
sensors

Article

Hurdle Clearance Detection and Spatiotemporal
Analysis in 400 Meters Hurdles Races Using
Shoe-Mounted Magnetic and Inertial Sensors

Mathieu Falbriard 1,*, Maurice Mohr 2 and Kamiar Aminian 2

1 Laboratory of Movement Analysis and Measurement, EPFL, 1015 Lausanne, Switzerland
2 Institute of Sport Science, University of Innsbruck, 6020 Innsbruck, Austria;

maurice.mohr@uibk.ac.at (M.M.); kamiar.aminian@epfl.ch (K.A.)
* Correspondence: mathieu.falbriard@epfl.ch

Received: 28 November 2019; Accepted: 4 January 2020; Published: 8 January 2020
����������
�������

Abstract: This research aimed to determine whether: (1) shoe-worn magnetic and inertial sensors can
be used to detect hurdle clearance and identify the leading leg in 400-m hurdles, and (2) to provide an
analysis of the hurdlers’ spatiotemporal parameters in the intervals defined by the hurdles’ position.
The data set is composed of MIMU recordings of 15 athletes in a competitive environment. The results
show that the method based on the duration of the flight phase was able to detect hurdle clearance
and identify the leading leg with 100% accuracy. Moreover, by combining the swing phase duration
with the orientation of the foot, we achieved, in unipedal configuration, 100% accuracy in hurdle
clearance detection, and 99.7% accuracy in the identification of the leading leg. Finally, this study
provides statistical evidence that contact time significantly increases, while speed and step frequency
significantly decrease with time during 400 m hurdle races.
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1. Introduction

The last decade has seen a growing trend towards magnetic inertial measurement units
(MIMU)-based studies in track and field races, with the majority focusing on sprint distances. These
studies differ in terms of sensor configuration, sensor location, and type of parameter measured [1].
Several groups have used inertial sensors in sprint running to characterize temporal parameters [2–4],
body-segment orientation [5,6], ground reaction forces [7,8], and speed [9–11]. Surprisingly, only a few
studies used MIMU to quantify spatiotemporal parameters in hurdle races. Recently Ho, Chang and
Lin [12] used high-speed video cameras and inertial sensors strapped on the dorsal surface of each
foot to analyze flight time, hurdle cycle time (i.e., the time between hurdles) and hurdle cycle velocity
(i.e., hurdle cycle time divided by the distance between hurdles) in 110-m hurdles. Unfortunately, the
authors offered no explanation about the method employed to detect the time point of hurdle clearance
(HC) or how they measured the parameters above. The authors in [13] used inertial measurement
units (IMU) to evaluate the kinematics of the hurdlers’ upper limbs and reported the linear velocities
and the trajectory of the segments during hurdle clearance. Overall, little research has been performed
specifically on 400-m hurdles [14], and no wearable system has been proposed to detect HC and
identify the leading leg (LL), i.e., the leg attacking the hurdle.

The variations in the average speed, contact time, flight time, and step frequency in between the
hurdles and the side of the leading leg are all relevant indicators of the athletes’ racing strategy, and
thus can have a significant impact on performance. Currently, such analysis requires a set-up with
multiple video cameras around the track and time-consuming manual post-processing of the data.
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A wearable system capable of providing instant feedback would significantly improve our capacity to
monitor the training status and performance of athletes.

In alpine skiing, gate crossings have been detected through the use of magnets placed into the
snow and a magnetometer worn by the athlete [15]. Although potentially transferable and useful, this
technique has not yet been tested to measure the timing of hurdle crossings. Therefore, the primary
aim of this study was to propose and test different methods based on foot-worn MIMU to detect
HC and identify the LL. Furthermore, magnets fixed on the hurdles were tested as a complementary
method to detect HC. As a secondary aim of this study, the changes throughout the race of contact
time, flight time, running speed, and step frequency were analyzed to explore the relationship between
the athlete’s caliber and racing strategy.

2. Materials and Methods

2.1. Protocol

In this study, 16 athletes (n = 10 males (age: 22 ± 4 years, height: 183 ± 2 cm, weight: 69 ± 6 kg,
time: 57 ± 3 s), n = 6 females (age: 23 ± 3 years, height: 165 ± 4 cm, weight: 55 ± 2 kg, time:
64 ± 3 s)) volunteered to perform one 400 m hurdles race equipped with IMUs. The measurement
took place during an outdoor competition with participants aiming for a qualification, thus running
at their maximum speed. The athletes were equipped before the warm-up session to not disturb
their preparation routine, and the sensors were collected at the end of the race. Moreover, each of
the 10 hurdles in the second lane was equipped with two magnet bars (Figure 1). In 400 m hurdling,
the distance (DH) in between two hurdles is 35 m. The distance (DH) between the starting line and
the first hurdle is 45 m, and the distance between the last hurdle and the finish line is 40 m, hence
DH = {45, 35, . . . , 35, 40} with dim(DH) = 11 intervals. The study was conducted in accordance with
the Declaration of Helsinki, and the protocol was approved by the local Ethics Committee. All subjects
gave their written informed consent for inclusion in the study.

