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Abstract: One of the main targets of the forthcoming fifth-generation (5G) cellular network will be the
support of the communications for billions of sensors and actuators, so as to finally realize the Internet
of things (IoT) paradigm. This pervasive scenario unavoidably requires the design of cheap antenna
systems with beamforming capabilities for compensating the strong attenuations that characterize
the millimeter-wave (mmWave) channel. To address this issue, this paper proposes an iterative
algorithm for sparse antenna arrays that enables to derive the number of elements, their amplitudes,
phases, and positions in the presence of constraints on the far-field pattern. The algorithm, which
relies on the compressive sensing approach, is formulated by transforming the original nonconvex
optimization problem into a convex one. To prove the suitability of the conceived solution for 5G
IoT mmWave applications, numerical examples and comparisons with other existing methods are
provided, considering synthesis problems with different pattern and aperture specifications.

Keywords: antenna arrays; sparse arrays; geometrical synthesis; power pattern synthesis;
compressive sensing

1. Introduction

The idea of combining the radiation of multiple antennas to obtain specific pattern shape dates
back to the beginning of the 19th century, when the history of wireless communications began [1,2].
Nowadays, antenna arrays are widely used in a large variety of scenarios involving far- and near-field
focusing/multifocusing applications for satellite, cellular, vehicular, and sensor networks [3–17].
However, even if the array technology is already widespread, its importance is expected to further
increase, since the directionality of the communications will represent a basic enabling functionality
of the forthcoming fifth-generation (5G) and Internet of things (IoT) systems [18–21]. This forecast is
motivated, on one hand, by the expected presence of a huge number of active devices (smartphones,
sensors, actuators), and, on the other hand, by the adoption of the millimeter-wave (mmWave)
bands. In fact, the need of attenuating the reciprocal interference among the 5G equipments and
of compensating the significant attenuations that characterize the mmWave channel implies the
implementation of multi-antenna systems satisfying compactness and performance constraints. These
constraints must be of course combined with the possible reduction in the unit price of a device, so as to
better match the market demand. An initial way to achieve this requirement is to minimize the number
of radiators in each antenna array. However, due to the so crowded electromagnetic environment,
this task cannot be accomplished at the expense of the desired radiation characteristics. Therefore, the
array synthesis problem addressed by a 5G antenna designer is very hard to solve, since it requires
to optimize not only the excitations of the array elements, but also their positions and, possibly, their
number. This situation identifies the typical problem addressed in the research field represented by
the design of sparse antenna arrays [22].
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This latter issue has attracted the interests of the research community since the 1960s [23–27],
regaining attention in the more recent years thanks to its applicability to the emerging communication
scenarios. Accordingly, several methods have been proposed in the literature for the synthesis
of sparse antenna arrays by considering both stochastic and deterministic approaches [28–43].
Stochastic methods can rely on different strategies, including genetic algorithms [28,29], particle
swarm optimization [30], differential evolution [31], and nature inspired techniques, such as the
ant [32], whale [33], and grey wolf [34] optimization algorithms. Also deterministic methods
have been developed by moving from different strategies. In particular, a noniterative algorithm is
proposed in [35], where the matrix pencil method is adopted to approximate a desired pattern using
a nonuniform linear antenna array with a reduced number of elements. In [36], the same authors
present a deterministic three-step procedure able to optimize the magnitudes, phases, and locations
of the elements of a linear antenna array radiating a shaped power pattern. In [37], the alternating
projection algorithm is applied in conjunction with a special technique, which iteratively places the
radiating elements with the aim of synthesizing a sparse array starting from a power pattern mask
specification. In [38], a low-complexity deterministic method for the synthesis of phase-only beam
scanning linear aperiodic arrays is proposed, which optimizes the positions, the amplitudes, and the
phases of the array elements. Convex optimization techniques are instead applied to the synthesis of
sparse antenna arrays in [39–43], where, the compressive sensing (CS) strategy is employed. The CS
technique was originally introduced in the field of image processing and signal reconstruction [44], but
nowadays its applications have hugely spanned. Thus, many different types of engineering problems
have been solved by the CS approach, some of which specifically belongs to the electromagnetics’
research context, such as the diagnosis and synthesis of antenna arrays, the estimation of the direction
of arrivals, and the solution of inverse scattering and radar imaging problems [45]. With particular
reference to the synthesis of sparse arrays, the main advantage of CS consists in the possibility to
convert a nonconvex formulation into a convex one, thus facing a complex problem in an acceptable
processing time.

