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Abstract: In a high accuracy strapdown inertial navigation system (SINS), the ring laser gyroscope’s
(RLG) bias changes and the performance decreases due to factors in the RLG’s self-heating and changes
in ambient temperature. Therefore, it is important to study the bias temperature drift characteristics
of RLGs in high, low, and variable temperature environments. In this paper, a composite temperature
calibration scheme is proposed. The composite temperature model introduces the derivative term
and the temperature derivative cross-multiplier on the basis of the static model and sets the overlap
regions for the piecewise least squares fitting. The results show that the composite temperature
model can compensate the bias trend term well at ambient temperature, improve the fitting accuracy,
and smooth the output curve. The compensation method has a small amount of calculations and
flexible parameter design. The precision of the laser gyros in one SINS is improved by about 64.9%,
15.7%, and 3.6%, respectively, which has certain engineering application value.
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1. Introduction

As the ideal device for strapdown inertial navigation systems (SINSs), the ring laser gyroscope
(RLG) has the characteristics of a short starting time, large dynamic range, high reliability, a long life,
and digital output. Its performance plays a decisive role in the accuracy of the SINS [1–3]. In addition to
the performance of the manufacturing process and internal structure, the gyro accuracy is also related
to the test environment and working conditions. SINSs [4] are applied in many systems such as those
for missiles, rockets, ships, and ground vehicles. The temperature of the working environment of the
system can vary greatly, which requires the variable temperature characteristics found in RLGs. In the
engineering application process, the inherent temperature characteristics of the RLG means the gyro
bias changes along with temperature, which restricts further improvement of the gyro performance.
Therefore, it is necessary to study the effect of temperature characteristics on the bias and the real-time
compensation algorithm.

Many researchers have studied the bias compensation of the RLG using different compensation
models and algorithms to provide an accurate and stable output. Hong and Lee [5] proposed a
link between the offset drift compensation of the RLG and the external environment, especially the
thermal effect. They found that the deviation drift is linearly proportional to the temperature and
temperature gradients, which removes thermal effects from the gyroscope, and that the rate of change
in temperature and the temperature gradient have the same effect on the gyro. Zhang [6,7] studied the
bias and multi-temperature point, temperature, temperature gradient, and temperature rate of the
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machine gyro, and obtained a temperature compensation model by the stepwise regression method.
The temperature characteristics of the mechanically dithered RLG were also studied by temperature
experiments. The radial basis neural network (RBFNN) was used for temperature drift identification,
whose parameter identification was performed by the orthogonal least squares (OLS) method. Zhao
and Li [8] established a bias temperature compensation model based on a temperature quadratic
term and temperature gradient. Ouyang and Chen [9] selected multiple possible environment terms
as bias compensation state variables, then used the stepwise regression analysis method to select
the significant terms. They established a precise mathematical physics model for the temperature
compensation of an RLG. Ge and Chen [10] proposed a new three-axis RLG temperature error model,
and a test method based on the principle of least squares. Tao and Tang [11] proposed a method to
establish an initial model by the three-time spline interpolation method and iteratively calculated the
model deviation correction spline curve. They entered the temperature error model of a laser gyro and
a quartz flexible accelerometer into a digital signal processor (DSP), and the real-time compensation
of the inertial output was finally realized by the navigation computer. He and Tao [12] analyzed
the correlations between bias and temperature, temperature change rate and temperature gradient,
and established a second-order dynamic temperature model with multiple temperature points in
a complex temperature changing environment, optimizing the contribution to the maximum gyro
bias. Li and Zhang [13] investigated the effect of variation of light intensity and dither frequency
on RLG drift, then used the support vector machine algorithm to establish a data fusion model that
was then used to process the original data in order for them to obtain more accurate results. Geng
and Fei [14] proposed an RLG bias temperature compensation method, which used an output signal
combined with a least squares support vector machine (LS-SVM) algorithm. Guo and Geng [15]
proposed a new scheme for the temperature compensation of the RLG bias system based on LS-SVM.
Ding and Zhang [16] proposed an improved RBFNN, based on the Kohonen network and the OLS
algorithm, to overcome the effect of temperature on the RLG bias. The improved method combines
the pattern classification ability of the Kohonen network with the optimal selection ability of the OLS
algorithm, avoiding the random selection of the RBFNN center, and improving the compensation
precision of the RBFNN. Cheng and Fang [17] proposed a multi-temperature variable input modeling
method based on particle swarm optimization (PSO)-adjusted SVM. First, temperature drift data for
modeling are preprocessed by an adaptive forward linear prediction (FLP) filter. Then, the SVM
method is used to construct the drift model to ensure generalization ability. The PSO algorithm is
used to adjust the parameters of the SVM and improve the accuracy in building the model. Wang
and Niu [18] studied the influence mechanisms of temperature, temperature rate, and temperature
gradient on inertial devices. Stepwise regression analysis and back propagation (BP) neural network
were utilized to identify the parameters of temperature error models. Moreover, the effectiveness of
the two methods was proved by temperature error compensation tests. Tao and Li [19] analyzed the
effect of high frequency oscillator voltage (UHFO) on the total reflection prisms laser gyro (TRPLG)
bias. Moreover, a compensation method based on iteratively re-weighted least squares support vector
machines (IR-LSSVM) was proposed, which can improve the TRPLG bias stability effectively.