2.2. Instrumentation

Each participant was equipped with one shoe-mounted inertial measurement unit (IMU)
(Physilog4, Gait Up SA, Lausanne, Switzerland, weight: 19 g, size: 50 × 37 × 9.2 mm) affixed
on the dorsum of the foot with adhesive tape (Figure 1).
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The left and right foot IMUs were synchronized using radio frequencies. The configuration
included an accelerometer at 500 Hz (±16 g operating range), a gyroscope at 500 Hz (±2000 ◦/s operating
range) and a magnetometer at 71Hz (±1000 µT operating range). The magnets were constructed
by vertically stacking 8 small neodymium magnets (S-20-10-N, Supermagnete, Uster, Switzerland)
spaced by 5 mm into a 12 cm long stick. The magnets were fixed on each side of the hurdle at
the top of the vertical poles (Figure 1). We aimed for the magnets to be as close of possible to the
foot-worn magnetometers when passing over the hurdle. Finally, the video of each race was recorded
at 25 frames/s and used for verification purposes in this study (leading leg identification and the
number of steps per interval manually labeled).

All the subsequent data processing tasks described in this manuscript, the implementation of the
HC and LL detection algorithms, and the analysis of the results were performed using the MATLAB
software (R2018b, MathWorks, Natick, MA USA) and required no external libraries.

2.3. Data Processing

2.3.1. Preprocessing, Calibration, and Segmentation

The accelerometer and gyroscope sensors were calibrated, as described in [16]. The magnetometer
offset, sensitivity, and axis-misalignment were corrected using the method proposed in [17] with
calibration data recorded on-site the day of the event. The angular velocity and acceleration signals
were low-pass filtered using a 2nd-order Butterworth filter with a cut-off frequency at 70 Hz. Functional
calibration of the IMUs was performed as described in [18]: we used a standing period to define the
functional frame (FF) vertical axis, the first component resulting from the principal component analysis
(PCA) of the angular velocity during running to define the mediolateral axis of the foot, and we set
the anterior-posterior axis orthogonally to the first two (Figure 2). The accelerometer, gyroscope, and
magnetometer data were then expressed in the FF.
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We defined the start of the race as the time tstart, which occurred 200 ms before the first manually
detected acceleration peak measured when the athlete was still in the starting blocks. The 200 ms offset
corresponds to the estimated response-time of the participants [19], and the acceleration peak to the
instant when the athlete starts pushing on the starting blocks. The races were then segmented using
tstart and the official race time (Trace) of the participants.

2.3.2. Temporal Analysis and Orientation Estimation

The stepwise temporal analysis was carried out as in [18] with minor adaptations to improve the
robustness of event detection (i.e., mid-swings, initial contact, and terminal contact). The performance of
the detection algorithm was indeed affected by the noise generated by the hurdle clearance movements,
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the adaptation steps occurring before and after the hurdle, and by the high running speeds. Since
initial (IC) and terminal contact (TC) generate high-frequency oscillations in the acceleration signal, we
restrained the search window for IC and TC events using the envelope of the signal. We computed the
envelope using two successive wavelet transforms. First, we applied a high-pass filter (fc = 100 Hz) on
the acceleration norm, which preserved only the high-frequency oscillations at IC and TC. We then
rectified the signal and applied a low-pass filter (fc = 5 Hz). Although the successive filters resulted
in a low amplitude signal, the shape of the envelope preserved two peaks where the high-frequency
oscillations of IC and TC occurred. Features detection within these IC and TC limits was carried out
as in [18], and the detection results of each trial were visually inspected to ensure that the algorithm
correctly detected IC, TC, and mid-stance (MS) at each step. Note that MS corresponds to the event
where the angular velocity in the sagittal plane of the foot is minimum.

We obtained the 3D orientation of the foot using strap-down integration [20] and a drift correction
method based on the assumption that the global frame (GF) and the FF were aligned at MS (Figure 2).
Hence, the orientation of the foot between two successive strides i and i + 1 was computed in the GF set
at MS(i). Furthermore, the inclination of the foot in the starting-blocs was found using the orientation of
the gravitational acceleration in the FF. Two Euler angles were extracted from the quaternion notation
in the ZYX order: (1) the pitch angle (θ) defined as the rotation in the sagittal plane, and (2) the yaw
angle (ψ) defined as the rotation in the horizontal plane.