According to the above observations, this paper considers the synthesis of sparse antenna
arrays for mmWave applications by developing an iterative algorithm based on the CS optimization.
The algorithm is conceived to address the general case in which a fixed grid structure is not available,
and so nonlinear problems characterized by complex formulations have to be managed, even when
simple array geometries and not challenging radiation constraints are involved. In fact, the aim is
to enable the 5G antenna designer to synthesize not only the array excitations (in amplitude and
phase), but also the number and the location of the elements in the presence of requirements on the
far-field pattern.

In this sense, the main advantage of the presented method with respect to the previously proposed
CS-based ones, consists in the possibility to impose that the synthesized pattern belongs to a predefined
mask. Differently from the conventional pattern matching approach, where a specific shape is imposed
both inside the main lobe (region of interest) and outside it (region not of interest), the here proposed
algorithm applies in detail the shape constraint to the sole main lobe, imposing just an upper limit to
the other angular regions. Moreover, the main lobe shaping is realized independently of the pattern
phase. Thus, a power pattern problem is here addressed instead of a field synthesis one analyzed in [40].
In this way, the available degrees of freedom are better exploited. Besides, the pattern requirements
are matched by reformulating the initial nonconvex problem into a convex one in order to enable
its mathematical tractability in an acceptable CPU time. To prove the effectiveness of the presented
method, numerical examples adherent to the 5G IoT context and comparisons with existing approaches
are presented and discussed.

The remaining of the paper is organized as follows. Section 2 formulates the addressed problem.
Section 3 presents the developed algorithm. Section 4 discusses the numerical results. Section 5
summarizes the most relevant conclusions.
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Notation. Throughout the paper the following notation is used: (·)T denotes the transpose operator,
(·)∗ denotes the complex conjugate, j denotes the imaginary unit, and ∠x denotes the argument of x.

2. Problem Formulation

With reference to a Cartesian system O(x, y, z), consider an antenna array of arbitrary geometry
composed by a generic (and possibly large) number of elements N, which are located at the positions
r̄n = xnx̂+ ynŷ+ znẑ, for n = 1, . . . , N, where x̂, ŷ and ẑ represent the unit vectors of the corresponding
Cartesian axes. As usual, in spherical coordinates, denote by θ the angle measured from the z-axis and
by φ the azimuth angle. The radiation pattern produced by this arbitrary array at the generic direction
r̂ = sin θ cos φ x̂ + sin θ sin φ ŷ + cos θ ẑ is given by:

F(w; r̂) =
N

∑
n=1

wn fn(r̂) exp(jk r̄n · r̂), (1)

where w = [w1, . . . , wN ]
T represents the column vector of the complex excitations of the array elements,

fn(r̂) is the element pattern of the n-th array element, and k = 2π/λ is the wavenumber, being λ the
carrier wavelength.

Concerning (1), two main aspects should be taken into account. Firstly, the geometry of the array,
which may be linear, planar or even conformal, is usually specified by some shape/size constraints in
the physical design. When the CS strategy is adopted, the application of these constraints allows one
to identify the possible positions of the N elements as the candidate positions, while the final array
will be composed by a very reduced number of elements, suitably chosen among these N candidates.
The second aspect that should be considered is that also the pattern generated by (1) is always required
to satisfy specific shape constraints, which can be properly modeled by a suitably defined mask.
Accordingly, the constraints on the pattern can, in principle, be expressed as:

Mlow(r̂) ≤ |F(w; r̂)| ≤ Mup(r̂), (2)

where Mlow(r̂) and Mup(r̂) are real positive functions representing, respectively, the lower and upper
bound of the mask.

