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Abstract: Wrist actigraphy has been used to assess sleep in older adult populations for nearly half
a century. Over the years, the continuous raw activity data derived from actigraphy has been used
for the characterization of factors beyond sleep/wake such as physical activity patterns and circadian
rhythms. Behavioral activity rhythms (BAR) are useful to describe individual daily behavioral patterns
beyond sleep and wake, which represent important and meaningful clinical outcomes. This paper
reviews common rhythmometric approaches and summarizes the available data from the use of these
different approaches in older adult populations. We further consider a new approach developed in
our laboratory designed to provide graphical characterization of BAR for the observed behavioral
phenomenon of activity patterns across time. We illustrate the application of this new approach
using actigraphy data collected from a well-characterized sample of older adults (age 60+) with
osteoarthritis (OA) pain and insomnia. Generalized additive models (GAM) were implemented to fit
smoothed nonlinear curves to log-transformed aggregated actigraphy-derived activity measurements.
This approach demonstrated an overall strong model fit (R2 = 0.82, SD = 0.09) and was able to provide
meaningful outcome measures allowing for graphical and parameterized characterization of the
observed activity patterns within this sample.

Keywords: actigraphy; circadian rhythms; older adults; behavioral activity rhythms

1. Introduction

The aging process involves major physiological changes including changes in sleep, circadian
rhythms, and daily behavioral patterns [1]. Disrupted patterns are more common and disabling in
older adults with chronic illness such as dementia, chronic pain, and cancer, each of which are disorders
mechanistically linked to the disruption of the endogenous circadian clock [1–3]. It is hypothesized
that both deterioration of the hypothalamic suprachiasmatic nucleus (SCN), the endogenous clock
of the brain, and its consequent weakened functioning as well as inadequate (weak or missing)
external cues that are necessary to entrain the endogenous rhythm-regulating behavioral patterns (e.g.,
sleep/wake and activity) impact older adults [4]. Circadian rhythms are biologically characterized by
diverse biomarkers, most commonly, melatonin. However, the procedures involved in measuring such
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biomarkers are costly, cumbersome, and unrealistic in larger clinical trials, especially those involving
older adults. Researchers have considered different approaches to estimate endogenous circadian
rhythms, mainly through the use of accelerometry devices known as actigraphs [5]. While other
methodologies exist for the assessment of sleep and sleep/wake patterns, here we focus on actigraphy
as it is used for evaluation of rhythms [6,7].

Actigraph devices were originally utilized for the evaluation of sleep variables such as total
sleep time, time in bed, and sleep efficiency [8,9], and multiple guidelines and reviews considering
the validity and reliability of actigraph devices in the study of sleep have been published [10–20].
When compared to overnight polysomnography, the gold standard assessment of sleep, actigraphs are
reported to have as high as 97% sensitivity but as low as 24% specificity [18]. Generally, the actigraph
shows high sensitivity for detection of wakefulness, especially during the sleep period. However,
sensitivity is highly dependent on device used, the algorithm applied, and the type of population with
more clinically complex populations showing lower sensitivity. Over the years, other applications
of the actigraph emerged, including the assessment of physical activity [21] and circadian activity
rhythms [22,23]. The actigraph, a lightweight, compact, and wearable technology, is designed to
record movement activity over time. Movements are detected by accelerometers (or piezoelectric
accelerometers) that sense accelerations resulting from body movements [24]. While various devices
are commercially and generically referred to as actigraphs, in this review, we limit the term “actigraphs”
to the tri-axial or omnidirectional accelerometer devices that are worn on the wrist (commonly referred
to as wrist actigraphs). Other types of accelerometers used in research such as uniaxial pedometers or
accelerometer devices designed to evaluate energy expenditure or activity intensity are fundamentally
different from wrist actigraphs and are not discussed here. Despite some technological and operational
differences among wrist actigraph manufacturers, the majority of the validated wrist actigraph devices
utilize a filter of 0.25 to 2–3 Hz bandpass to ensure that unwanted signals/movements are not recorded
and to minimize artifacts resulting from changes in gravitational field [10,24,25]. Detected motions
are converted into analog electrical units, which are then digitized and stored as activity units.
Generally, activity counts are increased when the acceleration passes the threshold indicated by the
filter and usually summarized by time-based epochs. The sampling rate can be programmed and most
manufactures provide options for the time-based epochs (e.g., 1 s, 30 s, 1 min, 5 min). The raw activity
count data can then be processed in various ways to produce a wide range of variables.