2.4. Hurdle Clearance Detection

Three methods have been implemented to detect HC and identify LL; (1) MAG: using the
magnetometer signal, (2) TEMP: using the temporal events, and (3) ORIENT: using the foot orientation
(i.e., pitch and yaw angles). For each of these methods, both a unipedal (i.e., one foot-worn IMU)
and a bipedal (i.e., one IMU on each foot) configuration were tested. Each method was developed
independently of the two others and used different parameters. Because the total number of hurdles
(Nhurdles) and the distance between the hurdles (DH) were fixed, these parameters were considered as
inputs of the system. The general flow chart of the methods is described in Figure 3.
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Figure 3. Flow chart of the proposed hurdle clearance detection method. We defined the inputs as
follows: a the accelerometer data, ω the gyroscope data, m the magnetometer data, Trace the official
race duration, θ the pitch angle, and ψ the yaw angle of the foot. Initial contact (IC), terminal contact
(TC), mid-stance (MS), stride time (STR), swing phase duration (SW), step duration (STP), and flight
phase duration (FLY) result from the temporal analysis. Hurdle clearance (HC) detection results are
shown as HCXX and leading leg detection results as LLXX, where XX describes the detection method.
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2.4.1. MAG: Magnets and Magnetometer Based Detection

This method assumes that the two magnets affixed on each side of the hurdle (Figure 1) locally
increased the magnitude of the magnetic field. The HC detection, therefore, consisted of finding peaks
on the filtered magnetometer norm (Figure 4).
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We computed the upper envelope of the magnetometer norm using spline interpolation over local
maxima separated by at least 0.5 s (maximum step frequency reported in [21]). The envelop signal was
then normalized by its mean to facilitate the comparison of the peak absolute values between the two
feet. Unipedal HC detection involved finding the Nhurdles highest peaks separated by at least τ second
(Equation (1)) on m̂right and m̂le f t for the right and left leg, respectively:

τ = min(DH)/Vmax (1)

where DH is the set of interval length and Vmax, the maximum running speed considered.
As min(DH) = 35 m and Vmax was set at 11.67 m/s (42 km/h), which is slightly faster than the
average speed of the current 100 m sprint World Record, τ was set at 3 s.

The times of the Nhurdles highest peaks were then labeled as HCML and HCMR for the left and right
leg, respectively, with dim(HCML) = dim(HCMR) = Nhurdles. We obtained the bipedal detection results,
namely HCMB, by combining HCML and HCMR using to the following rules:

(1) If |HCML(i) − HCMR(j)| < 0.4 s, i and j ∈ {1, . . . , Nhurdles}, then 0.5 * (HCML(i) + HCMR(j)) was added
to HCMB. Here, we assumed that if two HC events occurred within a short period (i.e., 0.4 s =

average flight time in [22]) and were detected on the left and right foot distinctively, then these
events were likely to correspond to a true HC. As we could not predict which of the left or right
event was more accurate, we defined the time of the true HC event as the average of the left and
right foot events.

(2) The i and j indices not considered in step 1 were recursively added to HCMB until dim(HCMB) =

Nhurdles. The greatest peaks were added first if they were minimum τ = 3 s away from all the HC
already in HCMB. Finally, the results were sorted in their order of appearance within the race.

Leading leg identification was only possible for the bipedal detection (LLMB), where we assumed
that the leg with the earliest magnetic peak was the LL.
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2.4.2. TEMP: Temporal Event-Based Detection

This method supposes that the HC strides have longer phase durations in comparison to regular
running strides. The phases considered were stride time (STR), swing phase duration (SW), step
duration (STP), and flight phase duration (FLY) with the time series estimated as in Equations (2)–(5):

STR(i) = IC(i + 2) − IC(i) (2)

SW(i) = IC(i + 2) − TC(i) (3)

STP(i) = IC(i + 1) − IC(i) (4)

FLY(i) = IC(i + 1) − TC(i) (5)

Note that the estimation of these four temporal parameters required the detection of different
events and necessitated different sensor configurations (Table 1). Since IC is more precisely detected
than TC in running [18], we decided to keep STR and STP in the analysis, although SW and FLY
offer narrower windows for HC detection (i.e., SW and FLY occur within STR and SPT, respectively).
Moreover, STP and FLY parameters both require a bipedal configuration while STR and SW can be
estimated from a single IMU.

Table 1. Features and configurations required in order to estimate, for each step/stride, the parameters
used to detect hurdle clearance.