The problem addressed in this paper is that of selecting, among the N candidate positions, the
lowest number of array elements, their positions and excitations in such a way as to obtain a radiation
pattern compliant with (2). By consequence, the here addressed problem can be mathematically
formulated in compact form as follows:

min
w∈CN

‖w‖0 (3a)

subject to (2) (3b)

where ‖w‖0 denotes the l0-norm of w. More precisely, ‖w‖0 counts the nonzero components of w,
corresponding to the elements that will result physically active at the end of the synthesis process.

3. Synthesis Method

As it can be immediately observed, the problem in (3) is in general nonlinear and nonconvex, thus
extremely hard to solve. The CS approach is specifically useful for this kind of situations, but requires
a proper reformulation of (3). To this aim, consider an iterative procedure, which, at the generic k-th
iteration, solves a minimization problem whose objective function is given by the weighted l1-norm
(or weighted Manhattan distance) [39]:

‖wk‖1 =
N

∑
n=1

αk
n|wk

n|, (4)
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in which, for n = 1, . . . , N, k = 1, 2, . . . , the weights:

αk
n = (|wk−1

n |+ ε)−1, (5)

are introduced to improve the final result by properly selecting a suitable parameter ε. The objective
function in (4) along with the weight definition in (5) replaces the original objective function in (3a),
and is known to produce sparse solutions [46]. However, this novel problem remains difficult to solve
because of the nonlinearity and nonconvexity of (2)–(3b). To address this second aspect, let outline
some observations regarding the radiation pattern requirements that are commonly imposed. Usually,
a desired pattern is characterized by: (i) a main beam region (MBR) with a shape that must be exactly
matched, (ii) a maximum allowed level for the sidelobe region (SLR), and (iii) a (possible) null region
(NR). For these two latter requirements, the lower bound of the mask is not of concern, since the lower
is the pattern, the more appreciable is the result. Therefore, according to [40], a suitable strategy to
handle the constraint in (2)–(3b) is to separately impose the requirement on the MBR and those on the
SLR and NR. Accordingly, (2) is subdivided into the following two constraints:

{
|F(w; r̂)− Fd(r̂)| ≤ ε r̂ ∈ MBR (6a)

|F(w; r̂)| ≤ Mup(r̂) r̂ ∈ SLR∪NR (6b)

where Fd(r̂) represents the desired main lobe function [40]. Now, it is worth to note that the usage of
(6a) leads to a field synthesis problem and not to a power synthesis one. This implies that the available
degrees of freedom are in part wasted to approximate the array phase pattern, which is usually not of
interest. To overcome this issue, one can first recall the following property holding for two arbitrary
complex numbers z1 and z2:

||z1| − |z2|| = |z1 − z2| iff ∠z1 = ∠z2 + 2hπ, h ∈ Z. (7)

This property suggests that (6a) is equivalent to a power synthesis problem if and only if the phase of
the array pattern equals the phase of the desired pattern. Hence, by considering (4)-(7), the original
problem in (3) can be iteratively solved by minimizing, at the k-th iteration, the constrained function:

min
wk∈CN

‖wk‖1 (8a)

subject to: |F(wk; r̂)− Fk
d(r̂)| ≤ δ(r̂) r̂ ∈ MBR (8b)

|F(wk; r̂)| ≤ Mup(r̂) r̂ ∈ SLR∪NR (8c)

where δ(r̂) is a real function defining the accuracy required in the MBR at each direction, and:

Fk
d(r̂) = F0

d(r̂) exp
[

j∠F(wk−1; r̂)
]

, (9)

is the desired MBR function updated, at the k-th iteration, according to the phase of the pattern
synthesized at the (k− 1)-th iteration and to a suitable real function F0

d(r̂) defining the MBR shape.
Notably, this latter formulation represents a second-order cone program (SOCP) problem, which can
be solved by the use of freely available software routines, as, for example, the Matlab-based CVX [47].
It is also worth to observe that, although, at each iteration, (8a)–(8c) formally belongs to the class of
field synthesis problems, the iterative modification in (9) of the constraint in (8b) actually leads to a
power synthesis problem. Importantly, note that it is this iterative modification of the MBR constraint
that allows one to better exploit the degrees of freedom of the problem and thus to improve the final
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results. Moreover, to refer all requirements in terms of mask specifications, one can define the functions
identifying the accuracy and the MBR shape, respectively, as:

δ(r̂) =
Mup(r̂)−Mlow(r̂)