Circadian patterns estimated from actigraphic data are referred to variously as activity rhythms [26],
24 h activity rhythms [27], rest activity rhythms [28], circadian activity rhythms [29,30], and circadian
rest-activity rhythms [31]. Here, we collectively refer to the aforementioned methods as behavioral
activity rhythms (BAR) since they reflect actual physical behavior rather than biological oscillation
identified at cellular levels. To illustrate the approaches discussed in this review, we utilize data from
367 older adults who were enrolled in a large clinical trial evaluating group treatment for co-morbid
insomnia and osteoarthritis pain in primary care (The Lifestyles Study, Cognitive Behavioral Therapy
for Arthritis Pain and Insomnia in Older Adults, AG031126). This cohort was well-characterized
and detailed description on the study sample, design of the trial, and findings were previously
reported [32–35]. The majority of subjects in this cohort completed a baseline actigraphy recording for
assessment of sleep. Activity was measured and recorded with the Actiwatch-2 (Phillips/Respironics,
Inc., Bend, OR, USA) for seven consecutive days. The Actiwatch-2 weighs 16 g, has a size of 43 × 23 mm
× 10 mm, and is equipped with a lithium cell type battery that allows for 91 days of logging time at
1 min epoch lengths as programmed for this study. This accelerometer is a solid-state “Piezo-electric”
accelerometer with a range of 0.5–2 G peak value, a bandwidth of 0.35–7.5 Hz, sensitivity of 0.025 G,
and a sampling rate of 32 Hz. Some subjects removed the device for extended periods, used it only
at nights, or had a malfunctioning device. Those with significant amount of missing data (less than
six full days of recordings or having more than 8 h of missing data in a given day) were excluded.
A total of 316 participants are included here. For illustration purposes, four individuals (two males
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and two females) were arbitrarily chosen as examples, and their data were utilized throughout the
graphical presentations.

2. Approaches for Estimating Circadian Rhythms from Actigraphy Data

BAR can be summarized according to an observable behavioral phenomenon with a diurnal
pattern having four major characteristics: (1) a period of quiescence (usually sleep), (2) a period of
increased activity in the morning following waking up, (3) a relative higher (even though changing)
period of wakeful activity during the day, and (4) a period of “winding down” or decreasing activity
as the next quiescent period (i.e., sleep) approaches (Figure 1). Parametric [36], non-parametric [37],
and a combination of both approaches [28,38] have been used to process the raw actigraphy data and
to characterize BAR shape, rhythmicity, robustness, timing, and regularity.
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Figure 1. Example illustration of activity patterns of four older adults aggregated from longitudinal
actigraphy. Despite individual differences, a repetitive phenomenon is observed that can be described
consistently as a period of low activity during the night (sleep), a period of rapid increase in activity in
the morning after waking up, variable but markedly higher activity throughout the day, and a final
decrease in activity in the evening towards another period of minimal activity.

2.1. Parametric Approaches

Most commonly, parametric models such as the mathematical cosinor algorithms and Fourier
decompositions have been applied to actigraphic data to delineate BAR parameters [5,39]. While most
commonly used, cosinor methods have often been criticized for poor model fit (Figure 2) and for the
lack of clinical relevance [36,38,40,41]. A glaring example of poor fit is provided by Satlin et al. [41],
who used the cosinor approach and reported a “circadian correlation” as a measure of goodness-of-fit
of 0.27 in older adults with Alzheimer’s disease (AD) and 0.49 in the healthy controls. In other words,
only 7% and 24% of the variance observed in the activity data was explained by a cosinor model.