Parameters
Detection Required

IC TC Configuration

STR yes no Unipedal
SW yes yes Unipedal
STP yes no Bipedal
FLY yes yes Bipedal

To remove the trend induced by fatigue [21], we subtracted the moving average from the STR, SW,
STP, and FLY time series using a window of length K (K equal to 60 steps for STP and FLY and 30 strides
for STR and SW). For each parameter, the indices of the Nhurdles highest peaks (i.e., the longest phase
durations), separated by at least τ =3 s, were defined as ik where k = 1 . . . Nhurdles. Equations (6)–(9)
show how the exact times of the HC were obtained based on the selected ik periods of each parameter:

HCSTR(k) = 0.5× (IC(ik) + IC(ik + 2)) (6)

HCSW(k) = 0.5× (TC(ik) + IC(ik + 2)) (7)

HCSTP(k) = IC(ik + 1) + 0.74× (IC(ik + 2) − IC(ik + 1) ) (8)

HCFLY(k) = TC(ik + 1) + 0.65× (IC(ik + 2) − TC(ik + 1) ) (9)

In the unipedal cases (Equations (6) and (7)), we used a 0.5 factor because the exact time point
of the HC event depends on the location of the IMU (i.e., on the leading leg or the trailing leg)
(Figure 5). In Equations (8) and (9), the 0.74 and 0.65 coefficients were based on the results of previous
research [23–25]. In these studies, the last ground contact time before HC lasted for approximately 25%
of the total step duration. Furthermore, hurdle clearance occurred after 65% of the total HC distance,
so if the speed is considered constant, 65% of flight time. The 0.74 factor of Equation (8) was found
using the two coefficients mentioned above (Equation (10)):

0.74 = round(0.25 + (0.65× (1− 0.25) (10)
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Here the round() function rounds to the nearest two digits to the right of the decimal point. Finally,
for LL identification using the STP and FLY parameters (LLSTP and LLFLY), we defined as the trailing
leg the side where HC was detected.Sensors 2018, 18, x FOR PEER REVIEW  7 of 17 
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In unipedal configuration, we first found within each stride the local maxima on the pitch and 
yaw angles (i.e., separated by at least 0.5 s as for the magnetometer). We then kept the timing of the 
Nhurdles highest peaks separated by at least τ (=3 s). These peaks were then stored as candidate HC 
events in HCθL, HCψL, HCθR, and HCψR for the left foot pitch angle (θleft), left foot yaw angle (ψleft), right 
foot pitch angle (θright), and right foot yaw angle (ψright), respectively. As a result, dim(HCθL) = 
dim(HCψL) = dim(HCθR) = dim(HCψR) = Nhurdles. Since an HC event produces a local maximum either on 
the pitch or on the yaw angle of the same foot, only Nhurdles elements in HCθL ∪ HCψL and HCθR ∪ HCψR 

Figure 5. A sequence of temporal events for the leading and trailing leg. IC events are shown with
circles, TC events with diamonds. HC events are shown with two parallel vertical bars, ground contact
with a solid horizontal line, and SW with a horizontal dashed line. In green, the flight phase within
which HC detected from MAG, TEMP, and ORIENT method would be classified as correctly detected.

2.4.3. ORIENT: Orientation based Detection

In the hurdle clearing stride, the kinematics of the leading leg differ from those of the trailing
leg [26]. Indeed, a large positive pitch angle (θleft, θright) was expected for the leading leg during HC
and large yaw angle (ψleft, ψright) for the trailing leg. So, regardless of the IMU location (leading or
trailing leg), it should always be possible to detect the HC events and determine the LL using only the
pitch and yaw angles.

The general behavior of the ORIENT method is depicted in Figure 6. First, this method searched
for positive peaks on the pitch and yaw angles of each foot independently (unipedal). The best HC
candidates obtained in unipedal configuration (HCOL, HCOR) were later combined to get the bipedal
detection results (HCOB).
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Figure 6. Flow chart of the ORIENT method. In the figure, the pitch and yaw signal are represented by
θleft, θright and ψleft, ψright, respectively. Nhurdles is the number of hurdles to detect and τ the minimum
time difference between two consecutive HC. Hurdle clearance (HC) detection results are shown as
HCXX and leading leg detection results as LLXX, where XX describes the detection method. For more
details about the different HC and LL sets, see the definitions in Section 2.4.3.

In unipedal configuration, we first found within each stride the local maxima on the pitch and
yaw angles (i.e., separated by at least 0.5 s as for the magnetometer). We then kept the timing of the
Nhurdles highest peaks separated by at least τ (=3 s). These peaks were then stored as candidate HC
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events in HCθL, HCψL, HCθR, and HCψR for the left foot pitch angle (θleft), left foot yaw angle (ψleft),
right foot pitch angle (θright), and right foot yaw angle (ψright), respectively. As a result, dim(HCθL) =

dim(HCψL) = dim(HCθR) = dim(HCψR) = Nhurdles. Since an HC event produces a local maximum either
on the pitch or on the yaw angle of the same foot, only Nhurdles elements in HCθL ∪ HCψL and HCθR ∪

HCψR sets were considered as true HC events. To select the best HC candidates among all the elements
in HCθL ∪HCψL and HCθR ∪HCψR, we normalized the absolute values of the peaks as in Equations (11)
and (12) (only the equations for the left foot are shown):

θ̂(HCθL) = (θ(HCθL) −MθL)/IθL (11)

ψ̂
(
HCψL

)
=
(
ψ
(
HCψL

)
−MψL

)
/IψL (12)

Here, MθL is the median of the left foot pitch angle over the entire trial, MψL the median of the
yaw angle, IθL the interquartile range (IQR) of the pitch angle, and IψL the IQR of the yaw angle.

