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Abstract: Electrical capacitance tomography (ECT) is one of non-invasive visualization techniques
which can be used for industrial process monitoring. However, acquiring images trough 3D ECT
often requires performing time consuming complex computations on large size matrices. Therefore,
a new parallel approach for 3D ECT image reconstruction is proposed, which is based on application
of multi-GPU, multi-node algorithms in heterogeneous distributed system. This solution allows to
speed up the required data processing. Distributed measurement system with a new framework for
parallel computing and a special plugin dedicated to ECT are presented in the paper. Computing
system architecture and its main features are described. Both data distribution as well as transmission
between the computing nodes are discussed. System performance was measured using LBP and
the Landweber’s reconstruction algorithms which were implemented as a part of the ECT plugin.
Application of the framework with a new network communication layer reduced data transfer times
significantly and improved the overall system efficiency.

Keywords: electrical capacitance tomography; heterogeneus system; distributed systems; multi-GPU
computations

1. Introduction

Electrical capacitance tomography (ECT) is a measurement technique that can be used for
non-invasive monitoring of diverse industrial processes in 2D [1,2], 3D [3] and even 4D dynamic
mode [4]. ECT is performing the task of imaging of materials with a contrast in dielectric permittivity by
measuring capacitance from a set of electrodes placed around the investigated object. A fundamental
ECT measurement setup consisting of the ECT sensor, ECT tomograph and a computer is shown
in Figure 1a. In ECT measurement cycle the following phases can be distinguished: capacitance
measurement, data acquisition (signal conditioning and analog to digital conversion), data collection,
and finally calculating of electrical permittivity distribution, which is called image reconstruction.
The entire measurement process is controlled automatically by a computer system (Figure 1b).
Accuracy of ECT imaging is determined by hardware as well as by software and both of these
factors are taken into consideration while new measurement setup is designed. Sensor resolution is
limited by the number of electrodes and their size. In 3D ECT usually three or four rings with 8, 12 or
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16 electrodes are used. Reducing the measurement time is limited by time of capacitance measurement.
Also, data acquisition and processing have a significant impact on accuracy and time limits.

Figure 1. Diagram of the measuring system in the electrical capacitance tomography: (a) ideological—
constructional, (b) block—functional.

In order to achieve a high quality tomographic image [5], complex reconstruction algorithms
performing many matrix calculations have to be applied [6–9]. However, choosing an optimal
reconstruction algorithm and its implementation depends on an application. In medicine or material
science, where an internal object or dangerous material crack [10] needs to be detected, the most
important feature of the algorithm is accuracy and precision of image reconstruction, while time of data
processing is not so crucial. In dynamic measurements of fast changing media, time of measurement
and data processing is equally or even more important parameter than accuracy. Therefore different
solutions accelerating these calculation have been reported in the past, especially dealing with
parallel computing [11–15], sparse matrices and Finite Elements Method [16], Fourier-based sparse
representations [17], neural networks approach [18,19], fuzzy logic [20] or field-programmable gate
array (FPGA) implementation [21]. Usually a compromise between accuracy and rapidity of ECT
measurement must be taken. While for control purposes determination of some important process
parameters can be sufficient, fast and accurate 3D process visualisation is a challenging task.

In this work the authors concentrate on parallel computing in distributed system as computational
capabilities of single PC proved to be one of the main limiting factors for applying 3D ECT for on-line
industrial process monitoring, such as for example oil-gas flow [3] or silo flow [22] monitoring.

Distributed systems are one of the most important technological achievements in recent
years [23,24], which have had a significant impact on the development of modern computing. The scope
of distributed systems applications in everyday life is very wide [25,26], from local systems such
as cars, ships, aircraft to global systems of millions of nodes used for data processing services;
from simple built-in systems consisting of very small and simple sensors to those containing powerful
computational components [27]; from built-in systems to those that support advanced interactive
user interfaces.

A distributed system can be defined as one in which the hardware components or software on the
computers in the network communicate and coordinate their actions only through the transmission
of messages [28,29]. This simple definition covers a whole range of systems in which networked
computers can be successfully used to perform tasks faster or more accurately than a single unit.
The main motivation for the construction and use of distributed systems is the desire to separate
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resources [30–32]. The concept of “resources” that can be effectively shared on a computer network
includes both hardware components such as disks and printers, and software such as files, databases,
and other objects such as video streams that are transmitted from a digital video camera or a voice
signal transmitted between mobile phones and stations.