The main advantage of the simple cosinor model is that it provides a parsimonious model that
requires only three parameters (Table 1). The outcome variables derived from this approach are mesor
(midline estimating statistic of rhythm), amplitude (height of the cosine peak), and phi (also called
phase or acrophase, the timing of the peak of the rhythm) [26]. Results using this approach tend to
focus on amplitude and phi with less emphasis on the mesor. The mesor is the fitted mean of the cosine



Sensors 2020, 20, 549 4 of 16

across the full 24 h including both sleep and wake; this fitted activity average lacks clinical specificity
and is rarely reported. The cosinor method uses a parametric approach, meaning it assumes that the
data are normally distributed and fit the symmetrical cosinuisoid. The rest/inactive period (i.e., sleep
period) within a 24 h day is significantly shorter than the active period; therefore, a symmetrical wave
assumption does not properly represent the observed BAR (as in Figure 1) and may be problematic.
While highly complex Fourier sequences may partially address this concern and provide better fit,
these models quickly lose clinical relevance as they increase within day oscillations and thus are not
generally used in clinical sleep and circadian rhythm adult research. Fast Fourier transformations are
more commonly used in infants who have expected and multiple sleep bouts during the day [42].
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Figure 2. Example illustration of poor fit of cosinor model to observed 7-day activity data of the
4 individuals depicted in Figure 1. (a) Figures on the left illustrate the activity rhythm over the entire
week whereas (b) figures on the right illustrate the overall activity pattern over a single 24 h period.
As evident by both figures, the cosinor approach results in extremely poor fit of the model to observed
data (mean R2 of the entire sample = 0.35, SD = 0.11).
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Table 1. Circadian outcome variables derived from traditional parametric and non-parametric
approaches.

Approach Variables Definition Interpretation

Cosinor model
fitting

Midline-estimating statistic
of rhythm (mesor)

Mean activity level over the 24 h
period

Higher values indicate more
average activity across day and
night

Amplitude Distance between the mean activity
level (mesor) and the peak

Higher values indicate higher
overall maximum activity amount
and more rhythmic changes

Phi/Acrophase Time of peak activity in the 24 h
period

Later values indicate later peak of
activity and may reflects a more
delayed phase

R-Squared
Measure of statistical reliability and
consistency of the model-fitted
rhythm

Higher values indicate greater
robustness of the predicted
circadian rhythm

Extended
Cosinor Model

Midline-estimating statistic
of rhythm (mesor)

Half-way between minimum and
maximum

Higher levels indicate more
estimated average activity

Amplitude
Differences between the maximum
modelled activity level and
the minimum modelled activity level

Higher values indicate higher
overall rhythmicity

Phi/Acrophase Time of peak activity in the 24 h
period

Later values indicate later peak of
activity and may reflect a more
delayed phase

Minimum The lowest point of the fitted curve Higher values indicate more
night-time activity

Up-mesor Time from above the mesor to below
the mesor

Larger values indicate later time of
increasing activity

Down-mesor Time from above the mesor to below
the mesor

Larger values indicate later time of
declining activity

Alpha Width of the rhythm
Larger values (wide troughs and
narrow peaks) indicates more night
time activity

Beta Steepness of the rise and fall of the
fitted curve

Larger values indicate steeper rise
and fall

R-Squared Model fit measure
Larger values indicate greater
robustness of model fit and more
rhythmicity

F-statistic
An adjustment to the R-Squared while
accounting for the number of
observations in the model

Larger values indicate greater
robustness of the rhythmic pattern
and hence overall more rhythmicity

Nonparametric
approach

Inter-daily stability (IS) Invariability of the 24 h rhythm
between different days