The elements in θ̂(HCθL) ∪ ψ̂
(
HCψL

)
are then sorted in descending order and added to HCOL

recursively provided that each element in HCOL is separated by at least by τ (=3 s). As a result, we
defined HCOL as the set of the HC events obtained for the left foot (i.e., the best HC candidates among
HCθL and HCψL). The same method was applied for the right foot to obtain HCOR (Figure 6). Finally,
HCOL and HCOR were combined to get the bipedal detection results, with a selection process similar to
the magnetometer:

(1) If |HCOL(i) – HCOR(j)| < 0.4 s, i and j ∈ {1, . . . , Nhurdles}, then 0.5 * (HCOL(i) + HCOR(j)) was added
to HCOB. Here, we assumed that if two HC events occurred within a short period (i.e., 0.4 s =

average flight time in [22]) and were detected on the left and right foot distinctively, then these
events were likely to correspond to a true HC. As we could not predict which of the left or right
event was more accurate, we defined the time of the true HC event as the average of the left and
right foot events.

The i and j indices not considered in step 1 were recursively added to HCOB until dim(HCOB) =

Nhurdles. The greatest peaks were added first if they were minimum τ = 3 s away from all the HC
already in HCOB. Finally, the results were sorted in their order of appearance within the race.

Lastly, we used the following rule to detect the LL: the leg for which an HC event corresponded to
a peak in the pitch angle was labeled as the leading leg. The results were kept in three LL identification
sets: LLOL and LLOR for unipedal detection of the left and right leg and LLOB for bipedal configuration.

2.5. Data Analysis

Ideally, the time when the athlete’s center of mass cleared the hurdle should be used as a reference
for HC time. However, due to the lack of synchronization between the camera and the IMUs, this
reference was not available. Instead, we considered the time of HCFLY (65% of flight phase) as the
reference HC time (HCref) if it occurred inside of the flight phase of an HC observed on video. Note
that the LL at each HC was manually labeled using the video.

The HC detected using the TEMP, ORIENT, and MAG methods were considered correctly detected
if it occurred inside the flight phase of a reference HCref. Note that for HCSTR and HCSW (TEMP
methods in unipedal configuration), an HC was considered correctly detected if HCref occurred inside
of a stride of HCSTR or inside of a swing of HCSW (Figure 5). These two exceptions were necessary as
the system could not identify the LL solely based on the STR and the SW parameters. We evaluated the
performance of the proposed systems by computing the mean, SD, the minimum, and the maximum
number of correctly detected HC per trial. Moreover, the mean ± SD of the differences in HC detection
time (∆tHC) between HCref and HC detected from TEMP, ORIENT, and MAG methods were measured.
Finally, all the correctly detected HC were collected, and the percentage of correctly identified LL was
calculated regardless of the athlete.
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As one of the goals of this study was to provide feedback to the participants and trainers, we
extracted key performance features from the races [27,28], such as contact time (CT), flight time (FLY),
step frequency (STF) and speed (SPE). Moreover, we obtained the speed using the distance between
the hurdles (DH) and the time difference between two consecutive HC. The potential detection errors
of IC and TC [18] combined with a ±10% error on the 65% reference threshold (Equation (9)) provided
a confidence interval on the estimated speed. To assess how CT, STF, FLY, and SPE changed during the
race, we extracted the mean of these parameters for the 11 intervals of the 15 races. We then grouped
the results per interval and computed the inter-subjects mean and SD for each interval. Note that the
first and last two steps of each interval were removed as these may be affected by the landing and
takeoff phases. Also, we used a one-way ANOVA on the intra-interval means, with a significance level
at 0.05 (*) and 0.01 (**), to assess any significant statistical differences between the second interval and
the subsequent ones. The second interval was preferred to the first one as the latter was affected by the
acceleration phase at the start of the race. Moreover, the intra-interval means of CT, STF, SPE, and FLY
were expressed relative to the mean of the second interval (Equations (13)–(16)), and the evolution of
these parameters during the race presented using boxplots:

AvCT(k) =
mean(CT(tk))

mean(CT(t2))
(13)

AvSTF(k) =
mean(STF(tk))

mean(STF(t2))
(14)

AvSPE(k) =
mean(SPE(tk))

mean(SPE(t2))
(15)

AvFLY(k) =
mean(FLY(tk))

mean(FLY(t2))
(16)

where k is the interval index (here k = 3 . . . 11), and tk corresponds to the steps between interval k and
k + 1.