In this paper, a novel heterogeneous, multi-graphics processing unit (GPU), multi-node distributed
system is proposed, with a framework for parallel computing and a special plugin dedicated to
ECT. The system’s architecture and features are presented, and also parallel algorithms of ECT data
processing and image reconstruction. Test results comparing the developed system with new network
communication layer are compared to the authors’ earlier solutions based on the Xgrid platform [13,33].
Finally, the results of the latest system modification and optimization are presented and compared to
the previously developed solutions. [34,35].

2. Image Reconstruction in ECT

The scheme of image synthesis in electrical capacitance tomography is called image reconstruction.
It is based on solving the so called inverse problem [36], in which the spatial distribution of electric
permittivity is approximated from the measured values of capacitances between the sensor electrodes.
Inverse problem in ECT is ill posed due to the small number of capacitance C measurements in relation
to number of pixels in reconstructing image. This results a poor spatial resolution of ECT technique.

Inverse problem is nonlinear and therefore two main groups of image reconstruction algorithms
can be distinguished: nonlinear and linear. Non-linear algorithms are more accurate but slower [16].
Linear algorithms use approximate linear model, which is less accurate but simple and useful in
engineering praxis. These algorithms are used predominantly for monitoring fast-varying industrial
processes, like oil-gas flows in pipelines [3] or gravitational flows and discharging of silo [22].

One of the most used reconstruction algorithms in ECT is linear back-projection (LBP). Even
though it is characterized by low spatial resolution, it is not as computationally complex as other
solutions. Moreover, there is still active research on improving its characteristics [37]). LBP is based on
the following Equation [8,38]:

ε = STCm (1)

where:
ε—electric permittivity vector (output image),
ST—sensitivity matrix, transposed
Cm—capacitance measurements vector.

The Landweber’s algorithm is a more accurate, iterative algorithm, which is based on the
following Equation [8,38]:

εk+1 = εk − αST(Sεk − Cm) (2)

where:
εk+1—image obtained in current iteration,
εk—image from the previous iteration,
α—convergence factor (scalar),
ST—sensitivity matrix, transposed,
S—sensitivity matrix,
Cm—capacitance measurements vector.

Computation of sensitivity matrix S for ECT tomography incorporates a sensitivity model based
on an energy of electric field accumulated in a 3D ECT sensor space. This energy can be calculated as
the energy of capacitor or as the energy of electric field:
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WC =
1
2

U2C (3)

WE =
1
2

∫
Ω

ε(x, y, z)~E(x, y, z) · ~E(x, y, z)dΩ (4)

where: WC is an electric field energy accumulated in capacitor with capacity C and with applied
voltage U, WE is an energy of electric field E with spatial electric permittivity distribution ε(x, y, z).
Of course both equations describe the same energy therefore they can be compared together:

1
2

U2C =
1
2

∫
Ω

ε(x, y, z)~E(x, y, z) · ~E(x, y, z)dΩ (5)

and consequently:

C =
1

U2

∫
Ω

ε(x, y, z)~E2(x, y, z)dΩ (6)

The sensitivity value of any point j ∈ Ω describes the connections between changes of spatial
permittivity distribution in that point and resulting changes of the capacity i, as it can be expressed by
followed equation:

Si,j =
δCi
δεj

(7)

Combining both Equations (6) and (7) and omitting i index which is connected with measurement
sequence we can get:

Sj =
1

U2

δ
(∫

Ω ε(x, y, z)~E2(x, y, z)dΩ)

δεj
(8)

However it is still not defined what εi means and how it is related to the spatial electric permittivity
distribution function ε(x, y, z). Typically when finite elements modeling for ECT is used the function
ε(x, y, z) can be defined as constant value inside each point j ∈ Ω. Therefore Equation (8) can be
rewritten as:

Sj =
1

U2

δ
(∫

Ω εj~E2(x, y, z)dΩ)

δεi
(9)

Assuming that voltage U equals to a difference between potentials ϕel1 and ϕel2 applied
to electrodes el1 and el1 and expanding Equation (8) we can compute the sensitivity matrix S
using formula:

Si,j(x, y, z) =
1

ϕel1 · ϕel2

δ
(∫

Ω εj(x, y, z) ~Eel1,i(x, y, z) · ~Eel2,i(x, y, z)dΩ)

δεj
(10)

where Si,j(x, y, z) is a sensitivity value for point j ∈ (x, y, z) while i-th capacitance measurement
between electrodes el1 and el2 formed, ϕel1 and ϕel2 are potentials applied to electrodes el1 and el2

respectively. ~Eel1,i(x, y, z) and ~Eel2,i(x, y, z) are electric field vectors, εj is a permittivity value for the
point j ∈ (x, y, z).

Potentials ϕel1 and ϕel2 can be determined numerically using FEM modelling according to
general formula:

ϕ = Y−1F (11)
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where ϕ is a sought distribution of the electric field—represented by the spatial distribution of
nodal potential—partial solution of the forward problem in capacitance tomography;

Y is a transformation matrix, built according to the geometric dependencies of sensor model mesh
and Neumann boundary conditions;

F is the right-hand side forces vector, defining the given Dirichlet boundary conditions

Electric field distribution ϕ can be further used for Gauss Law based inter-electrode
capacitance computations:

Ce1e2 =

∫∫∫
Ω ε (x, y, z) grad[ϕ(x, y, z)]dΩ

ϕe1 − ϕe2
(12)

where:
Ce1e2—Capacitance between electrodes e1 and e2
ε(x, y, z)—distribution of electric permittivity in domain Ω
ϕ(x, y, z)—distribution of electric potential in domain Ω
ϕe1—electric potential applied to electrode e1
ϕe2—electric potential applied to electrode e2
x, y, z—Cartesian coordinates in domain Ω

The sensitivity matrix is an important part of the image reconstruction algorithms and has to be
recalculated and tweaked for every sensor and specific visualization task. In some applications it is
necessary to update it regularly and use non-linear reconstruction algorithm [16]. However, in this
work only the linear Landweber’s algorithm is considered, so the sensitivity matrix calculation is
a one-time process, after which the matrix is then distributed to each computing node. It is then
treated as a constant in computations and does not contribute to the data transfer time during the
reconstruction.

In the case of the Landweber’s algorithm each iteration improves the overall quality of the output
image. The more iterations are performed the better the image quality is obtained, however the
overall time of computations increases. As a result acceleration of image reconstruction process is
a very important issue. Nowadays, industrial applications of 3D electrical capacitance tomography are
mainly limited by the two combined factors: image quality and computational complexity of image
reconstruction process [39].

The difference in quality of the reconstructed image, caused by the difference in number of
Landweber’s algorithm iterations that were possible, can be seen in Figure (Figure 2), which shows
reconstruction quality improvement rate for given iterations number, using two examples (two simple
balls and challenging T letter shape).

Image reconstruction using deterministic methods requires execution of a large number of basic
operations of linear algebra, such as transposition, multiplication, addition and subtraction [34,40].
Matrix calculations for a large number of elements is characterized by a high computational load [41].
Moreover, their computational complexity class is polynomial. For example, matrix multiplication
is an algorithm of O(n2+ε) class [42], for any constant ε > 0, which means that n-fold increase in the
multiplied matrix dimensions will n2+ε fold increase the execution time. Matrix multiplication is a key
operation in ECT imaging and therefore some researchers decided even to build a custom hardware
for this purpose to speed up computations [43].
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Figure 2. Dependency between 3D image reconstruction quality and number of Landweber’s algorithm
iterations (it. LW) for two example objects (simple two balls and challenging T letter shape). From the
left to the right : (in red) LBP (0it. LW), 1it LW, 5it LW, 10it LW, 25it LW, 50it LW, reference phantom
object (in green).

In this work, an approach based on computations on GPUs is proposed, as it allows for high
flexibility and relatively low application costs. Algorithms of ECT image reconstruction in a distributed
multi-node, multi-GPU environment were developed and tested. Two image reconstruction algorithms
were implemented: the LBP and the Landweber’s algorithm.

Due to the nature of the Landweber’s algorithm it is necessary to exchange the data (εk+1) in
every iteration, so its parallelization is a challenging task. The main concept of our implementation of
the Landweber’s reconstruction in distributed system will be discussed in details in Section 4.