Higher values indicate better
coupling/synchronization of
rest-activity rhythm to external
zeitgebers (i.e., 24 h cycle)

Intra-daily variability (IV) Fragmentation of the 24 h rest-activity
rhythm

Higher values indicate increased
fragmentation, which may reflect
the occurrence of daytime naps
and/or nocturnal awakenings

Daily activity (M10) Mean activity level during the most
active 10 h period of the day

Higher values indicated more active
wake period

Nocturnal activity (L5)

Mean activity level during the least
active 5 h period, which usually
occurs during sleep and nocturnal
arousals

Higher values indicate less restful
sleep

Relative amplitude (RA)
Normalized difference between the
most active 10 h period (M10) and
least active 5 h period (L5)

Higher values indicate a more
robust 24 h rhythm, reflecting higher
activity during wake and relatively
lower activity during the night

Extended cosine methods have also been introduced [36] and used in various populations
including older adults [31]. These extended models are inverse-logit transformations of the standard
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cosine curve and tend to provide a better model fit with additional parameters but continue to rely on
normality assumptions that are fundamentally inaccurate as biological circadian rhythms do not follow
such assumptions. Even though extended cosinor approaches provide additional outcome variables as
compared to the simple cosinor approach, the majority of studies continue to report only descriptors of
model fit, typically amplitude and acrophase. A comprehensive list of the major outcome variables
from the extended cosine approach developed by Marler et al. [36] is provided in Table 1.

2.2. Non-Parametric Approches

Non-parametric methods have also been introduced and utilized in older adult populations [37,43–46].
These models provide several variables including inter-daily stability (IS), intra-daily variability (IV),
most active 10 h (M10), least active 5 h (L5), and relative amplitude of the activity pattern (RA; see
Table 1 for exact definitions). The main advantage of this approach is that it does not assume normality
of the BAR data collected through continuous actigraphic monitoring and early evaluation of such
methods demonstrated good discriminative power and improved sensitivity when compared to the
cosinor approach [41,44]. However, these outcomes are difficult to interpret clinically as they do not
correspond directly to actual observable behavioral patterns. Additionally, this approach does not lend
itself to visual characterization of the observable repetitive activity pattern over consecutive days.

3. Characterizing Actigraphy-Derived Behavioral Activity Rhythms in Older Adults

3.1. Behavioral Activity Rhythms, Age, and Cognitive Status

BAR tend to weaken with age, becoming more irregular, desynchronized, and attenuated [47].
Older adults tend to have reduced amplitude and rhythmicity (indicated with model fit statistics),
as well as worse inter-daily stability and intra-daily variability; however, these results are generally
weak and sometimes inconsistent [37,43,46–49]. Luik et al. [49] evaluated 1734 older adults (average
age of 62 ± 9.4 years) and demonstrated that older adults tend to have a more stable BAR, indicating
a more repetitive pattern across days, but that older adults also have a significantly more fragmented
BAR across the day as they likely have longer sedentary bouts. Disruption in BAR (mainly BAR
attenuation) is commonly reported in older adults with dementia [37,41,44,50–52]. BAR measures have
been shown to be uniquely associated with cognitive performance in older adults without dementia
and independent of age effects [53,54]. A large study assessing BAR in 1282 healthy older women
reported that decreased amplitude, robustness, and delayed BAR were significant risk factors for the
development of mild cognitive impairment and dementia [55].