For the above research results, the influence of temperature on the gyro bias is mainly attributed
to the influences of the temperature, temperature gradient, and temperature rate. The compensation
algorithms mainly adopt the least squares (LS), spline interpolation, stepwise regression, RBFNN, and
SVM methods. Compared with LS, stepwise regression, RBFNN, and SVM are suitable for non-linear
fitting, but the amount of calculation is large. Cubic spline interpolation has second-order smooth
continuity for nonlinear fitting, but third-order interpolation is required for all temperature ranges.
The least squares method is most widely used in the temperature-modeling of inertial devices. However,
the least squares method has certain limitations, among which is the fact that polynomial fitting can
only achieve higher fitting accuracy under the condition that the sample curve is monotonous without
obvious fluctuation, and the fact that piecewise fitting can hardly guarantee smooth continuity at the
segment points. Therefore, considering the calculation amount, parameter design, and economy in
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engineering application, a piecewise least squares fitting method with overlaps is proposed to guarantee
smooth continuity at the segment points. Moreover, for the second-order model, the second order of
the non-overlaps and the third order of the overlaps can be used to ensure the smooth continuity of the
segmented points. In addition, in order to improve the stability and accuracy of the RLG in a dynamic
environment, the temperature derivative and the temperature derivative cross-multiply dynamic error
terms are introduced, and their parameters are identified based on the static temperature compensation.

2. Formation Mechanism of RLG Bias Temperature Drift Error

RLG bias is caused by any non-reciprocal effect of clockwise and counterclockwise traveling
waves present in the cavity, such as the Langmuir flow effect of the activation medium, the flow
effect of the inactive medium, the bias caused by the magnetic field, poor loss, an unstable blocking
threshold, an unequal threshold of cis-anti-blocking, multi-mode coupling effect, and zero drift. They
all produce the same effect as the angular velocity of rotation, which results in a frequency difference
in the reverse traveling wave. The frequency difference caused by these effects will eventually be
superimposed on the frequency difference corresponding to the rotation and output from the optical
signal. This interferes with the measurement of the rotation. If the RLG bias is stable and repeatable, it
can be compensated in real time by a computer. However, in fact, the bias is inherently variable and
has some random nature, which is difficult to control. So, bias is an important source of error for the
RLG [20–22].

The effect of temperature on the gyro bias is significant [23–29]: (1) Regarding the heat source,
when the gyro is working the source needs to heat up, and it takes several hours to reach equilibrium;
when conditions such as ambient temperature change, the temperature field will become more
complicated and more difficult to balance, which will affect the performance of the gyro. (2) In terms
of physical properties, the refractive index of the gas, the thermal conductivity of the material, and
the optical properties of the optical device also change along with the temperature. (3) Regarding the
geometrical characteristics, the thermal expansion and contraction and bending deformation of the
device can cause the optical path to change and the loss of the resonant system to increase. (4) Finally, a
change in the temperature field causes the flow field to change, which causes the discharge currents of
the two arms to be unbalanced and aggravates the Langmuir flow effect. These changes will affect the
RLG bias. Temperature affects almost all factors such as physical parameters, geometric deformation,
gas flow field, and so on.

3. RLG Temperature Compensation Model and Algorithm

The RLG bias temperature compensation requires fitting the experimental data to obtain the trend
curve of bias with temperature. However, the trend curves obtained by different curve fitting methods
are different in their fitting accuracy.

Due to the high accuracy of least squares polynomial fitting, it has a wide range of applications.
For many data and complex curves, the results are not ideal when the low-order least squares
polynomial fitting is used. When the high-order least squares polynomial fitting is used, the fitting
accuracy and reliability are reduced. Therefore, an RLG output pulse curve fitted by using a piecewise
least squares polynomial is proposed in this paper.