3. Developed Distributed System

As a result of the earlier studies [13,41] a new distributed system dedicated to ECT computations
has been developed. The system is specifically designed to accelerate matrix computations that are
a crucial part of reconstruction algorithms used in ECT [16]. The previously developed solution
was based on the Xgrid platform, used as a network layer. However, the analysis of this system
showed the limitations of this solution, and the main conclusion from the previous research [33] was
that the new software for the system should be developed and new network communication should
be implemented.

3.1. Design Assumptions

The use of a heterogeneous system for distributed computing in ECT required the solution of
series of tasks without which the proposed system would not work properly. The most important of
these are as follows:

• Division of matrices between nodes
• Basic operations of linear algebra (transposition, addition, subtraction, multiplication)
• Data transfer between nodes
• Planning and division of tasks
• Support for heterogeneous devices
• Support for calculations using graphics cards
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• Support for modern multi-core processors as a set of devices
• Possibility to extend existing solutions with pseudo inheritance from implemented layouts

3.2. Implementation

The architecture of the designed system is shown in Figure 3.

Figure 3. Schematic of a designed heterogeneous distributed computing system comprising
graphics cards.

The system contains both GPU and CPU based computing nodes for performing general purpose
computation. It has an open structure and is designed to utilize currently sold hardware, but also for
easy extension in the future with plugins and other upgrades.

In our new solution a special framework called KIS digital computing (KISDC), where KIS is
an abbreviation of the Polish name of the Computer Engineering Department, was designed and built
that provides software tools needed both for the system architecture expansion and new algorithms
development and implementation in a distributed heterogeneous environment [35].

The proposed approach allows for a greater flexibility of the developed solutions, provides tools
for their easy testing and enables further acceleration of ECT image reconstruction. The system was
designed as a modular, layered architecture (Figure 4). This approach allows limiting the dependencies
between the individual modules. Moreover, thanks to this architecture, it is possible to abstract the
compute devices using KISDC-DEV module. It is an abstraction and management layer that hides
the type of the underlying hardware from the user and makes all the algorithms written using the
provided application programming interface (APIs) hardware-agnostic.

Expansion of the computing power of the system is possible through the use of “plug-in”
architecture (by adding support for new devices, such as FPGAs). The basic operations of linear
algebra were implemented in the system as a set of functions in the form of an API.

The framework was designed to ensure an efficient use of the computing power of all the devices
present in the nodes. This architecture is scalable and allows users to expand the capabilities of the
system by adding more nodes. The above assumptions pose many challenges in the architecture of
the system itself, but their application makes it straightforward to use the environment to speed up
computations in existing projects, thus testing and developing new distributed algorithms is much
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faster. As shown in the activity diagram (Figure 5), the process of performing calculations using the
KISDC system allows for much more flexibility in the number and type of devices used.

Figure 4. Block diagram of different layers in KIS digital computing (KISDC) platform.

The system is under active development and is modified according to the new demands. As part of
the latest update a special algorithm was designed that computes an array of performance coefficients
(Figure 6) which is then used to optimize the utilization of the system. In the proposed solution
coefficients of data distribution are evaluated in experimental way. As part of this algorithm (which is
used in setup phase of KISDC platform) special benchmark procedure has been developed (Figure 6),
which allows to choose the coefficient values according to the current hardware configuration and to
the system working conditions.

Computed coefficients are used in the device management layer to distribute the data between
devices on each node (Figure 7). Experimental method of these coefficients evaluation is applied as
well for data distribution between devices on each node as well between computers in distributed
system. An analogous algorithm to this presented in Figure 6 and benchmark are used for coefficients
computation for data distribution between computers.
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Figure 5. Activity block diagram for performing calculations using the KISDC platform—each block
contains a name of activity and a name of corresponding function in KISDC framework realizing this
activity (in parenthesis).

The KISDC architecture aids in the development of image reconstruction algorithms in electrical
capacitance tomography, as it simplifies their implementation for various hardware configurations
in a distributed system. As shown in the previous section, the process of performing calculations
application of the KISDC system allows for much more flexibility in the number and type of devices
used than the OpenCL library.
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Figure 6. Flow diagram for coefficients computation algorithm for KISDC platform, where WL is array
of nodes, N_W is number of elements in WL array, W is an array of computed coefficients, T is an array
of average time for each node, Max_T_Diff is maximal time difference between nodes, IsB is bolean
flag indicating if recalculation (false value) is necessary.

