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Abstract: Early detection of faults in rotating machinery systems is crucial in preventing system failure,
increasing safety, and reducing maintenance costs. Current methods of fault detection suffer from the
lack of efficient feature extraction method, the need for designating a threshold producing minimal false
alarm rates, and the need for expert domain knowledge, which is costly. In this paper, we propose a
novel data-driven health division method based on convolutional neural networks using a graphical
representation of time series data, called a nested scatter plot. The proposed method trains the model
with a small amount of labeled data and does not require a threshold value to predict the health state of
rotary machines. Notwithstanding the lack of datasets that show the ground truth of health stages, our
experiments with two open datasets of run-to-failure bearing demonstrated that our method is able to
detect the early symptoms of bearing wear earlier and more efficiently than other threshold-based health
indicator methods.

Keywords: fault detection; convolutional neural networks; feature extraction; machinery prognostics;
health stage division

1. Introduction

Rotary machinery is extensively used in modern industry for civilian and military applications such
as compressors, turbines, aircraft engines, etc. High service loads and varying operational conditions lead
to the fault/failure of the machinery via the degradation of one or more critical components. The detection
of fault/impending failure is very significant in avoiding catastrophic accidents and ensuring the safe
operation of the machinery [1].

Early fault detection is significantly influenced by the ability of any method to predict the health stage
(HS) of the machinery. To that end, the HS division procedure divides the continuous degradation process
into two or several HSs according to the varying trends of the health indicator (HI) [2]. HS division is
different from fault detection or fault diagnosis in that, while the latter aims to detect the appearance
and severity of the fault, the former aims to facilitate the remaining useful life (RUL) prediction methods
by dividing the degradation progression into two or several stages. Typically, in the two-stage HS
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division, a distinction between healthy (nominal functioning) and unhealthy (anomalous) states is made
to trigger the RUL prediction process. As such, the start time of the unhealthy stage is known as the first
predicting time (FPT). As shown in Figure 1, the continuous degradation process is divided into two HSs
by determining FPT.

Acquired vibration data

FPT and HS division

tFPT tEoL

Healthy

Unhealthy

Figure 1. Degradation process with first predicting time (FPT) and health stage (HS) division.

Traditional methods of HS division have involved the intervention of experts or qualified operators,
thereby remaining subjective to operator’s perception and sensitivity, and the ever-changing operational
conditions. For more reliability, methods of testing the components systematically have been proposed.
Most methods utilize HI and the HS division is made based on a prescribed threshold defined a priori [3].
The root mean square (RMS) is widely used to represent HIs and is further employed to identify the initial
point of degradation when the RMS exceeds a pre-specified threshold [4]. On the other hand, unsupervised
approaches aim to extract those features in an unsupervised manner that accurately represents the HI,
thereby avoiding the need to identify a suitable representation of HI. For example, the auto-encoder
(AE)-based method avoids the identification of HI by extracting useful features of faults in an unsupervised
manner [5,6]. However, AE for HS division still possesses the same challenge: assigning an appropriate
threshold that will detect the formation of a fault early enough for diagnosis, while, at the same time,
leading to minimal false alarms.

Moreover, this threshold should be adaptable to time-varying operational conditions and
environments. If the threshold is set low for early FPT, the false alarm rate goes up and the maintenance
system becomes highly inefficient. If the threshold is set too high, the fault detection is not made early
enough for precautionary measures. Previous methods also lack appropriate feature extraction methods
for detecting faulty features in the early stage of fault development. In summary, existing methods of HS
division rely heavily upon the choice of efficient HI (such as RMS) and pre-specified thresholds. Although
unsupervised methods (such as AE) promise the extraction of efficient HIs, the problem of the pre-selection
of thresholds persists. The paradox of determining an appropriate threshold and the lack of an efficient
feature extraction method has demonstrated the need for an efficient early fault detection mechanism.

In this work, we propose a supervised data-driven method for HS division, that avoids usage of
a pre-specified HI as well as the employment of pre-specified thresholds. The principle idea presented
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in this paper involves supervised training of a binary regression model using the early stage (nominal
functioning) samples and last stage (near to complete failure) samples from a run-to-failure bearing
degradation database. Unlike conventional HI methods, there is no need to set the threshold and it
only needs a small number of labels. The laborious task of labeling, which is typically associated with
supervised methods, is also avoided as a simple distinction is made between the early and last stages of
component degradation containing relatively smaller sets of data to be labeled. The proposed method
has two phases. Phase one consists of transforming the time series data of raw vibration data into a
nested-scatter plot image (NSP) for feature extraction. In phase two, these images are used to train a
binary regression model using convolutional neural networks (CNN), which are tested on degradation
datasets provided by the center of Intelligent Maintenance Systems (IMS), the University of Cincinnati [7],
and the Fanche-Comte Electronics Mechanics Thermal Science and Optics—Sciences and Technologies
Institute (FEMTO) [8,9]. The superiority of the proposed method is verified through a comparison with
previous detection methods in terms of FPT: RMS in the signal-based method and AE in the unsupervised
data-driven method. In addition, the features extracted by CNN are analyzed to verify the reliability of
the predicted FPT [10,11].