It is very common for patients with dementia to have more activity during the night than during
the day, resulting in attenuated BAR [41]. Gehrman et al. [56] carefully evaluated the relationship
between BAR parameters and the mini mental state exam (MMSE), a validated and widely used
tool for assessing global cognitive functioning, in 188 older adults residing in nursing homes. This
study reported a more nuanced relationship where subjects with more impacted rhythms showed
lower MMSE scores, but not all subjects with dementia necessarily exhibited BAR disturbances, with
the MMSE found not to be related to BAR rhythmicity across the entire sample. In other words,
BAR disturbances do not uniformly worsen with progression of dementia processes, suggesting that
treatments targeting BAR should be considered independently of the dementia stage with the potential
to improve quality of life for these patients and their caregivers [57]. Additionally, some evidence
suggests that changes in BAR phase may actually precede cognitive changes in older adults [58]. BAR
rhythmicity was shown to be a strong correlate with functional status, well-being, and quality of life
in older adults with dementia [54]. Treatments targeting circadian rhythms and directly improving
BAR have been studied in different chronic disease populations and tend to result in functional
improvement [29]. Yet, most studies are not specific to older adults and the majority of them do not
report changes in actigraphic BAR outcomes. Future studies are necessary to establish the effect of
interventions targeting actigraphy-derived BAR in older adults with dementia.
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3.2. Behavioral Activity Rhythms, Mortality, and Quality of Life

Studies have suggested disrupted actigraphy-derived BAR is associated with increased morbidity,
mortality, and decreased quality of life in healthy older adults and those with neurodegenerative
disorders (e.g., dementia, Parkinson’s disease), yet results are not consistent [30,57–62]. BAR disruption
has also been commonly reported in chronic diseases, such as cancer and dementia, and is again
associated with decreased quality of life independent of age, physical and emotional status [61–64].
When assessing BAR in 149 older adults with dementia, Gehrman et al. [59] did not find an association
between overall BAR rhythmicity and survival rates. However, in a large study including 2964 older
men (age 67+) recruited from the general population [60], BAR rhythmicity outcomes were significantly
associated with mortality. Participants in the lowest quintile of BAR robustness exhibited a 57% higher
mortality rate compared to those with most robust rhythms (i.e., highest quintile), yet the association
was not consistent across all the parameters and only present when considering overall rhythmicity
using the extended cosine pseudo F-value. No findings were noted when using amplitude or mesor
with mortality rate.

Interestingly, Paudel et al. [60] found the advanced phi/acrophase timing of the BAR showed
a 2.8-fold higher rate of cardiovascular disease-related mortality while Gehrman et al. [59] reported
a delayed phi/acrophase timing was associated with lower survival rates. In Tranah et al. [30],
3027 community dwelling older women were evaluated for BAR and mortality. While amplitude was
associated with all-cause mortality, delayed timing of peak activity (phi/acrophase) was associated
with increased mortality from cancer and stroke. Specifically, in this study, a peak BAR of >4:33 PM
(approximately, 1.5 SD above the mean) was associated with increased mortality from stroke and cancer.
Importantly, the association between BAR abnormalities and mortality was independent of sleep time.
While using similar BAR methodology, discrepancies in these studies can be attributed to the utilization
of different populations and the use of different methodologies for evaluating mortality and survival.
Nonetheless, these results suggest that BAR dysfunction may be a potential preclinical biomarker of
mortality and increased risk of serious illness which is independent from normal aging processes.

3.3. Behavioral Activity Rhythms in the Study of Mood in Older adults

Mood disorders are common in older adults and up to 10% of older adults presenting to primary care
meet diagnosis of major depressive disorder [65]. The literature linking circadian rhythm disturbances to
mood disorders is vast [66–68]. Studies have demonstrated an important link between BAR disturbances
and depression in older adults [28,54,69]. For example, Smagula et al. [28] showed a negative relationship
between BAR robustness and amplitude with depressive symptoms in 2892 community-dwelling
older men. Similar findings were reported in Maglione et al. [69] using a cross-sectional sample of
3020 community-dwelling older women (average age of 82.5). Impacted BAR robustness as well as BAR
fragmentation seem to be associated with depressive symptoms, yet these associations are minimized
when adjusting for covariates of lifestyle and health factors [27,31,70]. While rarely reported, mesor
was also a strong predictor of depressive symptoms in older adults [28]. This is expected as reduced
activity is commonly shown to be associated with more depressive symptomology [71,72].