2
, (10a)

F0
d(r̂) =

Mup(r̂) + Mlow(r̂)
2

. (10b)

This operation enables to finally identify the iterative algorithm that solves the original synthesis
problem formulated in (3). The development of the algorithm is detailed in Table 1. Step 1 specifies the
problem’s constraints (candidate positions, bounds of the mask, accuracy, SLR, NR, and initial MBR
shape). Step 2 initializes the iteration and the excitations. Step 3 updates the iteration, the pattern,
the weights, and the phase of the MBR shape. This latter update constitutes the major novelty of the
proposed approach. Step 4 solves the SOCP problem at the present iteration. Step 5 identifies the stop
condition, which requires that the number of nonzero elements of the excitation vector does not change
in three consecutive iterations. Alternatively, the stop condition might also be formulated by selecting
a maximum pre-defined number of iterations. Of course, during the evolution of the algorithm, none
element of wk does exactly vanish, but the generic n-th element of the array is considered as zero, that
is, is assumed absent, if the amplitude of its excitation |wk

n| is lower than the threshold ε.

Table 1. Proposed algorithm.

Step 1 Problem specifications
(i) Initial set of candidate positions r̄n (n = 1, . . . , N);
(ii) Upper Mup(r̂) and lower Mlow(r̂) bounds of the mask;
(iii) MBR, SLR, and NR;
(iv) Accuracy δ(r̂) and MBR shape F0

d(r̂) using (10a) and (10b), respectively.

Step 2 Initializations
(i) Iteration k = 0;
(ii) Excitations w0

n = 1 (n = 1, . . . , N).

Step 3 Updates
(i) Iteration k→ k + 1;
(ii) Current pattern F(wk−1, r̂) using (1);
(iii) Weights αk

n (n = 1, . . . , N) using (5);
(iv) Constraint (8b) using (9).

Step 4 Evaluation
Solve the SOCP problem given by (8a)–(8c).

Step 5 Stop condition
If k ≥ 3 and ‖wk‖0 = ‖wk−1‖0 = ‖wk−2‖0

wk identifies the elements of the final sparse array and their excitations;
Exit

else
Go to Step 3

end

4. Results and Discussion

Five numerical examples are provided to prove the effectiveness of the proposed
algorithm, by considering both two-dimensional (2D) problems (i.e., azimuth synthesis only) and
three-dimensional (3D) ones (i.e., zenith-azimuth synthesis). Four of these examples are taken from the
literature, in order to have a direct benchmark with the state-of-the-art methods in terms of element
saving, while the fifth example is specifically conceived to include a more evolved multi-ring array
geometry. Note that the first four problems are intentionally selected from examples already proposed
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in previous papers, since, according to the approach commonly adopted in the array synthesis research
field, a direct comparison between the proposed and the existing algorithms can be immediately
carried out. Furthermore, to put into evidence the relevance of all the solved problems for the IoT
scenario, each example is described including specific references in which the employed array is
exploited for 5G sensor applications. The algorithm is implemented using Matlab R2018b and CVX on
a personal laptop having 8 GB RAM, and all results are obtained adopting a threshold ε = 10−2 [40].
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Figure 1. First example: linear array. Flat-top pattern radiated by the optimized 19 elements (blue solid
line), upper and lower bounds of the mask in the main beam region (MBR) (green solid line), upper
bound of the mask in the sidelobe region (SLR) (red solid line), pattern synthesized by the 17 elements
obtained after minimum inter-element distance control (red dashed line). The inset shows a zoom of
the MBR. The final positions and excitations are listed in Table 2.

4.1. First Example

The first numerical example considers the 2D problem addressed in [39], which involves a linear
array of isotropic elements lying on the z-axis and characterized by an aperture equal to 20λ. This array
is required to radiate in the zenith domain a flat-top pattern, in which the MBR is given by the set
ΘMBR = {θ : 70◦ ≤ θ ≤ 110◦} with an allowed ripple ρt equal to 0.4455 dB, while the SLR is defined
by the set ΘSLR = {θ : 0◦ ≤ θ ≤ 65◦ ∪ 115◦ ≤ θ ≤ 180◦} with a maximum sidelobe level equal to
−30 dB. The initial set of candidate positions is selected by regularly spacing the isotropic radiators on
the available aperture with an inter-element distance of λ/100, resulting in a starting value N = 2001.
The linear array geometry has been widely applied to IoT scenarios [19,20,48], thanks to its simplicity
of realization and conformability to objects having the length as the prevailing dimension.