The contributions of this paper can be summarized as follows.

• A CNN-based binary regression model combined with NSP rids the necessity of designating a
threshold a priori since the binary regression model accomplishes that task. Instead, a simple trigger
mechanism is utilized in the binary regression model output to distinguish healthy and unhealthy
states. Even though supervised learning is proposed, the inherent labeling procedure is simplistic
and the training process requires a comparatively very small amount of labeled data.

• The proposed method detects degradation patterns of rotary machine elements earlier than the
commonly used RMS-based approaches, or AE-based methods. The feature analysis shows that
the proposed method is able to extract HS features earlier and more distinguishably than previous
threshold-based HS division methods.

This paper is organized as follows. Section 2 briefly introduces the related works to predict the HS.
Section 3 describes the details of the proposed algorithm, and Section 4 presents the experimental results.
Section 5 contains the discussion and Section 6 concludes the paper.

2. Related Works

To improve the accuracy of the HS prediction process, the methods of systematically testing
the machine condition were proposed. These methods are categorized as model-based, signal-based,
and data-driven methods [12].

Model-based methods monitor the health state of rotary machines by using mathematical models that
utilize the physical relationships between the control to the motor and its dynamic response in the time
or frequency domain [13]. Rotary machines often involve complex non-linear relationships among the
system variables and operational conditions which are rarely captured by mathematical models accurately.

Signal-based methods use time domain, frequency domain, or time–frequency feature analysis to
estimate HSs from measured signals [14]. This approach often requires a priori knowledge of various
impending faults (fault signatures) which may vary depending upon various operational conditions,
calling for manual fine-tuning or calibration of thresholds employed for HS detection. The root mean
squared (RMS) value, one of the represented HI, is used for identifying the initial point of degradation
when this RMS value exceeds a pre-specified threshold [4]. More advanced HIs have been proposed such as
the Mahalanobis distance [15] and the Chebyshev inequality function [16]. Recently, many threshold-based
HS division works employing statistically derived HIs have been proposed. For example, [17] used
adaptive thresholds for the integrated detection of FPT and prognostics. As mentioned, HI computed by
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the signal-based method has a limitation in relation to manual threshold value setting that could vary
based on the operation conditions.

The data-driven method applies machine learning techniques to extract characteristics from a machine
directly from the measured data. Recently, deep learning and pattern recognition have demonstrated
extensive utility in this domain. The data-driven method can be further categorized into supervised [18]
and unsupervised methods [19] in which supervised methods require training sets that are labeled.
The labeling of the dataset is a time-consuming process prone to human error. The unsupervised method,
on the other hand, does not require manual labeling but tries to detect anomalies that deviate from the
nominal behavior.

Belmiloud et al. [20] used wavelet packet decomposition to extract features as the model input
and proposed a deep CNN-based method to construct HI. Guo et al. [21] proposed a CNN-based HI
construction method with little prior knowledge to extract features. She et al. [22] proposed a multi-channel
CNN with an exponentially decaying learning rate to construct the HI with the original multi-channel raw
vibration signals. Li et al. [23] proposed an RUL prediction method based on multi-scale feature extraction
using CNN. Before predicting RUL, they determined the FPT by using kurtosis and used short-time
Fourier transform to process raw vibration signals and obtain the time–frequency domain information.
Then, the CNN with multi-scale feature extraction predicted the RUL. However, such methods still possess
the same challenge: assigning an appropriate threshold.

3. Supervised Health Stage Prediction

3.1. Image Transformation of Vibration Signals

NSP is a data wrangling method that transforms correlated time series data into an image for
multi-variate correlation analysis [24]. It is a matrix representation similar to the heat map of the
quantized value of time series data. Each vibration signal is quantized and mapped into nested clusters.
The cumulative number of signal values in the nested cluster is normalized in order to represent the
density of the nested cluster. Although NSP removes the non-stationarity of the time sequence, it is an
efficient imaging method for multi-variable correlation analysis [24,25].

By using NSP, we transform multi-channel vibration signals into a single fixed-size image. Continuous
multi-channel vibration signals are split into given intervals. A three-step approach is used: feature
extraction using bandpass filters, decomposition of the nested clusters in each bandwidth, and aggregation
of the decomposed sections into a single RGB image. As represented in Figure 2, at least two different
data channels as data sources are required and the first step is the incorporation extraction of signals in
three different bandwidths. Hilbert–Huang transformation (HHT) and Fast Fourier transform (FFT) are
used to determine the bandwidth of bandpass filters [25]. In the second step, the extracted two-channel
signals are compressed into nested clusters. Each channel signal is mapped on the x- and y-axis. Three
different extracted signals are colored in red, green, and blue, respectively. In the final stage, three scatter
plots are aggregated together to form a single RGB image that is used as an input in our proposed method.
An example of decomposition and merged NSP is shown in Figure 2.
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Figure 2. Nested-scatter plot image (NSP) methods and application to vibration signals.

