conditions of a cutting speed of 323 m/min, depth of cut of 2.3 mm, and cutting feed of 0.14 mm/rev
led to a larger cutting force; however, the classification rate was only 53.3%. This was because the
machining conditions were outside the scope of the experiment plan listed in Table 1.
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Table 11. Experimental results comparison table.

Cutting Speed
(m/min)

Depth of Cut
(mm)

Cutting Feed
(mm/rev)

Inside/Outside of
Experimental

Ranges

Cutting Force
(N)

Classification
Rate (%)

285 1.1 0.17 Inside 225 50.00%
318 1.8 0.19 Inside 399 92.86%
285 1.6 0.18 Inside 341 81.25%
290 1.9 0.23 Inside 484 83.30%
323 2.3 0.14 Outside 409 53.30%
305 1.4 0.23 Inside 357 87.50%
306 1.1 0.22 Inside 271 50.00%
310 1.2 0.17 Inside 245 42.00%

Figure 6. Relationship between cutting force and classification rate.

5.5. Comparative Experiment Results and Discussion

This study compared two systems for insert condition classification. System 1 was the insert
condition classification system developed in this study, and System 2 was the Autoencoder+Softmax
learning system [34,35]. The two systems were compared using the same test signals. The autoencoder
of the Autoencoder+Softmax learning system was an ANN composed of an input layer, a hidden
layer, and an output layer and comprised an encoder network and a decoder network. When training
the autoencoder, the encoder and decoder networks were executed to reduce the feature vector
dimension of the input signals and reconstruct the signals, respectively. The autoencoder aimed to
minimize reconstruction errors. The decoder network was removed after the autoencoder training was
completed, and the features captured by the encoder network were imported into the softmax function.
The input data of the Autoencoder+Softmax learning system were introduced as the accelerometer PSD
distribution (with 2048 magnitude features), and the output was the built-up edge, flank wear, normal,
and fracture insert condition classification. There were three hidden layers, the epoch was set as 30,
and the batch size was set as 10. The first, second, and third hidden layers used 400, 100, and 10 neurons,
respectively. The number of hidden layers, epoch, batch size, and the number of neurons were set
by trial and error. Table 12 summarizes the experimental results of the insert condition classification
system developed in this study (System 1) and the Autoencoder+Softmax learning system (System 2).
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Table 12. Classification results of comparative experiments.

Cutting Speed
(m/min)

Depth of Cut
(mm)

Cutting Feed
(mm/rev)

Cutting Force
(N)

Classification Rate
System 1

Classification Rate
System 2

285 1.1 0.17 225 50.00% 35.71%
318 1.8 0.19 399 92.86% 21.43%
285 1.6 0.18 341 81.25% 18.75%
290 1.9 0.23 484 83.30% 25.00%
323 2.3 0.14 409 53.30% 26.32%
305 1.4 0.23 357 87.50% 26.67%
306 1.1 0.22 271 50.00% 31.25%
310 1.2 0.17 245 42.00% 28.57%

The experimental results listed in Table 12 indicate that System 2 clearly yielded a lower
classification rate than System 1. Based on the cutting tests, when the different machining conditions
were used for the experiment, the inserts under varied conditions had different PSD distributions.
System 2 could build a model covering all the machining conditions used in Experiments 1–9, as listed
in Table 2. However, System 2 was unlikely to correctly classify the insert conditions owing to an
insufficient amount of training data. The classification rate of System 2 was lower; however, it was
unexpected to be influenced by the cutting force and the machining conditions. In comparison to
System 2, System 1 developed in this study was influenced by the cutting force and the machining
conditions; however, the correct classification rate was higher than 80% within the scope of the
experiment summarized in Table 1.

6. Conclusions

Lathe machining product quality and production efficiency are significantly influenced by insert
conditions. This study developed an insert condition classification system by referring to the PSD
distribution of accelerometer signals. The system developed in this study used PCA and ANNs,
and four common insert conditions—built-up edge, flank wear, normal, and fracture— could be
classified under different machining conditions.

In this study, the PSD distribution of the signals of a lathe machining accelerometer was observed,
and it was found that different insert and machining conditions influenced the distributions of the
magnitude features of the PSD. To enable the insert condition classification system developed in
this study to classify the insert conditions under different machining conditions, an L9 orthogonal
array was used to plan the lathe machining experiments. In the insert condition modeling stage,
the PSD magnitude feature distributions could determine the frequency range with significantly
different magnitude features among the insert conditions. Subsequently, PCA was employed to reduce
the feature dimensions, and a BPNN was utilized to build insert condition models. Because the
L9 orthogonal array lathe machining experiment plan had nine machining conditions, nine insert
condition models were built in this study corresponding to these conditions. For the nine insert
condition models, a BPNN was employed to establish the machining model fusion mechanism; thus,
the insert condition classification system developed in this study could classify the insert conditions of
the different machining conditions.