The pattern obtained using the proposed algorithm is reported in Figure 1. Table 2, instead, lists
the element positions normalized with respect to λ and the excitations normalized with respect to
w10. From these values one may first observe that, being the desired pattern symmetrical, the active
elements are symmetrically displaced and the corresponding excitations are real numbers. Of course,
the central element n = 10 lies in position z10 = 0 and has a normalized excitation equal to one.
Interestingly, among the N = 2001 candidates, just 19 elements have been sufficient to match the
pattern requirements. This represents a considerable reduction of the final number of elements as
compared to [39], in which the final array was composed by 31 elements, a result already better than
the 41 elements calculated in [49,50], where this problem was originally developed.
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Table 2. First example: normalized element positions and excitations.

n zn/λ wn/w10 n zn/λ wn/w10 n zn/λ wn/w10

1 −9.74 −0.0020 7 −1.97 −0.2027 14 3.25 0.1189
2 −8.48 0.0283 8 −0.65 0.1223 15 4.58 −0.0862
3 −7.18 −0.0349 9 −0.64 0.5128 16 5.87 0.0540
4 −5.87 0.0570 11 0.64 0.4826 17 7.18 −0.0399
5 −4.58 −0.0748 12 0.65 0.1515 18 8.48 0.0186
6 −3.25 0.1252 13 1.97 −0.2138 19 9.74 −0.0172
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Figure 2. Second example: Linear array. Flat-top pattern radiated by the optimized 18 elements (blue
solid line), desired pattern in the MBR (green solid line), upper bound of the mask in the SLR (red solid
line). The inset shows a zoom of the MBR. The final positions and excitations are listed in Table 3.

A possible further reduction of the number of elements might be achieved by imposing a further
minimum inter-element distance control, which in this case can be considered suitable. In fact,
one may notice from Table 2 that the elements n = 8 and n = 9, and, similarly, the elements n = 11
and n = 12, are very close to each other. In particular, their distance is exactly equal to the grid
step λ/100, thus making difficult the practical realization of the array. The proposed refinement
consists in replacing the pairs (8, 9) and (11, 12) with two single elements lying in the middle points
(z8+z9)/2 = −0.645λ and (z11+z12)/2 = 0.645λ, and selecting, for the respective excitations, the
values w8+w9=0.6351 and w11+w12=0.6341. In this way, one can obtain an array of only 17 elements
that radiates the pattern in Figure 1 identified by the red dashed line, which is characterized by a
very limited degradation with respect to the originally synthesized one (blue solid line). As a final
observation, it is worth to note that the here derived original pattern has been obtained after six
iterations that have required 254 s. Thus, just a few minutes have been sufficient to achieve the
presented result.
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Table 3. Second example: normalized element positions and complex excitations.

n zn/λ (|wn| , ∠wn) n zn/λ (|wn| , ∠wn) n zn/λ (|wn| , ∠wn)

1 −7.33 (0.0510 , −77.4970) 7 −2.25 (0.1816 , 110.4115) 13 1.92 (0.2459 , −22.6474)
2 −6.01 (0.0065 , −34.0712) 8 −1.92 (0.2638 , 11.3857) 14 2.25 (0.1407 , −120.9294)
3 −4.93 (0.1053 , 50.8963) 9 −0.73 (0.5726 , 101.9257) 15 3.24 (0.1420 , 29.7340)
4 −4.58 (0.1075 , −46.5715) 10 −0.27 (1.0000 , 28.4632) 16 3.56 (0.1400 , −78.2697)
5 −3.56 (0.0257 , 65.7662) 11 0.27 (0.9706 , −24.9160) 17 6.01 (0.1090 , 67.4450)
6 −3.24 (0.0771 , 7.0465) 12 0.73 (0.5570 , −97.4171) 18 6.32 (0.1081 , −58.2957)