3.2. Hs Division Prediction Using CNN

By transforming continuous raw vibration time series data into images, we can now use our data as
inputs to the CNN, which has proved its outstanding performance in computer vision [26]. The structure
of the proposed convolutional neural networks for the HS division model (CNN-HS) is as follows. There
are three convolution (Conv) layers with kernel sizes of 10 by 10, five by five, and three by three. The Conv
layers are followed by two fully connected (FC) layers. A dropout rate of 50% was applied at the end of
each FC layer. The final output layer is activated by a softmax function so that the obscurity during the
interim period between the two stages can be quantified by a value between zero and one. The structure is
shown in Table 1.

Table 1. The structure of the convolutional neural network (CNN)-health stage (HS).

Layers Activation Function Dimension

Input - 128 × 128 × 3
Conv 10 × 10 ReLU 60 × 60 × 20

Conv 5 × 5 ReLU 28 × 28 × 40
Conv 3 × 3 ReLU 24 × 24 × 20

Fully Connected ReLU 500
Fully Connected ReLU 50

Output Softmax 2

In the CNN architecture, the selectable hyperparameters are the number of filters in each Conv
layer and the size of each FC layer. In the fault detection and diagnosis using NSP [25], the optimal
numbers were found by varying the number of filters in each Conv layer. The size of the FC layer affects
the expressiveness of the networks and the training time. Following [25], the size of each FC layer was
determined as 500 and 50. In the experiments, the number of epochs during training was 30 and the
validation data ratio was 1:9. An Adam optimizer was implemented with a learning rate of 0.001.

In a supervised manner, labeling of the target data is required for supervised learning to distinguish
the features of the HS of a machine under different bearing degradation conditions. The training dataset is
divided into two HS stages based on the time of acquisition. Figure 3 shows the division of our training
dataset. The initial part, corresponding to the nominal functioning in the entire vibration dataset, is labeled
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as healthy, and the last part of the sample duration, when the bearing is damaged, is labeled as unhealthy.
This is based on the assumption that degrading data of rotating machinery are obtained until the point of
failure. By the supervised method, it is unnecessary to label all train datasets and analyze the dataset for
labeling. To minimize labeling efforts on the entire dataset, the optimal sizes (small set) of the initial and
last part, labeling ‘healthy’ and ‘unhealthy’, respectively, are evaluated (See Section 5.).

Label as healthy Label as unhealthy

Vibration signal 1

Vibration signal 2

NSP images

Figure 3. Binary labeling on part of training dataset on bearing wear experiment.

Once training is over, the performance of the trained CNN-HS is evaluated in the testing phase.
The trained CNN-HS was able to classify the NSP of an external test dataset, which was not used in
training, but operated under the same conditions as the rest of the training datasets. The binary regression
results of the whole run-to-failure are computed, in which there is no need to specify a threshold value.
As the trained CNN-HS learns the differences in the features of the NSP for healthy and unhealthy data
labeled in part of the training datasets, it can recognize the degradation pattern of all of the data. For HS
division, it is important to determine FPT, which is a starting point of the deterioration of bearings,
in terms of maintenance. However, it is difficult to determine FPT since the features of the deterioration at
FPT are weaker than the features in the unhealthy stage.

To determine FPT, we implemented a simple continuous trigger mechanism in which the machinery
was considered to be in an unhealthy stage when a certain number of consecutive values of one (unhealthy)
were given out by our model. This trigger mechanism prevents unnecessary oscillation and uncertainty to
determine earlier FPT. The trigger mechanism has generally adopted an HS division strategy [2,11,27].
In the experiments, the threshold number of consecutive estimations of unhealthy is set to three based
on the analysis of signals in order to prevent false alarms during the normal stages. The overview and
flowchart of CNN-HS are shown in Figure 4.
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Figure 4. CNN-HS combined with NSP.

4. Experimental Results

4.1. Data Description and Implementation

The nature of this study needed continuous time series data on machinery that degraded over-time
to the point of rolling bearing failure, including any failures in the balls, rings, and cage. The purpose
of early fault detection is to detect the degradation as early as possible so that maintenance or
prognostic-based decisions can be implemented. FPT is the indicator that detects the start of the
degradation. We benchmarked CNN-HS with two widely used datasets: the IMS dataset and the FEMTO
dataset. Both bearing datasets were acquired from accelerated degradations of bearings in a run-to-failure
manner and are widely used to demonstrate the approaches for fault diagnostics and prognostic methods.