The machining model fusion mechanism established the weight function between the machining
conditions and the insert condition models. Therefore, the fusion mechanism had three inputs: cutting
speed, depth of cut, and cutting feed, as well as nine outputs, which were the weight values of the
nine insert condition models. In the machining model fusion stage, the classification system used the
BPNN machining model fusion mechanism to calculate the weight values of the nine insert condition
models based on the machining conditions when acquiring the accelerometer signals. The insert
condition classification system designed in this study could classify the built-up edge, flank wear,
normal, and fracture insert conditions according to the classification results of the insert condition
models and the weight values of the machining model fusion mechanism.
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The cutting tests performed on a CNC lathe could evaluate the feasibility and the performance of
the insert condition classification system developed in this study. The experimental results showed
that the correct classification rate of the insert condition was influenced by the machining conditions
and the cutting force. The classification rate of the classification system tested for the planned
machining conditions exceeded 80%. In addition, the classification system had a higher classification
rate when there was a larger cutting force. In comparison to the Autoencoder+Softmax learning system,
the classification system designed in this study had a higher classification rate. The experimental
results showed that the insert condition classification system developed in this study could be used for
lathe machining under different machining conditions and that the correct classification rate of the
insert conditions was higher than 80%. The contributions of this study include the following points.

• Development of an insert condition classification system that integrates the insert condition
modeling method and machining model fusion mechanism to ensure that the system can be used
to identify and classify four common insert conditions online—built-up edge, flank wear, normal,
and fracture.

• Development of an insert condition modeling method that considers the resultant PSD distributions
of the accelerometer signals, and use of PCA with the frequency segment selection developed in this
study to ensure that the data dimension can be significantly reduced in subsequent applications.

• Development of a machining model fusion mechanism that considers both the insert condition
models and different machining conditions to ensure that the insert condition classification system
developed in this study can be applied to different machining conditions in practice.

This study used an L9 orthogonal array to plan the lathe machining experiments. The correct
classification rate of the developed classification system was higher than 80%. However, to further
improve the correct classification rate, more insert condition models are required through the use of
the orthogonal array with larger dimensions.
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Nomenclature

a: Depth of cut (mm)
ACC: Resultant PSD distribution
ACCx: PSD distribution of x-axis accelerometer signal
ACCy: PSD distribution of y-axis accelerometer signal
ACCz: PSD distribution of z-axis accelerometer signal
BPNN: Backpropagation neural network
C: Covariance matrix of the training set
F: Calculated cutting force (N)
f : Cutting feed (mm/rev)
γ0: Rake angle
hm: Chip thickness (mm)
kc: Specific cutting force (N/mm2)
kc1: Specific cutting force (N/mm2)
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Kr: Edge angle
λi: Eigenvalue
mc: Non-dimensional factor
PCA: Principal component analysis
PIi: Weight value
PSD: Power spectral density
q: Ratio of the total variance
S: Training set
Si j: Insert condition classification
SB: Weighted sum value for the built-up edge insert condition
SF: Weighted sum values for the fracture insert condition
SN : Weighted sum value for the normal insert condition
SW : Weighted sum value for the flank wear insert condition
u: Unitless coefficient
vi: Eigenvector
W: Transformation matrix
x: Test data
xi: Training data
X: Average of the training set
y: Transformed data

Appendix A

Table A1. List of devices in the experimental setup.

Device Model

CNC Lathe YCM GT-200MA
Accelerometer PCB Piezotronics 356A15

Data acquisition NI-9234
Thermometer HILA TN-49SCG

Toolholder Sandvik PCLNR 2525M 12
Inserts CNMG 120408

(produced by Mitsubishi Materials, Tungaloy,
Kennametal, and Kyocera Precision Tools)

Laptop computer ASUS GL502VS

Appendix B

Table A2. Composition of the Al6061 material used in this study (unit: %).

Si Fe Cu Mn Mg Cr Zn Ti Al

0.4–0.8 0.7 0.15–0.4 0.15 0.8–1.2 0.04–0.35 0.25 0.15 Others
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