4.2. Second Example

The second example is still a 2D flat-top synthesis problem taken from [39]. The problem
considers the same linear array and candidate elements of the first example, but, differently, the array is
composed by directive radiators, which are more likely to be mounted on actual IoT sensors [19,20,48].
More precisely, the single-element pattern is modeled by the function fn(θ) = sin θ, representing a
short dipole parallel to the z-axis. Moreover, the desired MBR is no more symmetrical with respect to
the broadside direction, but is defined by the shifted set ΘMBR = {θ : 50◦ ≤ θ ≤ 90◦} with an allowed
ripple ρt equal to 1 dB, while the SLR is defined by the set ΘSLR = {θ : 0◦ ≤ θ ≤ 43◦ ∪ 97◦ ≤ θ ≤ 180◦}
with a maximum sidelobe level equal to −30 dB.

The pattern derived using the developed method is shown in Figure 2, while Table 3 reports
the normalized element positions and the complex excitations. In this second example, the desired
pattern is not symmetrical, and hence the positions are also not symmetrical and the excitations are not
real. The provided results confirm the satisfactory behavior of the proposed technique, since the final
array, derived after 13 iterations that have required a CPU time of 548 s (less than 10 min), consists of
just 18 active elements. A significant improvement as compared to the 25 elements obtained in [39].
Beside the element reduction, this example proves that the presented method is suitable not only
when broadside patterns and isotropic sources are assumed, but also when more general scenarios,
characterized by steered main beams and directive radiators, have to be realistically managed.
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Figure 3. Third example: linear array. Cosecant-like pattern radiated by the optimized 12 elements
(blue solid line), desired pattern in the MBR (green solid line), upper bound of the mask in the SLR and
null region (NR) (red solid line). The final positions and excitations are listed in Table 4.
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4.3. Third Example

The third example involves the 2D synthesis problem originally developed in [51] that adopts a
linear array of aperture 7.5λ composed by isotropic elements. In this case, the algorithm is required to
generate a not symmetrical cosecant-like pattern in the MBR defined by the set ΘMBR = {θ : 98◦ ≤ θ ≤
135◦}, and to impose a NR given by the set ΘNR = {θ : 66◦ ≤ θ ≤ 88◦} in which no more than −30 dB
of radiation are allowed. Besides, the SLR is defined by the set ΘSLR = {θ : 0◦ ≤ θ ≤ 66◦ ∪ 143◦ ≤ θ ≤
180◦} with a maximum sidelobe level equal to −20 dB, and the pattern obtained in [36] for the same
example is used as the desired pattern in (9) in the MBR. Also in this case, the candidate positions are
chosen by regularly spacing the radiators on the available aperture with an inter-element distance
equal to λ/100, resulting now in a starting value N = 751. Note that, with reference to forthcoming
pervasive communication networks, the cosecant-like pattern can be of specific interest for IoT sensors,
since it enables to radiate a constant power on a given angular region, thus realizing a uniform covering
of that region for monitoring applications [52,53].

The pattern calculated employing the presented approach is reported in Figure 3, while Table 4
shows the normalized element positions and the complex excitations. These results reveal the capability
of the developed algorithm to strictly approximate the desired pattern, even in the presence of a wide
null region and of a main beam requiring a specific not-flat shape. However, the main advantage
of the designed method remains the low number of resulting active elements as compared to the
previously proposed techniques. In fact, the original solution in [51] was characterized by 16 elements,
and those in [36] and [40] by 13 elements, while the here conceived algorithm has provided, after just
four iterations, a final array consisting of only 12 active elements. Furthermore, the time necessary to
achieve this result has been approximately equal to 55 s, thus lower than a minute.