The IMS dataset is generated by the NSF I/UCR Center for Intelligent Maintenance Systems (IMS) [28]
and the experimental test rig and sensor placement are shown in Figure 5. The IMS dataset is composed of
three sets of run-to-failure experiments in which four bearings were installed on a shaft and measured.
The test was stopped when the accumulated debris exceeded a certain level and the status of each bearing
was recorded. All three sets have a sampling rate of 20 kHz but differ in the data acquisition phase. Only
the first set has two-channel (horizontal and vertical) bearing data and was used for our model testing and
validation. We transformed the time series data into fixed-size images by using NSP. Figure 6a shows the
spectral density difference in bandwidths through FFT on the IMS dataset and the comparison between
healthy and unhealthy data. The spectral density from 400 to 700 Hz of unhealthy data was greater than
that of healthy data. In this experiment, the sampling rate was considered by deciding the bandpass filters
during the image transformation phase: 400–500 Hz, 500–600 Hz, 600–700 Hz.
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Fig. 2. Test rig.

as evidence of bearing degradation. Test will stop when the
accumulated debris adhered to the magnetic plug exceeds a
certain level and cause a switch to turn off. Although it is really
hard to know the actual time point of the slight degradation
occurring of bearings, the collected debris by magnetic plug is
still an effective indication as the evidence of bearing health
degradation. The test bearings have 16 rollers in each row,
a pitch diameter of 2.815 in, a roller diameter of 0.331 in,
and a tapered contact angle of 15.17 deg. A PCB 353B33
high-sensitivity quartz Integrated Circuits Piezoelectric (ICP)
accelerometer was installed on each bearing housing. The data
sampling rate is 20 kHz, and the data length is 20 480 points.
Vibration data were collected every 20 min. Four testings (i.e.,
testings 1, 2, 3, and 4) were implemented in this experiment.
For each testing, four new bearings were installed on one shaft,
and other experimental conditions (e.g., radial load on the shaft,
alignment, and rotation speed) were kept the same for the four
testings. The full life data from five representative bearings
(named bearings 1–5, respectively) whose faults include inner
race, outer race, and ball defect are used to test the performance
of the proposed methods. For more detailed information about
this experiment, refer to [2].

A. Bearing Health Degradation Monitoring

The healthy data set (i.e., the first one-third of the whole life)
from bearings 1 and 2 is used to construct HMMs. DPCA is first
used on the healthy data. It can be found that two time-lagged
arrangements are good to capture the dynamics in the recorded
vibration signals. The first three eigenvectors corresponding
to the largest three eigenvalues are kept for DPCA. Then, the
baseline HMM is trained based on the extracted PC-based
data from each bearing. HMMs with three and two hidden
states are enough to model the given data set of bearings 1
and 2 (see Table II), respectively. Fig. 3 presents the data
distribution of the training data set and the probability density
description (i.e., the contour) of those Gaussian components in
the baseline HMM. It can easily be seen in Fig. 3 that the HMM
precisely characterizes the distributions of the healthy data. It is
worthwhile to emphasize that HMM is capable of describing the
multimodal distributions of the data, as shown in Fig. 3, which
is important for modeling of complicated data signals sampled
from complicated working conditions.

TABLE II
BIC FOR HMM MODELING

Then, the full life cycle data from bearings 1 and 2 are
inputted into the baseline HMM and the corresponding MDs are
calculated. A threshold with Type I error 99.9% is used to trig-
ger alarms for determining whether bearing health degradation
is happening. For the purpose of comparison, the MD charts
based on HMM with PCA are provided in Figs. 4(a) and 5(a) for
bearings 1 and 2, respectively. The MD charts based on HMM
with DPCA are presented in Figs. 4(b) and 5(c) for bearings 1
and 2, respectively. It is obvious in Figs. 4 and 5 that the
bearing degradation processes have been presented from health,
slight degradation, and severe degradation to failure. It can
be observed that MD increases as bearing health deteriorates
continuously, then turns into a stable period, and then basically
increases further until failure. Although the bearing lives and
failure modes are different from each testing and each bearing,
MD charts still consistently depict the bearing degradation
behavior in the whole run-to-failure test. Meanwhile, it can be
observed that the MD charts do not trigger false alarms when
bearings are in healthy states, which shows that the warning
scheme is effective for reducing false alarms.

In Figs. 4 and 5, MD charts using DPCA detect the slight
degradation of the two bearings at time points 1760 and 539
(i.e., the number of the warning point), respectively. Thus, the
proposed model triggers degradation alarm in the early stage
of the whole life cycle of each bearing. In general, the changes
of vibration signals are too weak to be detected when bearing
is in slight degradation state. However, the proposed model
effectively detected the slight degradation and gave the early
alarm. For bearing 1, HMM with DPCA detects the earlier
slight degradation (at time point 1760) than HMM with PCA
(at time point 1780). This illustrates that DPCA improves the
sensitivity of HMM for detection of slight health degradation.
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Figure 5. The experimental test rig and sensor placement illustration of IMS [28].
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Figure 6. Spectral density difference in bandwidths through fast Fourier transform, (a) Intelligent
Maintenance Systems (IMS), (b) Fanche-Comte Electronics Mechanics Thermal Science and
Optics—Sciences and Technologies Institute (FEMTO).