In order to take full advantage of the distributed nature and the heterogeneity of the system,
a new solution has been developed for performing computations on big sets of data. This problem is
especially prominent in case of 3D ECT, where the size of used matrices is significant. When using
GPUs as computational devices the memory available is usually much less than system memory
(RAM). When the computational load is proportionally divided between the devices it is possible
to only send necessary data to each device. Moreover, for some algorithms and compute kernel
implementations, the data split can be done on matrix basis, i.e., the data will be divided between the
devices in a way that will be hidden from the algorithm, based only on the available memory and
computing capabilities of the nodes.
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Figure 7. Block diagram of data division between devices on each node, kisdc_push function is
responsible for transferring data to devices whereas kisdc_pop transfer data from devices.

Furthermore, other minor optimisations of the algorithm have been implemented recently,
what will be more accurately described in Section 5. The whole system software has been developed
in C programming language with the use of object oriented programming paradigm, dynamic
data structures and OpenCL libraries. Moreover, in order to guarantee correctness of the obtained
computation results, we make sure that all devices present in the system are fully compliant with
IEEE754-2008 standard, describing floating-point arithmetic. We also use techniques of increasing
the precision and decreasing rounding errors, like utilizing hardware accelerated fused multiply add
(FMA) operations, wherever possible.

4. Parallel Algorithm of ECT Image Reconstruction in Distributed System

The main concept of the Landweber’s algorithm (Equation (2)) implementation in a distributed
system is shown in Figure 8. Matrix S is calculated from Equation (10) as it was explained in Section 2.
Due to the high density meshes needed in this case to obtain sufficient computing accuracy for 3D ECT
large number of numerical operations of high computational complexity has to be performed to solve
this task. Parallel distributed algorithms developed for this purpose using the Finite Element Method,
sparse matrices and multiple GPUs are described in the Authors’ earlier work [16]. Matrices S and ST

are calculated once at the beginning and remain constant, so they are sent only once to compute nodes
before the other calculations. This is very important for the whole distributed system performance,
because sensitivity matrices are big matrices, a few orders of magnitude bigger than measurements
or output image vectors. Therefore they transferring over a LAN would have a huge impact on the
system performance and would slow down the calculation process.

The next key problem is data distribution between the nodes in heterogeneous distributed system
(Figure 3). In most 3D ECT systems measurement data are collected with higher frequency than they
can be reconstructed. Moreover, because of the asynchronous nature of the developed solution, based
on the commissioning of tasks to local GPUs using OpenCL technology, as well as remote computing
nodes, delays can accumulate, therefore there is a need for their elimination by buffering systems.
Measurement data C are buffered in a memory in Cm array and they need to be prepared for εk
calculation before sending to the compute nodes. In the case of data distribution between computers
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larger amount of data containing full data frames are grouped and buffered in CN array for sending
through the computer network. Within the computers smaller amounts of data are distributed between
the compute nodes. Algorithms of data distribution between computers or compute nodes are based
on experimentally determined coefficients corresponding to the available memory and computing
capabilities of the nodes, as it was described in Section 3 and presented in Figure 6. These coefficients
are also computed once for a specific hardware configuration.

Figure 8. General schema of distributed Landweber’s algorithm with data buffering, where εk+1 is
image obtained in current iteration, εk is image from the previous iteration, α is convergence factor
(scalar), ST is sensitivity matrix transposed, S is sensitivity matrix, Cm is capacitance measurements
vector, CN is an array of capacitance measurements vectors, WL is an array of nodes, W is an array of
computed coefficients, and Nk is a number of elements in W array.

In the first iteration, approximated electrical permittivity distribution ε0 is calculated from LBP
algorithm (Equation (1)), then next εk+1 vectors are calculated from Equation (2) in distributed system.