3. Results

In total, we analyzed the races of 15 athletes. One athlete had to be removed from the data set due
to an instrumentation error. Such collection led to 300 HC for the evaluation in unipedal configuration
(i.e., foot considered independently) and 150 HC for the assessment of bipedal configuration. According
to the video-based validation of the HC detected in HCFLY, all the 150 HC were correctly detected, with
the correct number of steps in each interval and the correct leading leg identified. The results of the
MAG, TEMP, and ORIENT detection methods are compared in Figure 7, where the processed signals
and detected peaks are illustrated for both unipedal and bipedal configurations.

Table 2 compares the HC detection results in terms of correctly detected HC per trial and the
mean ± SD of ∆tHC. In unipedal configuration, LL detection accuracy is shown exclusively for the
ORIENT method as the other methods cannot perform such analysis. Also, LL identification and ∆tHC

statistics were computed on the correctly detected HC, hence the different N values for each method in
Table 2.
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Figure 7. Detection results obtained by MAG (top), TEMP (middle), and ORIENT (bottom) methods for
one trial. The magnetometer graphs show the calibrated magnetic field intensity (CMFI) in percent of
the Earth’s magnetic field. The column on the left shows the detection results in unipedal configuration
and on the right for bipedal detection. The vertical grey dashed lines represent the reference HC events.

Table 2. Hurdle clearance and leading leg detection results for both unipedal and bipedal configurations.
In total, 15 trials with each Nhurdles = 10 hurdle clearances were available for the performance analysis.

Methods
HC Detection per Trial Correct HC ∆tHC (ms) LL Accuracy

Mean SD min max /Total HC Mean SD % (Total)

Unipedal
MAG 4.63 2.76 0 9 139/300 −12 100 -

TEMPSTR 9.97 0.18 9 10 299/300 −138 106 -
TEMPSW 10 0 10 10 300/300 −78 104 -
ORIENT 9.53 0.82 7 10 286/300 −47 96 99.7 (285)

Bipedal
MAG 7.33 1.76 2 9 110/150 15 94 39.1 (43)

TEMPSTP 10 0 10 10 150/150 2 4 100 (150)
TEMPFLY 10 0 10 10 150/150 0 0 100 (150)
ORIENT 9.6 0.91 7 10 144/150 −42 33 99.3 (143)

Figure 8 presents the relative changes for the average speed (AvSPE), contact time (AvCT), step
frequency (AvSTF), and flight time (AvFLY) throughout the race. These are expressed relative to the
speed, contact time, step frequency, and flight time (Equations (13)–(16)) estimated in the second
interval (i.e., 45–80 m). As the vertical color bar on the right side of the figures indicates, the values of
the slowest athletes are shown in blue, and the fastest in orange—the boundary performances (i.e., the
fastest and the slowest athlete) are shown with dashed lines.
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Figure 8. Evolution of AvSPE (a), AvCT (b), AvSTF (c), and AvFLY (d) between the third and the last
interval. The y-axis values are expressed relative to the average values obtained within the second
interval (45 to 80 m). The orange to blue gradient is used to differentiate the athletes according to
their performance time, with the boundary performances (slowest and fastest athlete) being illustrated
with dashed lines. For better visibility of individual data points, a small scatter was introduced in
the x-direction.

Table 3 presents inter-subject mean and SD of the average CT, FT, STF, and SPE in each interval.
The results from the one-way ANOVA test are shown for the intra-interval mean contact time, flight
time, step frequency, and speed. On average, 18 steps (min = 11, max = 20) were available per interval.

Table 3. Inter-subject mean and SD of the average contact time (CT), flight time (FLY), step frequency
(STF), and speed (SPE) within each interval. The results from the one-way ANOVA test, which
compared the mean statistics between the second interval and the subsequent ones, are shown with
significance level at 0.05 (*) and 0.01 (**).