Figure 3 shows the degradation process of bearing 4 of the first dataset, in which a roller element
defect occurred at the end of the accelerating process. The degradation data of bearing 4 was used in our
experiment to test the capability of our proposed method.

The FEMTO dataset has been available to the public since the IEEE PHM 2012 Prognostic Challenge
(PHM 2012). The dataset was collected on an accelerated aging platform, PRONOSTIA, as shown in
Figure 7 [8,9]. Asynchronous motor, a shaft, a speed controller, and an assembly of two pulleys are used
to change the speed of the rolling bearings. Similarly, the vibration data in the horizontal direction are
investigated. The dataset was composed of 17 run-to-failure data in which a single bearing was tested
(two columns of vibration data: horizontal and vertical). The sampling frequency of data acquisition
is 25.6 kHz, which was taken into consideration in our image transformation phase. The 17 datasets
are grouped into three sections by operating conditions that differ in rotation speed and radial load.
Each dataset has a different run-to-failure time, requiring fault detection methods that are adaptable to
time-varying operational conditions and environments. When the amplitude of the vibration data exceeds
20 g, the measurement of the run-to-failure experiments is stopped and the bearing is considered to be
defective. Figure 6b shows the spectral density difference in bandwidths through FFT on the FEMTO
dataset and the comparison between healthy and unhealthy data. The spectral density from 500 to
1200 Hz of unhealthy data was different from that of healthy data. Taking the sampling frequency into
consideration, three different bandpass filters were used: 500–800 Hz, 800–900 Hz, 900–1200 Hz.
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Figure 7. The experimental PRONOSTIA platform for accelerated bearing degradation tests [9].

The NSP representation and the CNN-HS were implemented using Python scripts and the Keras
library on the TensorFlow framework and were tested on a Linux system. The details of the runtime
environment are shown in Table 2. The source code to reproduce our experiments is available at https:
//github.com/opensuh/CNNHS/.

Table 2. Runtime environment details.

Category Specification

CPU Intel Core i7-7700K
GPU NVIDIA Tesla V100-DGXS 32GB
OS Ubuntu 16.04 LTS (Linux)

SW libraries Python 3.7.6/CUDA v10.0.130/
Tensorflow 2.0.0

The proposed method was compared with previously widely used methods, RMS and AE. RMS was
implemented simply by calculating the square root value of the addition of the horizontal and vertical
vibration data squared. The mean of the calculated values in the interval of 10 s was then used as the RMS
value to compare it with other methods. The threshold was specified by testing different threshold values
that produced the least false alarms, while, at the same time, making the prediction early enough before
complete failure.

AE was implemented by utilizing the first 20% of the degrading data as training data. In the testing
phase, the loss value calculated from the difference of the output and input of the test data was used as
a metric for anomaly detection. The theory behind this was that since the first 20% of the overall data,
considered healthy, was used to train the AE model, when test data that differed from the training data,
which can be considered unhealthy or an anomaly, was given as an input to the AE, the difference of the
output and input values would be much greater. The number of layers and nodes, the activation function,
batch size, the number of epochs, and the threshold value used for fault detection were determined
through different test iterations that produced the best results.

4.2. Evaluation of CNN-HS on IMS Dataset

In the IMS dataset, only bearing 4 in the first set was used for analysis since it showed complete
failure at the end of the accelerated degradation tests. Both training and testing were done on the dataset

https://github.com/opensuh/CNNHS/
https://github.com/opensuh/CNNHS/
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of bearing 4 since no other bearing data in the same operational condition was available. The result of our
model was then compared with previously widely used methods, RMS and AE in Figure 8. Both methods
were implemented using a pre-specified threshold based on statistical properties.
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Figure 8. Predicted FPT using root mean square (RMS), auto-encoder (AE), and CNN-HS on IMS dataset
(bearing 4). The red horizontal line is the threshold value for RMS and AE, and the red vertical line is
the FPT.

Figure 8 shows the HS division in RMS, AE, and CNN-HS. RMS and AE require threshold values
for HS division, and the threshold value is represented in the red horizontal line. FPT, determined by a
threshold value in RMS and AE, and by the trigger mechanism in CNN-HS, is represented as a vertical
red dotted line. It can be noticed that FPT given by CNN-HS is faster than that given by RMS and
AE. Furthermore, the CNN-HS method has less ambiguity than other methods. Qualitatively, it can be
observed that:

• HSs are clearly distinguishable from the predicted FPT.
• On the other hand, the RMS value and the loss value of AE are not stable, but show oscillations that

might lead to false alarms in the case of persistent triggering.