Flow diagram of the algorithm for data and calculations distribution is shown in (Figure 9).
The algorithm has been designed, implemented and optimized from the start as a solution suited to
heterogeneous multi-thread CPUs and multi-GPUs distributed systems. CPUs are used for memory
allocation, task division and then management of data collection from compute nodes, while GPUs are
used for linear algebra operations on matrices. In order to split data according to devices, as it was
shown in Figure 7, computational capabilities array of coefficents is used to calculated start (Sw) and
end indeces (Ew) for data division. Due to the specific nature of the computations on GPU the most
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optimal solution is to start a separate thread for each GPU in the system, that are synchronised when
reading the results.

Figure 9. Flow diagram for data and calculations distribution algorithm.
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The main idea of the developed algorithm is, that each GPU inside the compute node calculates
the solution to the Landweber’s algorithm for a few picture elements, by assigning to each GPU
calculations specific to the selected part of image, where the whole multi-GPU system computes the
result of a single image reconstruction. In other words all computations of Landweber’s algorithm
iterations are performed by GPUs whereas rest of the system is responsible for data transfer and
division. This approach allows for more precise control of tasks allocation. This in turn enables its use
in distributed systems with a high degree of heterogeneity.

Main problem of real-time image reconstruction are delays caused by computation, nevertheless
data sending is also a very important issue since it introduces additional delays and hinders the whole
process. Therefore, both these aspects have been tested while the system was developed. Problems
of optimal hardware configuration in heterogeneous multi-CPU multi-GPU system were considered
more detaily in our earlier publications [13,15]. In this work we focused more on communication issue
and testing new developed network layer.

5. Test Results

All tests were conducted for the same hardware configuration consisted of two nodes of high
computing power, using eight thread Intel i7 930 CPUs and Nvidia GPUs (Tesla S1070 + Tesla C2070
compute devices in the first and dual GeForce GTX 570 graphic cards in the second node), connected
via 1 Gigabit LAN. The first part of this section is related to network layer testing. The next part deals
with a performance of the whole new developed distributed system and its comparison to the previous
system version. Finally, possibility of industrial process monitoring is discussed.

5.1. Network Layer Performance

By creating a network layer the existing solutions and network protocols can be used or the own
ones can be developed. In the previously built distributed system a ready-made Xgrid platform was
applied as a network layer [33].

Figure 10. Comparison of average data transmission times for different network protocols.

In this work the author’s KISDC system with KISDC-NET network layer was designed and
implemented. While designing the KISDC-NET layer, the existing network protocols were applied
and tested in advance in order to choose the best solution.

The network characteristics of the previously developed solution based on the Xgrid system was
compared with the new system using other data distribution protocols: hypertext transfer protocol
(HTTP) [44], file transfer protocol (FTP) and server message block (SMB).
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Based on the obtained results (see Figure 10) it can be stated that the use of each of the tested
protocols ensured a shorter data transfer time than the Xgrid-based solution, although the best results
were achieved for the HTTP protocol. Therefore, HTTP protocol was selected as the best one for
the KISDC-NET. More accurate comparisons of HTTP and the Xgrid-based solutions are shown in
Figures 11 and 12. Average data transfer time for Xgrid was about 25 times longer than for HTTP
(0.189 s and 0.008 s for 2 KiB and 0.481 s and 0.019 s for 3072 KiB respectively). It can also be noted that
for Xgrid-based solution random disturbances in data transfer occurred frequently. They are visible in
Figures 11 and 12 as spikes with much longer than average data transfer time. For the HTTP protocol,
these spikes occurred significantly less frequently and have many times smaller magnitude both for C
and image vectors.

Figure 11. Graph showing comparison of results for hypertext transfer protocol (HTTP) and Xgrid
platform for configuration with two computers and measurement data vector (C 2 KiB).

Figure 12. Graph showing performance comparison for HTTP protocol and Xgrid platform for
two-computer configuration and 3072 KiB image data vector.
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The comparison of the data transfer and communication times between the nodes shown in
Figure 10 indicates very clearly that the use of HTTP protocol ensured much better results than the
Xgrid platform. Already for the measurement data vector (2 KiB), it is evident that using the HTTP
protocol allowed for significant reduction of the total image reconstruction time. Moreover, for the
highest-resolution (3072 KiB) image vector, the use of HTTP allowed to improve significantly data
transmission in a distributed environment compared to the results obtained with the Xgrid platform in
the same configuration. In all cases data transmission was performed much faster in KISDC than on
Xgrid platform.