3.1. Determination of Segments

The RLG output pulses curve always has inflection points or abrupt data points. For the gyro
output curve fitting function y(x), the deviation is large at the valley peak of the curve when the output
pulses curve is fitted using a low-order least squares fit. So, the extreme point of the fitted curve should
be limited to a certain range. That is to say, if the highest order of the data is n, let the first derivative of
the fitted curve y′(x) be zero and the second derivative y′′ (x) not be zero. Then, the extreme point of
the curve can be obtained, that is x′0, x′1, · · · , x′i (i ≤ n− 1), and 0 < x′0 < x′1 < · · · < x′i < xmax.
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The segment point should be set at the inflection point of the curve. For the gyro output y(x), let
the y′′ (x) be zero and its third derivative y′′′ (x) not be zero. Therefore, the inflection points of the curve
can be obtained, that is x′′0 , x′′1 , · · · , x′′k (k ≤ n− 2), and 0 < x′′0 < x′′1 < · · · < x′′k < xmax. The inflection
points of the curve are the segment points.

3.2. Overlap

For complex curve fitting, the curve may deviate to some extent. Therefore, the inflection points
of the fitted curve may not be the inflection points of the output curve. When setting the segmentation
points, the selection of a segmentation point should be within a certain neighborhood of the calculated
inflection point, namely, the abscissas of the segmentation points are xk ∈

(
x′′k − ∆, x′′k + ∆

)
and k ≤ n− 2,

and ∆ represents the neighborhood of the calculated inflection point, namely, half of the overlap.
Because the offset of the inflection points of the fitted curve is unknown, it is not possible

to give an accurate value for the neighborhood of the inflection point. To ensure the curve is
smooth, the segmentation point should be set near the inflection point and between the left and
right extreme values at the inflection point. The abscissa of the k-th segment point should satisfy
x′k < x′′k − ∆ ≤ xk ≤ x′′k + ∆ < x′k+1 and k ≤ n− 2.

In practical applications, because the segment points are set by the inflections, the number of
segments can be divided according to the unevenness of the output pulse curve. In order to make the
curve fit smooth, an overlap is set in the neighborhood of the segment point. In addition, the range of
the overlap is smaller than each segment.

3.3. Multi-Segment Continuous Least Squares

It is assumed that xi is the gyro temperature, and yi is the gyro raw output pulse. Considering to
divide the data into K segments, the data set of each segment can be expressed as

Sk =
{
(xk,i, yk,i)

}
, i = 1, 2, · · · , nk , k = 1, 2, · · · , K

subject to
 n1 + n2 + · · ·+ nk = n

xk−1,nk−1
< xk,i < xk+1,1, 1 ≤ i ≤ nk

(1)

where nk represents the number of data in the k-th segment, and xk,i represents that there are nk data in
the k-th segment, namely, the temperature value in the k-th segment.

The fitting function y(x) can be determined as:

y(x) =



y1(x) =
m1∑
j=1

α1, jh1, j(x) = X1α1, x ≤ x1,n1

y2(x) =
m2∑
j=1

α2, jh2, j(x) = X2α2, x1 < x ≤ x2,n2

...

yK(x) =
mK∑
j=1

αK, jhK, j(x) = XKαK, x > xK−1,nK−1

(2)

where
{
hk, j(x)

}
, j = 1, 2, · · · , mk is a set of the linearly independent basis functions in the segment of

Sk, mk represents the number of basis functions in the segment of Sk, and
{
αk, j

}
, j = 1, 2, · · · , mk

is a set of fitting coefficients in the segment of Sk. In this paper,
{
hk, j(x)

}
represents a set
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of the temperature-dependent terms. Let y =
[
yT

1 , yT
2 , · · · , yT

K

]T
, α =

[
αT

1 ,αT
2 , · · · ,αT

K

]T
, and

X =


X1 0 · · · 0
0 X2 · · · 0
...

...
...

0 0 · · · XK

.
All the fitting coefficients can be obtained by the least squares method:

α = (XTX)
−1

XTy (3)

Considering that X is a diagonal matrix, the inversion operation in Equation (3) can be simplified
as the inversion of the block matrix on the diagonal, which means

α1 = (XT
1 X1)

−1
XT

1 y1

α2 = (XT
2 X2)

−1
XT

2 y2
...

αK = (XT
KXK)

−1
XT

KyK

(4)

Taking the overlap in the neighborhood of the k-th segment point xk as an example, the overlap is
(xk − ∆) < x ≤ (xk + ∆). The following processing is required for compensation calculation:

ŷk = κ1

mk∑
j=1

αk, jhk, j(x) + κ2

mk+1∑
j=1

αk, j+1hk+1, j(x) (5)

Among them, the weighting coefficients are κ1 = (xk − x + ∆)/2∆, κ2 = 1− κ1. This ensures the
continuity of the least squares fit of the two consecutive segments in the overlap. Figure 1 shows the
schematic diagram of the overlap calculation.
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Figure 1. Schematic diagram of the overlap calculation.