4.3. Evaluation of CNN-HS on FEMTO Dataset

Datasets of bearings in condition 1 (1800 rpm and 4000 N, C1) and condition 2 (1650 rpm and 4200 N,
C2) were used in our experiment. Each condition has seven run-to-failure datasets (we denote them as
B1 to B7). Two datasets from each operating condition were used as the training dataset, and the trained
model was tested on five other datasets in the same condition. The results of the prediction in C1 are
compared with previous methods, RMS and AE, in Figures 9 and 10. Again, RMS and AE require a
pre-specified threshold value for HS division, and the threshold value is represented by the red horizontal
line. FPT, determined by a threshold value in RMS and AE, and by a trigger mechanism in CNN-HS,
is represented as a vertical red dotted line.

The FPTs measured from all the experiments in both C1 and C2 are recorded in Table 3. The test
results show that our CNN-HS can detect faulty features much faster. On average, the CNN-HS method
predicted faults 47.65% and 44.80% faster than the RMS and AE methods, respectively in terms of time.
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Figure 9. Predicted FPT using RMS, AE, and CNN-HS on FEMTO dataset (condition C1).
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Figure 10. Predicted FPT using RMS, AE, and CNN-HS on FEMTO dataset (condition C2).
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Table 3. Predicted FPT in FEMTO dataset (condition C1 and C2, unit: seconds).

Bearing (End time) RMS AE CNN-HS

C1B3 (23,750) 16,760 14,940 740
C1B4 (14,280) 10,870 10,850 1880
C1B5 (24,630) 24,100 24,130 16,670
C1B6 (24,480) 24,070 24,130 21,590
C1B7 (22,590) 22,010 21,990 8800

C2B3 (19,950) 19,390 19,390 19,950
C2B4 (7510) 7400 7350 7430

C2B5 (23,110) 22,920 23,110 930
C2B6 (7010) 6840 6850 6,870
C2B7 (2300) 2210 2230 2250

An analysis of the features extracted by NSP and CNN-HS was conducted. We visualize features
using t-Distributed Stochastic Neighbor Embedding (t-SNE) [29], which is commonly used for visualizing
high-dimensional features in scatter plots and projects high-dimensional objects into two-dimensional
points, such that similar objects are closer and dissimilar objects are further away from each other.
The features were extracted from the output of the first fully connected (FC) layer, which consists
of 500 nodes. The 500-dimensional features were then reduced to 100 dimensions by using principal
component analysis (PCA) [30] and further reduced to two dimensions by using t-SNE. By this procedure,
the features of NSP were mapped into a two-dimensional plane. Figures 11 and 12 show the reduced
features of tested bearings in C1 and C2 mapped into a two-dimensional plane.

Healthy prediction by all methods
Unhealthy prediction by CNN-HS, Healthy prediction by RMS and AE
Unhealthy prediction by CNN-HS, RMS, and AE

C1B3 C1B4 C1B5 C1B6 C1B7

Figure 11. Feature maps of CNN-HS using t-Distributed Stochastic Neighbor Embedding (t-SNE) with
principal component analysis (PCA) (condition C1).

Healthy prediction by all methods
Unhealthy prediction by CNN-HS, Healthy prediction by RMS and AE
Unhealthy prediction by CNN-HS, RMS, and AE

C2B3 C2B4 C2B5 C2B6 C2B7

Figure 12. Feature maps of CNN-HS using t-SNE with PCA (condition C2).

This analysis shows that our CNN-HS model is able to detect the HS division features of NSP better
than RMS and AE. Blue and black points are vibration conditions, where RMS, AE, and CNN-HS predict
’healthy’ and ’unhealthy’, respectively. The difference in FPT comes from the red points, where the
CNN-HS model was able to identify the faulty features not detected by RMS- and AE-based methods. This
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feature map proves that the NSP is an appropriate tool for extracting useful features from raw vibration
data to represent the health of machinery. The NSP was able to transform vast amounts of raw vibration
signal data into a single image from which features could be extracted using the CNN-HS model. Thus,
there is a clear distinction between the features that were predicted to be unhealthy and healthy by the
CNN-HS method as well as compared with the predictions of other methods. Moreover, we observed that
our CNN-HS method distinguishes the faulty features of the images produced by the NSP. The region of
the black point is small and far away from the blue and red regions. CNN-HS combined with NSP is able
to detect minor symptoms (undetected by the other two methods), which leads to more lead time for the
investigation of the failure process.

5. Discussion

By experimental evaluation, the feasibility of our model for HS division is demonstrated. Our model
is able to capture faulty features ahead of previous methods, as demonstrated in the feature maps,
which generate a significant amount of lead time on the maintenance time horizon. To verify this
capability, we conducted another test for the feasibility of our method for HI prediction. Thanks to the
capability of the initial wearing feature extraction, our proposed method can make earlier FPT predictions
than the signal-based and unsupervised data-driven method that requires specified thresholds.