Table 4. Third example: Normalized element positions and complex excitations.

n zn/λ (|wn| , ∠wn) n zn/λ (|wn| , ∠wn) n zn/λ (|wn| , ∠wn)

1 −3.72 (0.5171 , 15.4295) 5 −1.50 (0.7644 , −149.0791) 9 1.38 (0.1902 , −31.2221)
2 −3.01 (1.0000 , 100.9695) 6 −0.70 (0.6749 , −113.2490) 10 2.12 (0.2963 , −8.6059)
3 −2.53 (0.0721 , 156.1117) 7 0.14 (0.4836 , −77.9490) 11 2.93 (0.1309 , 3.5823)
4 −2.29 (0.9066 , 171.0874) 8 0.83 (0.3659 , −55.6914) 12 3.75 (0.2083 , 72.6957)
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Figure 4. Fourth example: planar array. Contour plot of the synthesized pattern radiated by the
optimized 60 elements. The final positions are shown in Figure 5 and the excitations are listed in
Table 5.
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4.4. Fourth Example

The fourth example is a 3D zenith-azimuth synthesis problem originally developed in [39] that
involves a square array of isotropic radiators lying in the x − y plane and having side equal to
5λ. The mask specifications are given in terms of the variables u = sin θ cos φ and v = sin θ sin φ.
In particular, the MBR, in which the allowed ripple ρt is equal 1 dB, is defined by the 2D set ΩMBR =

{(u, v) : u2 + v2 ≤ 1/25} while the SLR, in which the maximum allowed level is equal to −25.85 dB, is
identified by the 2D set ΩSLR = {(u, v) : u2 + v2 ≥ 4/25}. The initial set of the candidate positions is
composed by a regular grid of elements spaced by λ/4 in both directions and covering the available
aperture. This leads to a starting value N = 441. This fourth example is of interest both for 5G base
stations (BSs) and gigabit-WiFi access points (APs) [54], which are, on one hand, characterized by a
planar structure that enables the possibility to host many radiating elements [55–57], and, on the other
hand, have to manage the problem of initial user access, which requires a wide main beam to avoid
too long searching procedures for identifying the region of space where a given user lies [58].
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Figure 5. Fourth example: positions of the candidate (red cross) and final (blue circles) array elements.

Table 5. Fourth example: Excitations.

n wn n wn n wn n wn n wn n wn

1 −0.7703 11 3.9079 21 9.2605 31 4.3223 41 4.2946 51 3.1712
2 −0.7830 12 4.1300 22 8.3720 32 1.1883 42 1.5319 52 −0.6131
3 −1.1008 13 −1.1552 23 2.6786 33 −0.7428 43 4.2036 53 −0.5462
4 −0.9977 14 4.2489 24 −0.6591 34 3.9587 44 −1.0944 54 0.2170
5 −1.0158 15 4.1157 25 2.8896 35 5.2375 45 0.9100 55 −1.0237
6 −0.6747 16 −1.0884 26 2.1762 36 6.5611 46 3.5755 56 −1.1029
7 −0.4380 17 0.7129 27 3.1437 37 3.9997 47 3.0698 57 −0.3591
8 −0.5442 18 1.4489 28 −0.9362 38 −0.2134 48 1.0584 58 −1.0865
9 −0.9632 19 −0.7999 29 0.7927 39 9.3600 49 −0.9486 59 −1.5257

10 −1.0186 20 3.6794 30 7.0626 40 −0.1826 50 2.8547 60 −1.3586

The contour plot of the pattern derived using the proposed algorithm is shown in Figure 4,
while Figure 5 and Table 5 report the initial grid (red cross) with the finally active elements (blue circles)
and the real excitations, respectively. For the correspondence between Figure 5 and Table 5, the active
elements have been numbered from the bottom to the top and from the left to the right. For readability
reasons, Figure 5 illustrates the sole four elements that enable the reader to infer the order. From these
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results, one may notice that 60 elements have been obtained. A considerable reduction as compared to
the 76 derived in [39]. The computational time required to achieve the here provided solution is equal
to 2032 s, corresponding to 13 iterations.
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Figure 6. Fifth example: multi-ring array. Contour plot of the synthesized pattern radiated by the
optimized 62 elements. The final positions are shown in Figure 7 and the excitations are listed in
Table 6.
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Figure 7. Fifth example: positions of the candidate (red cross) and final (blue circles) array elements.