In Figure 1, the abscissa represents the temperature xi, the dotted line is the overlap, and the
dash-dotted lines are the weight of each part in the overlap. Further, suppose that the piecewise

function uses a quadratic curve, namely,
{
hk, j(x)

}
=

{
1, x, x2

}
, and substitute κ1, κ2 into Equation (5)

ŷk =
(xk−x+∆)

2∆

2∑
p=0

αk(p)xp +
(x−xk+∆)

2∆

2∑
p=0

αk+1(p)xp

= 1
2∆

2∑
p=0

[αk+1(p) − αk(p)]xp+1
−

1
2∆

2∑
p=0

xk[αk+1(p) − αk(p)]xp + 1
2

2∑
p=0

[ak(p) + ak+1(p)]xp

= 1
2∆

 2∑
p=0

[αk+1(p) − αk(p)]xp+1
−

2∑
p=0

xk[αk+1(p) − αk(p)]xp +
2∑

p=0
∆[αk(p) + αi+1(p)]xp


(6)

where p represents the order of the basis function in a piecewise function.
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It can be seen that after the weighting process, the compensation function of the overlap essentially
changes from the original quadratic curve to the cubic curve. In theory, the higher-order fitting function
has stronger nonlinearity. Therefore, only performing high-order curve fitting on overlaps can not
only ensure the continuity of the segmented points but also reduce the fitting-order of non-overlaps.
It avoids the problem of low boundary fitting accuracy caused by directly using the high-order model to
fit the whole temperature range. It can be seen that each segment can use a different basis function, and
the maximum power of the fitted curve in the overlap is one more than the power of the non-overlap.
Thus, this algorithm is flexible and is especially suitable for an RLG with a long test time. When the
data of a certain temperature range are lost or incorrect, only the experiment of that temperature range
can be done, which can help us save time and reduce workload.

4. Temperature Experiment and Results Analysis

4.1. Temperature Test System

The temperature test of the RLG usually requires static and dynamic tests. The static and dynamic
conditions here are defined by whether the ambient temperature changes. The static test focuses on
analyzing the characteristics of the gyro at different temperature points, while the dynamic test can
better investigate the influence of temperature shock on the system performance during the rising and
cooling processes in a wide temperature range. By referring to the practical application background of
this system, a method combining dynamic and static temperature modeling was designed to effectively
identify model parameters. During the experiment, a medium-precision INS consists of three RLGs, of
which the X-axis, Y-axis, and Z-axis correspond to the local east, north, and up directions, respectively.
The RLG temperature calibration flow chart is shown in Figure 2, and the thermostat for the RLG
temperature experiment is shown in Figure 3.
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Figure 3. The thermostat for RLG temperature experiments.

4.2. Overlap Analysis

The RLG static test data are used to calculate the temperature parameters. The curve is fitted with
overlap and without overlap. Take the Z-axis gyroscope as an example to illustrate the improvement
in the nonlinearity of the fitted curve produced by the overlaps. Figure 4 shows the static output value
of the Z-axis RLG and its fitted curve—with and without overlap. The blue solid line represents the
original output pulses, and the black stippled line represents the RLGs fitted curve after the piecewise
least squares compensation without overlap. It can be seen that there is a significant discontinuity at
the segment points. After the overlap is used in the piecewise least squares compensation, the fitting
curve is smooth. The RLGs bias before and after temperature compensation is shown in Table 1.
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Table 1. The RLGs bias before and after temperature compensation (pulses).

Uncompensated Compensated Compensated (Overlap)

X-axis 0.0233 0.0174 0.0173
Y-axis 0.0280 0.0190 0.0189
Z-axis 0.0335 0.0086 0.0071

It can be seen from the above that using overlaps improves the nonlinearity of the fitting curve
and the accuracy of the RLG in the static temperature tests.

4.3. Static Temperature Compensation Model and Results Analysis

For the RLG, the constant bias can be compensated by calibration, and the trend bias can only
be compensated by establishing the temperature model. Due to the little influence of temperature



Sensors 2020, 20, 377 8 of 13

changing rate and temperature gradient on the constant bias, the static model did not consider it.
Therefore, based on the RLG constant value term, temperature linear term and temperature quadratic
term, a static temperature compensation model was established and its compensation effect was
analyzed. The model is as follows:

yk = αk,0 + αk,1x + αk,2x2 (7)

where yk is the number of RLG compensation pulses at the temperature x in the k-th segment,
and αk, j, (k = 1, 2, · · · , K; j = 0, 1, 2

)
are the piecewise least squares fitting coefficients in the

k-th segment.
The experimental data of the static temperature points before and after the static temperature

model compensation are shown in Figure 5.
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For static test data, considering the stability of the bias curve, the temperature is divided into four
segments, and the overlapping interval is 10 ◦C. The piecewise least squares fitting coefficients of static
data are shown in Table 2.