Research in general adult populations commonly reports a relationship between delayed circadian
rhythms and depression [73]. In large studies of older adult women [69] and men [70], non-normal BAR
timing was associated with more significant depressive symptoms. However, results are inconsistent
and both delayed and advanced BAR have been associated with mood symptoms. Taken together,
it seems that timing of the BAR (peak activity time) itself may not be as relevant to mood symptoms
as much as increased sedentary time either in the morning or evening [69]. A different study of
238 individuals with a history of mood disorder between the ages of 12 and 90 found that the association
between BAR patterns and mood symptoms depended on age, where phase delay was associated
with depression in younger age, whereas impacted robustness and disorganized BAR patterns were
associated with increased mood symptomology in older adults [48].
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3.4. Methodological Concerns

There is a wide variability in methodology related to actigraphy recording and data management
including device placement (dominant vs. non-dominant hand) and epoch length (30 s vs. 60 s are the
most common variants). Major differences also include the length of actigraphic recording (number of
days) and ways to handle missing data. While battery time varies by manufacturer, most actigraph
devices can obtain continuous data for at least 30 days. Nonetheless, few studies have subjects wear
an actigraph continuously for this length of time. Of marked importance is the management of missing
data. Missing data can occur relatively often and easily in any population, and this is amplified in
older adults, especially those with dementia. It is common that research participants remove the device
temporarily and forget (or intentionally decline) to place it back. Older actigraph devices were not
equipped with off-wrist detection function, though these capabilities are now becoming standard.
In older devices, off-wrist times are reported as zeros indicating no activity and this may confound
results. The most striking methodological inconsistencies involve the use of various approaches for the
estimation of circadian rhythms and reporting of outcomes. Even when studies use similar methods,
there are marked discrepancies in reporting of findings and parameters showing no associations are
generally not reported at all. Such methodological inconsistencies limit the possibilities of appropriate
comparisons between different studies and only allow for an overall discussion of the results.

4. Describing Actigraphy-Derived BAR in Older Adults—A Graphical Approach

When considering which methodology to use in fitting longitudinal circadian/diurnal models
for BAR characterization, two highly desirable yet (at times) competing criteria need to be addressed:
good data fit and clinically interpretable parameters. The most common criticisms of existing models
are either poor model fit (parametric methods) or lack of clinical interpretability (non-parametric
approaches). There is an urgent need for models that provide both improved fit and parameters that
better characterize the actual observed behavioral pattern. Beyond the statistical and mathematical
approaches for summarizing the overall pattern of BAR, studies have been challenged with graphical
representations of the activity patterns. Some studies rely on the statistical model to produce
visual displays [31,36,48,70], while others use aggregation approaches that summarize longitudinal
activity over time [38,41,46,58]. To date, no study has attempted to provide approaches that yield
meaningful clinical parameters without sacrificing model fit, relevance, or ability to adequately display
and interpret the data. In order to address these significant limitations, our group has developed
graphical procedures that can provide both adequate fit of observed data and immediately meaningful
clinical outcomes. These suggested methods are not to replace other approaches but rather provide
a supplementary technique to organize actigraphy-derived data and improve characterization and
estimation of circadian rhythms.