4.5. Fifth Example

The fifth and last example is a 3D zenith-azimuth synthesis problem developed adopting a planar
circular array with multiple rings radiating a very narrow beam. The multi-ring array, having a
maximum radius equal to 10λ, consists of isotropic radiators lying in the x− y plane. The initial set
of the candidate positions is composed by N = 1308 elements regularly spaced on 20 rings having
center in the origin of the reference system and radii Ri = 0.5(1 + i)λ, i = 0, . . . , 19, in such a way
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as dmin ≥ λ/2. The mask specifications, given in terms of the variables u and v, have the MBR
defined by the 2D set ΩMBR = {(u, v) : u2 + v2 ≤ 1/400} and the SLR identified by the 2D set
ΩSLR = {(u, v) : u2 + v2 ≥ 1/100}. The allowed ripple in the MBR is ρt = 1 dB and the maximum
allowed level in the SLR is equal to −15 dB. This example refers to a scenario in which the 5G BS
or the gigabit-WiFi AP (both suitable to host planar array structures), has already accomplished the
initial access with the user and intends to generate a highly directional communication for realizing a
high-capacity link [38,59,60].

The contour plot of the pattern derived using the proposed algorithm is shown in Figure 6,
while Figure 7 and Table 6 report the initial grid (red cross) with the finally active elements (blue circles)
and the real excitations, respectively. For the correspondence between Figure 7 and Table 6, the active
elements have been numbered starting from the x−axis counterclockwise from the outermost to the
innermost ring. For readability reasons, Figure 7 illustrates the numbers of the four elements that
enable the reader to infer the order. The computational time required to achieve the here provided
solution is higher with respect to the previous example (14,691 s, corresponding to eight iterations).
This is due to the finer grid required to sample a so narrow beam in the u − v domain. This last
example and the previous one prove that also 3D synthesis problems may be successfully dealt with
by the conceived CS-based approach, considering both flat-top and pencil beam pattern requirements.

A final comment regarding the presented results concerns the mutual coupling effects, which, in
the research field covered by the geometrical synthesis of antenna arrays, must be considered once
the final positions have been estimated. In fact, the initial set of positions does not represent real
elements, but only candidate ones. Hence, when the selected elements change, also the coupling effects
change. Consequently, one should evaluate the coupling at each iteration. Clearly, this is not a practical
approach and hence the coupling effects may be considered at the end of the procedure. In this case,
if the pattern distortion is not acceptable, the element excitations may be modified with any suitable
algorithm for the synthesis of conformal arrays, as for example [49,50,61–64].

Table 6. Fifth example: Excitations.

n wn n wn n wn n wn n wn n wn

1 −0.4287 12 2.5582 23 1.6233 34 2.8681 45 1.1385 56 1.6511
2 −0.8324 13 2.3506 24 2.0073 35 0.8899 46 1.3016 57 1.7920
3 −1.3767 14 1.6307 25 2.3949 36 2.1484 47 2.2395 58 2.1606
4 0.5247 15 1.0195 26 1.5068 37 1.4631 48 2.3995 59 1.5831
5 0.7506 16 2.4243 27 1.1951 38 1.5917 49 2.8561 60 2.6363
6 1.7065 17 1.4812 28 1.9673 39 0.7089 50 1.1195 61 1.3877
7 2.0100 18 1.5143 29 2.4747 40 0.4596 51 1.4155 62 1.1193
8 1.6065 19 2.4225 30 2.6175 41 2.3680 52 1.2087
9 2.1001 20 0.5591 31 1.9543 42 1.0167 53 1.7925

10 1.3948 21 1.1460 32 3.0988 43 1.7411 54 1.6238
11 2.0795 22 2.2760 33 2.6850 44 1.1867 55 1.6902

5. Conclusions

A CS-based iterative procedure for the power synthesis of sparse arrays has been presented.
The proposed algorithm relies on the solution of a sequence of SOCP problems with the aim of
minimizing the number of radiators of an array composed by a large number of candidate elements.
The constraints of the minimization problem have been formulated in such a way as to be convex,
and to approximate a power pattern synthesis problem in the entire visible region. The constraints
formulation, and, in particular, their iterative modification constitutes the original contribution, which
allows one to improve the performance of the previously proposed CS-strategies for sparse array
applications. Different numerical examples involving linear and planar structures have been discussed,
obtaining, in all cases, the matching of the pattern requirements, and, for the cases involving the
comparison with the previous existing solutions, a lower final number of active elements.
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