Table 2. Table of fitting coefficients of static data.

Temperature Segment (k)
Model Parameters

α0 α1 α2 (×10−5)

X-axis

1/(−15–15 ◦C) 0.0173 −0.0014 1.7535
2/(5–35 ◦C) 0.0064 0.0004 −4.2567

3/(25–60 ◦C) −0.0551 0.0026 −3.302
4/(50–80 ◦C) 0.3390 −0.0118 9.6146

Y-axis

1/(−15–15 ◦C) 0.0184 −0.0014 −3.1281
2/(5–35 ◦C) 0.0187 −0.0010 1.3435

3/(25–60 ◦C) 0.0884 −0.0040 4.1885
4/(50–80 ◦C) 0.1204 −0.0033 1.5919

Z-axis

1/(−15–15 ◦C) 0.0167 0.0004 −2.0700
2/(5–35 ◦C) 0.0036 −0.0009 3.9374

3/(25–60 ◦C) 0.0635 −0.0042 6.5480
4/(50–80 ◦C) −0.0974 0.0032 −2.7658

The dynamic temperature experimental data of the RLGs were subjected to temperature
compensation verification using the static model parameters in Table 2. Figure 6 shows the output
curve of each direction of the RLG before and after compensation.
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It can be seen that the static temperature compensation model improves the performance of
the gyro when the system has a particularly small temperature change rate. However, for complex
environments such as those with a large temperature change rate or a large temperature change range,
the static temperature model has no significant effect on dynamic temperature compensation, and there
is hysteresis in the temperature cycling. Therefore, it is necessary to propose a dynamic model.

4.4. Composite Temperature Compensation Model and Results Analysis

In order to reduce the influence of hysteresis on the RLG accuracy in the variable temperature test,
the temperature derivative term and the cross-term of temperature and temperature derivative were
introduced. Then, their parameters were identified by the piecewise least squares fitting algorithm
with the overlaps based on the residuals of the static compensation. Figure 7 shows the RLG’s bias
curves with static and composite temperature model compensation.
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Static temperature compensation model:

yk,static = ỹk −
(
αk,0 + αk,1x + αk,2x2

)
(8)

Composite temperature compensation model:

yk,comp = yk,static −
(
αk,3(dx/dt) + αk,4x(dx/dt)

)
(9)

It can be seen from Figure 7 that the hysteresis of the RLG’s X-axis was significantly improved.
The RLG’s Y-axis and Z-axis both have a small increase because the original data had low hysteresis.
Table 3 shows the RLG’s bias value before and after temperature compensation.

Table 3. The RLG’s bias before and after temperature compensation (pulses).

Uncompensated Static Compensation Composite Compensation

X-axis 0.0533 0.0512 0.0187
Y-axis 0.0229 0.0232 0.0193
Z-axis 0.0471 0.0467 0.0454

From Table 3, the static compensation of the X-, Y-, and Z-axial RLGs produces little or no
improvement to the temperature-changing environment gyro bias. After the composite temperature
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compensation model, the hysteresis phenomenon is improved, and the bias value is, respectively,
reduced by 64.9%, 15.7%, and 3.6%.

5. Conclusions

From the comparison of the curve and bias before and after static and composite temperature
compensation, using static and dynamic models and algorithm optimization not only reduces the
bias value but also eliminates the trend of bias with temperature change. The bias changes with the
temperature almost horizontally. That is to say, the output of the RLG is zero at zero input angular
rate at various ambient temperatures. At the same time, the degree of bias dispersion has also been
improved. This indicates that the cross-term of temperature and temperature rate should be introduced
into the RLG bias compensation model to make the error model complete. Additionally, a parameter
identification method based on the residual of the static compensation reduces the RLG bias efficiently.
On the compensation algorithm of piecewise least squares fitting, using the overlaps method reduces
the calculation amount, and makes the models flexible and the fit smooth. Moreover, it fully meets
the real-time compensation and economic requirements of the project. At present, this algorithm has
been embedded in the DSP for a SINS temperature compensation, and the compensation effect is good.
Slightly extended, this piecewise least squares fitting algorithm can be applied to the temperature
compensation of the accelerometer, so the model has strong engineering practical value.
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