In order to verify the performance of the proposed method, more experimental evaluations on the
reliability of the dataset are needed. There are other benchmark datasets, but we could not work with
them due to the following reasons. NSP is a scalable and signal-independent data-wrangling method,
but it requires multiple channel signals. Other open benchmark datasets containing multiple channels of
vibration data were not found. As of now, there are no datasets available with labeled ground truth FPT.
As such, this work has been developed in the face of this existing difficulty and thus remains among the
first works of this kind.

For efficient HS division using supervised learning, there is a need for an extensive amount of
degradation datasets under variable operational conditions. Wearing patterns are varying in laboratory
test benches as well as in real-world applications. Some wearings degrade gradually, while others degrade
rapidly. A general supervised HS division method can be developed if a large amount of data covering
such varying wear is made available. Presently, there is a dearth of rich data in this context. In light of
this aspect, the present work becomes significantly important as it provides the early detection of FPT,
exceeding the performance of common existing approaches.

More details about the selection and labeling of the training data are discussed in the following section.

5.1. Impact of Combination of Training Data

In our proposed method, training data from the same operating condition is needed, and the selection
of the training dataset of our model plays a critical part in the performance. During our experimental phase,
we tested different combinations of training data to observe how the variation in bearing degradation
in the training set affected the model in both C1 and C2. The impact of the different combinations of
training data in terms of the average FPT to the total duration ratio is shown in Table 4. These results
show that the predicted FPT varies by up to 34.45%. The bearing datasets under accelerated degradation
show two phenomena: bearing that shows gradual degradation and bearing that shows rapid degradation.
From our intuition, a suspicion arises as to whether the model is predicting healthy conditions to be
unhealthy prematurely since, in the training phase, relatively healthy conditions might have been labeled
as unhealthy since rapid degradation was shown near the end. If this is the case, then the model might
cause erroneous false alarms during healthy conditions. In the future, we plan to test our proposed method
on a test bench with both degrading bearing data and normal bearing data.
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Table 4. FPT to total duration ratio in different training data variation in CNN-HS under conditions 1 and 2.

Bearing (Test)
Bearing (Train)

C1-B1B2 C1-B1B4 C1-B3B4

C1B5 67.6% 79.2% 87.0%
C1B6 88.1% 86.9% 97.0%
C1B7 38.9% 51.2% 60.0%

C2-B3B4 C2-B1B3 C2-B1B2

C2B5 2.9% 2.4% 4.0%
C2B6 5.3% 11.8% 98.0%
C2B7 2.0% 5.6% 97.8%

5.2. Impact of Labeling Ratio of the Wearing Process

In the evaluation, NSP from the first 5% of the total degradation process was labeled as healthy,
and the last 5% as unhealthy. This labeling makes the ratio of used training data to unused training data
in the training dataset (denoted as labeling ratio) equal to 1:9. The labeling ratio of 1:9 is determined by
experimental comparisons: from 1:9 to 5:5. In each condition of the FEMTO dataset, two bearing datasets
are selected as training data, and the rest of the datasets are tested. First, FPT is predicted using the trained
model in each test dataset. Based on the predicted FPT, the test dataset is divided into a healthy condition
period (HCP) and an unhealthy condition period (UCP). The ground truth of HS division is set to ‘healthy’
for HCP data, and to ‘unhealthy’ for UCP data. The F1 score is used to evaluate the reliability of FPT made
by the given labeling ratio. The F1 score is defined as follows:

F1 =
2 × Recall × Precision

Recall + Precision
(1)

where Recall = TP
TP+FN and Precision = TP

TP+FP . TP, FP and FN denote the true positive, false positive,
and false negative values, respectively. The CNN-HS model trained with a ratio of 1:9 showed the highest
average F1-score, as shown in Table 5.

Table 5. The reliability (F1 score) of the predicted FPT corresponding to the labeling ratio.

Condition
Labeling Ratio

1:9 2:8 3:7 4:6 5:5

C1 0.91 0.89 0.87 0.86 0.87
C2 0.97 0.95 0.82 0.77 0.83

C1 + C2 0.94 0.92 0.85 0.82 0.85

5.3. Effectiveness of the CNN-HS Model and NSP in Representing Degradation Patterns

To verify the effectiveness of the CNN-HS model and NSP in representing degradation patterns,
we conducted an experiment on the FEMTO dataset. The experiment we proposed was to predict RMS
values using NSP images and CNN-HS. RMS, which is a signal-based method, uses the original time series
vibration data. The RMS prediction model using NSP and CNN-HS is shown in Figure 13. In the first
step, the time series vibration data is transformed into NSP images and the NSP image is used as an input
image of CNN-HS. In the training procedure, the RMS value of the sliding frame corresponding to the
NSP image is set as an input label of CNN-HS. Unlike the proposed method, NSP images from the total
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degradation process are used in the training procedure. In the testing phase, the trained CNN-HS is used
to compute out RMS values of NSP images acquired from the test data.
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Figure 13. The RMS prediction model using NSP and CNN-HS.