The main goal of our approach was to better characterize the observable behavioral phenomenon
of BAR that involves four distinct features: (1) a period of sleep and quiescence, (2) a period of
increased activity in the morning, (3) a relative plateau period of wakeful activity with some daytime
activity changes, and (4) a period of “winding down” or decreasing activity as the next quiescent/sleep
period approaches. For this, the accelerometer-derived minute-by-minute activity levels (60 s epoch
lengths) were aggregated over seven days for each individual. Similar to previous studies that used
this aggregation approach for visualization [38,41,46,58], actigraphy-derived activity can be plotted to
summarize diurnal changes in activity with a better face validity. Data aggregation was done using
both mean and median; as no differences in results were seen, we present only mean aggregation.
As seen in Figure 1, there are marked differences in individual patterns but all follow a similar pattern
indicating a period of nighttime inactivity, increase in activity in morning, changing activity pattern
during the day with some “dips” of lower activity, and a final decrease of activity at the end of the day
until the next period of sleep. Figure 3 shows the aggregation for the entire sample which is greatly
smoothed in comparison to the individual plots. This graphical approach of aggregated data (Figure 1)
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provides a more accurate visual representation of the observable behavioral phenomenon of BAR
when visually compared to cosinor approach (Figure 2) using the same individuals.
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The graphical approach we present can be further parametrized. We utilized generalized
additive models (GAM) [74] to fit smoothed nonlinear curves to log-transformed aggregated activity
measurements with the ‘mgcv’ package [75] for R [76]. GAMs are an extension of the common
generalized linear model (GLM) that include smoothed predictors and covariates, in this instance time,
in order to model non-linear relationships with the outcome of interest, which here is activity. While
not widely used in social and clinical research, GAMs are commonly applied in areas of biological and
environmental science for analysis of seasonal and cyclic time-series data, for example in the study of
air pollution [77]. As for classic GLMs, GAMs are flexible and may incorporate a number of smoothed
or unsmoothed parameters, with a range of approaches available for achieving appropriate smoothing
while avoiding overfitting. This is critical in the analysis of actigraphy given the high inter-individual
variability of activity profiles and common outliers in activity measurements. Predictors are smoothed
using penalized regression splines with smoothing parameters automatically selected by restricted
maximum likelihood (REML) during model fitting. This approach avoids over/under-fitting while
simultaneously allowing the model to capture individual differences in activity patterns, without
requiring the user to have prior knowledge of the form of the distribution. While this automatic selection
of smoothing parameters differs from the previously used models for modeling actigraphy data which
fit the observed data to the given model (e.g., cosinor), it is key to capturing individual variations in
the natural characteristics of the observed activity data. In addition, REML is established as a robust
and reliable method for avoiding over/under-fitting [75]. Parameters of individual participant model
fits can be examined further with a range of functions included in the ‘mgcv’ package. Assumptions
regarding the appropriateness of the data for the GAM can also be easily assessed with standard
plots showing the distribution of residuals (Figure 4), as is common practice for GLMs. The Q-Q
plots derived from the GAM for each of the four older adults presented in Figure 1 are shown in
Figure 5. These plots show that the log-transformed activity data are normally distributed for each of
the example participants, as expected.
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Figure 6. Examples of the smoothed curve (red line) produced by a generalized additive model with
aggregated longitudinal actigraphy for the four older adults presented in Figures 1 and 2. R-squared,
UP slope and DOWN slope values are presented for each participant, with the dashed lines representing
the 24 h time at which the UP and DOWN slopes were calculated (i.e., the time in which the change in
activity counts was greatest). It can be seen that the smoothed curves reliably reflect individual changes
in activity across the average 24 h period.

There are a range of measures that could theoretically be extracted from the fitted, smoothed
curves. Here however, we are interested in capturing the individual characteristics of the onset and
offset of activity during the 24 h period, referred to as the UP slope and the DOWN slope, respectively.
The points at which the slopes of the UP and DOWN activity periods were at their steepest were
calculated from the first derivative of the smoothed curve. From this, the time within the 24 h period of
the steepest UP/DOWN slope were also calculated. To ensure complete activity transition periods were
captured, even for individuals with delayed or advanced rhythms, the 24 h period used for model
fitting was defined as 03:00 to 03:00, with the 24 h period from 00:00 to 24:00 used for plotting data
in an intuitive and easily interpretable way. Individual model fits were evaluated by inspecting R2