5.2. System Performance

Both distributed systems, one based on the Xgrid platform and the KISDC, have been extensively
tested and compared. In each test case the hardware configuration was the same as it was specified at
the beginning of this section.

The comparison of times of a single frame reconstruction in the two node system are shown in
Figure 13. Yellow color represents calculation time (the same for the both systems), blue color is related
to data transfer time for the KISDC system, and orange color denotes data transfer time for the Xgrid
system. For each of the analyzed data sizes, the speed up of image reconstruction expressed in the
number of reconstructed frames per second was noted. The most significant relative acceleration was
achieved for 48 KiB and 96 KiB image vectors.

Figure 13. Comparison of image reconstruction time in Xgrid and KISDC systems for dual computer
configuration using 400 iterations of Landweber’s algorithm.

In the recent system version a few optimizations of the algorithm have been implemented. The size
field in the 4 byte header has been removed and replaced with single byte Enum, with defined values
for all data sizes that the system supports. Moreover, calculation of αST is performed only once on the
system start instead of in every iteration of the algorithm. Both versions of the distributed Landweber’s
algorithm supporting frame buffering (Figure 8) were tested. The results are presented in Figure 14).
It should be noted that implementation of the optimizations in calculations and data transfer layers
allowed for significant reduction of the total image reconstruction time in comparison to previously
reported results [35].
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Figure 14. Graph showing a difference in time of image reconstruction between the improved version
of the algorithm over previously obtained results.

5.3. Monitoring of Industrial Processes

In order to monitor fast changing industrial processes in a satisfactory manner it is necessary to
achieve high image quality at high frame rate per second. Therefore, possibility of industrial process
monitoring and visualisation was also tested. At the beginning, calculations on a single computer
were performed and at most 10–15 iterations of Landweber’s algorithm in one second have been
achieved using single computer with CPU. In comparison, the KISDC platform (using two high
performance nodes with multiple GPUs each) allowed for the reconstruction of 8 frames per second
with 50 iterations of Landweber’s algorithm at the same time. Alternatively, if better image quality
is demanded, it is possible to use highest possible image size that was tested (672KiB) and achieve 1
frame of image with 400 iterations of Landweber’s algorithm per second (Figure 13).

The system is flexible and can be extended by the next computing nodes, according to the needs.

6. Conclusions

A flexible, distributed computing system for tomographic image reconstruction called KISDC has
been designed and developed. The system’s framework allows to accelerate any kind of computation
dealing with a basic linear algebra operations. However, it should be noted that the KISDC is highly
scalable and can be easily extended either by specific OpenCL kernel or by a plugin providing support
for a special kind of calculations.

The work described in this paper was focused on improvement of data management in the
distributed system and on reducing delays in the data transmission over the computer network. An
original algorithm was designed that determines an array of performance coefficients for computing
nodes in experimental way and allows to optimize the utilization of the system. The coefficient values
are updated according to the current hardware configuration and to the system working conditions.

Also, a new network layer has been implemented. The comparison of times of data transfer and
communication between the nodes shows very clearly that the use of the new developed system with
HTTP protocol ensures much better results than with the Xgrid platform. It is also evident that the
KISDC system allowed for a significant reduction of the total time of a single frame reconstruction and
a major speed up in implementations of both the LBP and the Landweber’s algorithms.
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Abbreviations

The following abbreviations are used in this manuscript:
3D three dimensional
API Application programming interface
CPU Central processing unit
ECT Electrical capacitance tomography
FPGA Field-programmable gate array
FTP File transfer protocol
GPU Graphics processing unit
HTTP Hypertext transfer protocol
KIS Computer engineering department (in Polish: Katedra Informatyki Stosowanej)
KISDC KIS digital computing
LAN Local area network
LBP Linear back projection
RAM Random access memory
SMB Server message block
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Science and Information Systems (ACSIS), Gdańsk, Poland, 11–14 September 2016; Volume 8, pp. 679–683.

17. Gunes, C.; Acero, D.O.; Marashdeh, Q.M.; Teixeira, F.L. Acceleration of Electrical Capacitance Volume
Tomography Imaging by Fourier-Based Sparse Representations. IEEE Sens. J. 2018, 18, 9649–9659. [CrossRef]
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