The RMS values for each bearing under two operating conditions in the FEMTO dataset are shown in
Figure 14. Because each bearing has a different degradation pattern and defect level, the pattern of RMS
values and the maximum RMS value on each bearing and condition are different. To reduce the scale
difference in RMS values, we saturate the maximum RMS value to a threshold value. In this experiment,
we evaluated the CNN-HS with a threshold value of two because the minimum value among the maximum
RMS values on bearings is two. In order to verify the accuracy of the RMS prediction using NSP and
CNN-HS, the root mean square error (RMSE) is used to calculate the accuracy of the prediction values.
The RMSE is defined as follows.

RMSE =

√
1
n

n

∑
t=1

(RMSt − Pt)2 (2)

where RMSt is the RMS value at time t and Pt is the predicted RMS value by the CNN-HS model.
The RMSEs are shown in Table 6. The RMSE of C1B3 is higher than the RMSE of other bearings since
the RMS value of C1B3 oscillates greatly. Despite the high RMSE of C1B3, most of the RMSE values are
quite low. Figure 15 shows that the predicted RMS value by CNN-HS model has very similar patterns to
the RMS values. Therefore, NSP can represent the features of time series vibration data and CNN-HS can
accurately predict the health stage of rolling bearings.
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(a) (b)

Figure 14. RMS values for each bearing in the FEMTO dataset, (a) Condition 1, (b) Condition 2.

(a) (b)

Figure 15. RMS value and predicted RMS value by NSP and CNN-HS in (a) C1B6 and (b) C2B3

Table 6. The prediction errors using CNN-HS combined with NSP.

Bearing RMSE Bearing RMSE

C1B3 0.4920 C2B3 0.1522
C1B4 0.2010 C2B4 0.0962
C1B5 0.1028 C2B5 0.1097
C1B6 0.0774 C2B6 0.1503
C1B7 0.2156 C2B7 0.1645

Average 0.2529 Average 0.1271

6. Conclusions

In this paper, we propose a novel method of supervised health stage prediction using CNN for bearing
wear. In signal-based and unsupervised data-driven methods, threshold values have to be manually
specified, a method which is prone to either high false alarm rates or low recall. The combination of
NSP, which allows us to integrate a frequency analysis that helps to extract faulty wear features, and a
CNN-based binary regression model, rids the necessity of designating a threshold, one of the most crucial
problems in early fault detection. Our CNN-HS model effectively distinguishes healthy and unhealthy
states in an unambiguous manner by changing the anomaly detection problem into a binary regression
problem, utilizing a simple trigger mechanism. In order to minimize the labeling process in supervised
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learning, a small portion of the dataset is utilized for training the model. The additional experiments
showed that the prediction error in terms of the RMSE of the RMS value prediction was quite low.

Moreover, the experimental results show that the combination of these two methods detects faults
earlier than previous methods. The FPT in the experimental results showed that our CNN-HS model
predicted faults 47.65% and 44.80% faster than the RMS and AE methods, respectively. Overall, we can
conclude that NSP captures the feature of raw time series data efficiently, thus allowing for earlier fault
predictions, and that CNN-HS predicts the health stage of bearing wear accurately, ridding us of the need
for manual threshold specification.

Despite the fast and accurate health stage prediction results achieved by the proposed method, it does
require a sufficient amount of training data for model development. In real industrial scenarios, supervised
data with degradation is difficult to collect. In future research, we plan to divide the health state into
numerous stages based on degradation time instead of just healthy and unhealthy in a supervised manner.
This model could act as a health indicator and be used to recognize patterns that could be used for RUL
prediction. Moreover, we plan to extend the use of NSP images in an unsupervised manner for true
condition-independent fault detection methods.
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Abbreviations

The following abbreviations are used in this manuscript:

AE Auto-Encoder
CNN Convolutional Neural Networks
CNN-HS CNN for HS division model
FC Fully Connected
FEMTO Fanche-Comte Electronics Mechanics Thermal science and Optics-sciences and technologies institute
FFT Fourier Transform
FPT First Predicting Time
HCP Healthy Condition Period
HHT Hilbert Huang Transformation
HI Health Indicator
HS Health Stage
IMS the center of Intelligent Maintenance System
NSP Nested-Scatter Plot
PCA Principal Component Analysis
RMS Root Mean Square
RUL Remaining Useful Life
t-SNE t-distributed Stochastic Neighbor Embedding
UCP Unhealthy Condition Period
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