Interval Distance, m
CT, ms FLY, ms STF, Hz SPE, ms−1

Mean SD Mean SD Mean SD Mean SD

1 0–45 110 7 154 11 3.8 0.15 6.73 0.44
2 45–80 104 8 160 10 3.81 0.11 7.77 0.64
3 80–115 110 9 165 10 3.65 * 0.13 7.41 0.61
4 115–150 113 9 167 10 3.59 ** 0.11 7.24 0.55
5 150–185 115 10 171 10 3.51 ** 0.1 7.05 * 0.57
6 185–220 118 ** 10 169 7 3.5 ** 0.11 6.88 ** 0.56
7 220–255 120 ** 10 170 8 3.46 ** 0.11 6.72 ** 0.63
8 255–290 125 ** 11 170 9 3.4 ** 0.09 6.5 ** 0.64
9 290–325 127 ** 10 173 * 11 3.35 ** 0.13 6.28 ** 0.61
10 325–360 129 ** 12 172 * 13 3.33 ** 0.11 6.34 ** 0.59
11 360–400 128 ** 10 170 10 3.36 ** 0.11 6.34 ** 0.54

Finally, Figure 9 presents an overview of the average speed (blue) and the number of steps (orange)
within each HC interval of a single athlete. The blue vertical lines represent the confidence interval of
the average speed values, and the blue horizontal dashed line shows the average speed during the race.
Also, we used R (right) and L (left) letters to indicate the side of the leading leg at each HC (vertical
grey dashed lines). Such a graph provides an example of the type of feedback that can be instantly
extracted using the proposed HC detection method.
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4. Discussion

The primary aim of this study was to evaluate the performance of three different MIMU-based
methods in detecting HC events and identifying the leading leg in 400 m hurdles. In the unipedal
configuration, the best HC detection results were obtained using the TEMP method and the swing
phase duration (Table 2). This method was able to detect all the 300 HC available in the data set.

In contrast to the SW parameter, the ORIENT method delivered a slightly lower HC detection
accuracy (95.3%), with one trial detecting only seven hurdles. The ORIENT method relies on the HC
technique used by the athletes. It assumes a large pitch angle for the leading leg and a large yaw angle
for trailing leg at HC (Figure 7). Its detection accuracy thus may decline the lower the performances,
e.g., for beginners. However, ORIENT was the only method capable of identifying the leading leg in
unipedal configuration and showed a high 99.7% accuracy with only one misclassification among all
the 286 correctly detected HC.

The MAG method did not provide a reliable detection in unipedal configuration, with only 46.3%
accuracy (Table 2). Closer inspection of the signals showed that most of the non-detected HC were
caused by the absence of a peak in the raw data. A possible explanation for these results resides in the
fact that the detectable distance between the foot-worn magnetometer and a hurdle depends on the
setup of the magnet bars. As the weight of the hurdles is regulated, the number of vertically stacked
magnets was limited, and so was the detectable distance. Also, fixing the magnets on the top bar of
the hurdles would have reduced the foot-to-magnet distance but was not feasible in this study for
practical reasons. Finally, the HC technique of the athlete may affect the detection results as an efficient
technique minimizes the distance between the athlete center of mass and a hurdle. Although the results
improved in the bipedal configuration (73.3%), this method remains the least accurate compared to the
two others.

In the bipedal configuration, the flight time and step duration (TEMP method) provide a 100%
accurate detection of HC and the ORIENT method 96% accuracy. These observations can be generalized
to the identification of the leading leg in the bipedal configuration. Based on these findings, flight time
seems to be the best indicator for both HC and LL identification and should be preferred to the step
duration as it provides a narrower window around HC events (Figure 5). Yet, if only one foot-worn
IMU is available, the swing phase duration in combination with the foot pitch and yaw angles also
provides accurate detection for HC and LL.
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A note of caution is due here since previous researches have shown that the vertical speed
varies during the flight phase [29] and that the 65–35% ratio used in this study may change among
athletes [23–25]. The estimated time of HC and the average speed between two hurdles must, therefore,
be presented with an appropriate confidence interval (Figure 9). In future investigations, it would be
interesting to investigate if: (1) the pitch angle of the leading leg and the yaw angle of the trailing leg
can be used conjointly to estimate the exact moment the athlete’s center of mass clears the hurdle and
(2) if instrumented magnetic hurdles with the magnet placed on the horizontal bar could be used to
estimate the distance between the hurdle and the foot.

The secondary aim of this study was to investigate the evolution of contact time, running speed,
flight time, and step frequency throughout the race. As shown in Figure 8 and Table 3, contact time
increased, and speed decreased with the distance covered. A significant rise (p < 0.01) was found for
contact time starting from the sixth interval in comparison to the second interval. However, the rate of
these changes did not appear to be associated with the performances of the athlete as the slowest and
fastest participants presented similar rates of change.

The running speed was significantly reduced as the distance covered increased, starting with
the fifth interval (p < 0.05) and increasing (p < 0.01) from the sixth interval. As for the contact time,
no association between the change in running speed during the race and athlete caliber was evident.
These results support the evidence from previous studies [21,30], who also observed a significant
increase in contact time and a decrease in running speeds for 400-m sprints. Note that the average and
SD of step frequency measured in this study (3.52 ± 0.19) are comparable with those of national-level
hurdlers presented in [28]. We also observed that the step frequency significantly decreased starting
from the third interval.