values, the plotted model fit, diagnostic plots of residuals and plots of observed and fitted values.
Outcome variables are summarized in Table 2. Of note, the average model fit achieved by this approach
(R2 = 0.82, SD = 0.09) is markedly higher than that obtained from cosinor approaches (see Figure 6
compared to Figure 2) and indicates that 82% of the variance observed in aggregated mean activity
levels are accounted for using this model. Figure 4 shows the distribution of model fit for the entire
sample. This negatively skewed distribution indicates that for the wide majority of subjects this model
provided relatively high model fit. While this improved model fit is expected as we are modeling
aggregated means, these are much more reflective of the observable BAR phenomenon as compared
to the cosinor approach using non-aggregated data, and thus result with more meaningful easily
interpretable clinical outcomes.
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Table 2. Proposed outcome variables derived from graphical approach in the lifestyle sample (N = 316).

Measure Description Interpretation Summary Values
(Mean, SD, Range)

UP Slope

Slope of fitted curve during
period of activity onset where
the slope is at its steepest
(positive value,
∆log(activity)/hour)

Higher numbers indicate
faster (or steeper) increase in
activity post awakening.

0.57, 0.16,
0.16–0.98

UP Slope Time
Time within 24 h period at
which activity slope is at its
steepest (24 h time)

Later values indicate later time
of morning increase of activity
and may reflect a more
delayed awakening time and
more delayed phase

07:26, 02:05,
02:59–15:11

DOWN Slope

Slope of fitted curve during
period of activity ‘wind-down’
where the slope is at its steepest
(negative value,
∆log(activity)/hour)

Higher absolute numbers
indicate faster (or steeper)
decrease in activity towards
the next period of rest.

−0.47, 0.13,
−0.12–−0.96

DOWN Slope Time
Time within 24 h period at
which activity slope is at its
steepest (24 h time)

Later values indicate later time
of evening decrease of activity
and may reflect a more
delayed sleep time and more
delayed phase

22:01, 03:52
11:02–05:20

R2 Percentage of variance
accounted for by model

Larger values indicate greater
robustness of model fit and
more rhythmicity

0.82, 0.09,
0.28–0.94

Figure 6 which presents the same four examples shown in Figures 1 and 2, demonstrates the ability
of this approach to meaningfully describe BAR in older adults by capturing individual differences in
activity across the 24 h period. Individual differences are immediately noticeable in Figure 6; female 1
had a much slower rate of rising in the morning and winding down in the evening when compared
to the other examples provided, resulting in a relatively shorter daytime activity. This participant
also had higher activity during the night and lower activity during the day resulting in a lower R2

indicating a more attenuated and less rhythmic pattern.

5. Conclusions

The utilization of actigraphy in research in older adults has produced significant data that help
characterize the behavioral activity rhythms (BAR) of this population and the relevance of BAR to
clinical functioning. While methodology and analytic methods vary widely, overall results from
the literature have shown that BAR deteriorates with age and becomes more attenuated. BAR has
been highly useful in studying clinical adult populations suffering from chronic illness. BAR is
more disrupted in patients with dementia, cancer, and pain. There are several limitations for the
analytic approaches commonly employed for characterizing BAR and no single method appears to be
superior. We found no methods to provide a reasonable model that can depict and represent clearly
the observable phenomenon of activity changes during the day. In contrast, we introduced a graphical
method that is capable of providing graphic presentation of BAR with high model fit (average of over
80% of variance explained) and distinguishing clinically useful components of BAR. The exclusion of
participants with high amounts of missing data has the potential to contribute to the good model fit
observed across this sample. However, here, the novel application of GAMs to flexibly capture the
natural characteristics of individuals’ BAR resulted in consistently high model fit especially when
compared to cosinor approach. Future studies are needed to validate these proposed BAR outcome
variables and directly compare these to other methodologies/approaches. Additionally, future studies
are required to evaluate the validity of these methods in determining group differences in clinical trials.
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Researchers should carefully consider the pros and cons of each method and employ that which most
closely characterize the component of the rhythm of interest.
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