Interestingly, flight time did not follow the same trend, and no clear pattern emerged from data
analysis. Although the average flight time increased as the race progressed, only intervals 9 and 10
provided significant differences. This observation suggests that the flight time is less affected by fatigue
than the contact time. However, a measure of stride length would be useful in future studies to further
investigate the evolution of spatiotemporal variables as a function of fatigue during 400 m hurdle races.

Finally, Figure 9 presents the example of a report which was provided to the athletes and trainers.
Such a graph showcases the potential of the proposed system and the type of feedback that can be
provided during field training. Overall, this research offers new insight into the performance of
different wearable methods for detecting HC and will contribute to a deeper understanding of the
discipline by providing a tool for researchers, athletes, and trainers.

5. Conclusions

This study showed that foot-worn inertial and magnetic sensors, combined with magnets bars,
can be used to detect hurdle clearing events in 400-m hurdle. The results showed that both unipedal
and bipedal configuration can provide reliable detection. When the sensor is placed on one foot
(unipedal configuration), the swing phase duration was capable of detecting 100% of the hurdle
clearances. When combined with the pitch and yaw angles of the foot, the unipedal configuration can
correctly identify the leading leg with an accuracy of 99.7%. These results were even improved to a
100% accuracy in both HC detection and leading leg identification when using flight phase duration
in bipedal configuration (a sensor at each foot). Moreover, this study also showed that the use of
additional magnets/magnetometer does not improve the detection results of the system. Finally, this
study showcased the potential benefit of using foot-worn IMUs and validated algorithms in 400-m
hurdle races as they can provide helpful feedback about the race and continuously assess the changes
in spatiotemporal parameters.
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Abbreviation

Acronyms Definition
AvCT(k) Average CT within the kth interval expressed relatively to AvCT(2)
AvFLY(k) Average FLY within the kth interval expressed relatively to AvFLY(2)
AvSPE(k) Average SPE within the kth interval expressed relatively to AvSPE(2)
AvSTF(k) Average STF within the kth interval expressed relatively to AvSTF(2)
CMFI Calibrated magnetic field intensity
CT Contact time
DH Distance between the hurdles
FF Functional frame
FLY Flight phase duration
GF Global frame
HC Hurdle clearance
HCFLY HC detection results of the FLY parameter in the TEMP method
HCMB Bipedal HC detection results of the MAG method
HCML Left foot HC detection results of the MAG method
HCMR Right foot HC detection results of the MAG method
HCψL Left foot HC detection results based on ψleft in the ORIENT method
HCψR Right foot HC detection results based on ψright in the ORIENT method
HCOB Bipedal HC detection results of the ORIENT method (HCOL and HCOR combined)
HCOL Left foot HC detection results of the ORIENT method (HCθL and HCψL combined)
HCOR Right foot HC detection results of the ORIENT method (HCθR and HCψR combined)
HCref Reference HC time
HCSTP HC detection results of the STP parameter in the TEMP method
HCSTR HC detection results of the STR parameter in the TEMP method
HCSW HC detection results of the SW parameter in the TEMP method
HCθL Left foot HC detection results based on θleft in the ORIENT method
HCθR Right foot HC detection results based on θright in the ORIENT method
IC Initial contact
IMU Inertial measurement unit
LL Leading leg
LLFLY Bipedal LL detection results of the TEMP method using the FLY parameter
LLMB Bipedal LL detection results of the MAG method
LLSTP Bipedal LL detection results of the TEMP method using the STP parameter
mleft Magnetometer signal recorded on the left foot
m̂left Preprocessed magnetometer signal from the left foot
mright Magnetometer signal recorded on the right foot
m̂right Preprocessed magnetometer signal from the right foot
MAG Magnetometer based method for HC and LL detection
MIMU Magnetic inertial measurement unit
MS Mid-stance
Nhurdles Total number of hurdles
ORIENT Orientation based method for HC and LL detection
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ψ Yaw angle
ψ̂ Normalized yaw angle
ψleft Yaw angle measured on the left foot
ψright Yaw angle measured on the right foot
SPE Speed
STF Step frequency
STP Step duration
STR Stride time
SW Swing phase duration
τ Minimum time difference between two consecutive HC
Trace Official race time of a participant
tstart Time of the start of the race
∆tHC Differences in HC detection time
TC Terminal contact
TEMP Temporal parameter-based method for HC and LL detection
θ Pitch angle
θ̂ Normalized pitch angle
θleft Pitch angle measured on the left foot
θright Pitch angle measured on the right foot
Vmax Maximum running speed considered (42 km/h)
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